New results on slowly varying functions in the Zygmund sense

By Edward OMEY^{*)} and Meitner CADENA^{**)}

(Communicated by Masaki KASHIWARA, M.J.A., June 12, 2020)

Abstract: Very recently Seneta [15] has provided a characterization of slowly varying functions L in the Zygmund sense by using the condition, for each y > 0,

(1)
$$x\left(\frac{L(x+y)}{L(x)}-1\right) \to 0 \text{ as } x \to \infty.$$

We extend this result by considering a wider class of functions and a more general condition than (1). Further, a representation theorem for this wider class is provided.

Key words: Slowly varying; monotony in the Zygmund sense; class $\Gamma_a(g)$; self-neglecting function; extreme value theory; convergence rates.

1. Introduction. The notion of ultimately monotony introduced by Zygmund dates back to works like [16, p. 237] and [17, p. 186]. It says that a function $U \ge 0$ is slowly varying if for each $\epsilon > 0$ the function $x^{\epsilon}U(x)$ is ultimately increasing and $x^{-\epsilon}U(x)$ is ultimately decreasing. The class of this type of functions is called the Zygmund class (ZSV). A different kind of slowly varying functions was defined by Karamata [6,7] known as simply the class of slowly varying functions (KSV). It is known that any ZSV function is a KSV function, see [17, p. 186] and e.g. [14, p. 49].

A number of authors have analyzed generalizations of the functions ZSV, by considering $U(x)/x^a$ is increasing and $U(x)/x^b$ is decreasing, with $-\infty < a \le b < \infty$ [3,4,11]. This type of functions have applications in analysis, differential equations and approximation theory [4,5,9,12]. Also, they are related with the notion of quasi-convexity, leading to applications in probability [8,13].

Very recently [15] has given an elegant characterization of the ZSV functions in terms of the condition (1).

In this paper, we extend this result by considering a wider notion of ultimately monotony than that proposed by Zygmund. Consequently, a more general limit than that involved in (1) is provided. To this aim, we take into account functions related to self-neglecting functions and to functions belonging to $\Gamma_0(g)$. This type of functions have been deeply studied in [10].

In what follows, a brief review of functions that belong to the gamma class and related classes of functions is shown. Next, the new class called Z(g, a) is introduced and then a result of Zygmund type. That section then presents an extension of Theorem 2 in [15] and a characterization of the members of Z(g, a).

2. Main Results.

2.1. Preliminaires. In Omey [10] the author studied the following class of functions.

The positive and measurable function g is selfneglecting (notation: $g \in SN$) if it satisfies

$$\frac{g(x+yg(x))}{g(x)} \to 1, \forall y \in \mathbf{R}$$

and locally uniformy in y.

The positive and measurable function a is in the class $\Gamma_{\alpha}(g)$ if $g \in SN$ and if

$$\frac{a(x+yg(x))}{a(x)} \to e^{\alpha y}, \forall y \in \mathbf{R}.$$

In [10] it is proved that this relation automatically holds locally uniformly in y.

The positive and measurable function is in the class $E\Gamma_{\alpha}(g, a)$ if $g \in SN$, $a \in \Gamma_0(g)$ and

$$\frac{f(x+yg(x))-f(x)}{a(x)} \to \alpha y, \forall y \in \mathbf{R}.$$

In [10] it is proved that this relation automatically holds locally uniformly in y.

Note that if $a(x)/f(x) \to 0$, we find that $f \in \Gamma_0(g)$ with a remainder term.

²⁰¹⁰ Mathematics Subject Classification. Primary 26A12, 28A10, 45M05, 60G70.

^{*)} KU Leuven, Campus Brussels, Dept. MEES, Warmoesberg 26, 1000 Brussels, Belgium.

^{**)} DECE, Universidad de las Fuerzas Armadas, Ecuador.

In [10] the author proved that for $g \in SN$ and $a \in \Gamma_0(g)$ we have $f \in E\Gamma_\alpha(g, a)$ if and only if f is of the form f(x) = A(G(x)), where $A \in \Pi_\alpha(L)$ and $G \in \Gamma_1(g)$ where $L \in RV_0$ and $g \in SN$.

In [10, Theorem 2.2] the author also showed that for $g \in SN$ and $a \in \Gamma_0(g)$ we have $f \in E\Gamma_\alpha(g, a)$ if and only if f can be represented as

$$f(x) = C + W(x) + \alpha \int_{x^{\circ}}^{x} \frac{a(t)}{g(t)} dt + V(x),$$

where $V(x)/a(x) \to 0$ and $W'(x)g(x)/a(x) \to 0$.

2.2. The class Z(g, a). In view of Zygmund we consider the following class of functions. We assume that $g \in SN$ and $a \in \Gamma_0(g)$ and we also assume that g(x) = o(a(x)). The positive and measurable function U(x) is in the class Z(g, a) if it satisfies:

(2)
$$\lim_{x \to \infty} \frac{a(x)}{g(x)} \left(\frac{U(x+yg(x))}{U(x)} - 1 \right) = 0, \forall y \in \mathbf{R}.$$

From (2) it follows that $U \in \Gamma_0(g)$ and also that

(3)
$$\lim_{x \to \infty} \frac{a(x)}{g(x)U(x)} \left(U(x + yg(x) - U(x)) = 0, \forall y \in \mathbf{R}, \right)$$

so that $U \in E\Gamma_0(g, b)$, where $b(x) = g(x)U(x)/a(x) \in \Gamma_0(g)$.

From (1) it also follows that

(4)
$$\lim_{x \to \infty} \frac{a(x)}{g(x)} \log \frac{U(x + yg(x))}{U(x)} = 0, \forall y \in \mathbf{R},$$

so that $\log U(x) \in E\Gamma_0(g, b)$ where $b(x) = g(x)/a(x) \in \Gamma_0(g)$.

From the previous subsection we have that in each of the relations (2)–(4), the relation holds l.u. in $y \in \mathbf{R}$.

The representation result of the previous subsection (with $\alpha = 0$) shows that $\log U(x)$ can be written as:

$$\log U(x) = C + W(x) + V(x),$$

where $V(x)a(x)/g(x) \to 0$ and $W'(x)a(x) \to 0$.

2.3. Result of Zygmund type. A positive and measurable function L is in the Zygmund class of slowly varying functions if for any fixed $\epsilon > 0$ and any y > 0,

$$x^{\epsilon}L(x) \le (x+y)^{\epsilon}L(x+y)$$

and

$$x^{-\epsilon}L(x) \ge (x+y)^{-\epsilon}L(x+y).$$

This class of functions is a subclass of the class of slowly varying functions in the sense of Karamata.

Seneta [15] proved that L is in the Zygmund class of SV functions if and only if

$$\lim_{x \to \infty} x \left(\frac{L(x+y)}{L(x)} - 1 \right) = 0, \forall y \in \mathbf{R}.$$

In this section we generalize the result of Seneta to the class Z(g, a). We prove the following result:

Theorem 1. Assume that $g \in SN$, $a \in \Gamma_0(g)$ and g(x) = o(a(x)). Let y > 0. The inequalities, for x large and $\epsilon > 0$,

$$\begin{split} U(x+yg(x)) &\times \exp \epsilon \int_{x^{\circ}}^{x+yg(x)} a^{-1}(t) dt \\ &\geq U(x) \times \exp \epsilon \int_{x^{\circ}}^{x} a^{-1}(t) dt \end{split}$$

and

$$U(x + yg(x)) \times \exp -\epsilon \int_{x^{\circ}}^{x + yg(x)} a^{-1}(t) dt$$

$$\leq U(x) \times \exp -\epsilon \int_{x^{\circ}}^{x} a^{-1}(t) dt,$$

hold if and only if $U \in Z(g, a)$.

Proof. Assume that $U \in Z(g, a)$. Let y > 0. We consider for $\epsilon \in \mathbf{R}$ the function $V(x) = U(x) \times \exp \epsilon \int_{x^{\circ}}^{x} a^{-1}(t) dt$. We then have

We then have

$$\frac{V(x + yg(x)) - V(x)}{V(x)}$$

$$= \frac{U(x + yg(x))}{U(x)} \exp \epsilon \int_{x}^{x + yg(x)} a^{-1}(t) dt - 1$$

$$= I + II,$$

where

$$I = \left(\frac{U(x+yg(x))}{U(x)} - 1\right) \exp \epsilon \int_x^{x+yg(x)} a^{-1}(t)dt,$$

$$II = \exp \epsilon \int_x^{x+yg(x)} a^{-1}(t)dt - 1.$$

In the second term we have (put $t = x + \theta g(x)$)

$$\int_{x}^{x+yg(x)} a^{-1}(t)dt = \frac{g(x)}{a(x)} \int_{0}^{y} \frac{a(x)}{a(x+\theta g(x))} d\theta.$$

Since $a \in \Gamma_0(g)$, we have

$$\int_{x}^{x+yg(x)} a^{-1}(t)dt \sim \frac{g(x)}{a(x)} \int_{0}^{y} 1d\theta = \frac{g(x)}{a(x)} y$$

and we obtain that

•

No. 6]

$$\frac{a(x)}{g(x)} II \to \epsilon y.$$

Now consider the first term. By assumption we have

$$\frac{a(x)}{g(x)} \left(\frac{U(x+yg(x))}{U(x)} - 1 \right) \to 0.$$

We conclude that

$$\frac{a(x)}{g(x)}(I+II) \to \epsilon y.$$

Moreover, as we argued before, this relation holds l.u. in y > 0. This implies that for x large enough, the sign of I + II is the same as the sign of ϵ . The inequalities of the theorem then follow.

Now we prove a converse result.

Starting from the inequalities in the theorem, for y > 0 and $\epsilon > 0$ we have

$$\exp \epsilon \int_{x}^{x+yg(x)} a^{-1}(t)dt$$
$$\geq \frac{U(x+yg(x))}{U(x)} \geq \exp -\epsilon \int_{x}^{x+yg(x)} a^{-1}(t)dt$$

with a and g as above. It follows that

$$-\epsilon y \le \lim \left(\sup_{\inf} \right) \frac{a(x)}{g(x)} \left(\frac{U(x+yg(x))}{U(x)} - 1 \right) \le \epsilon y.$$

Since ϵ was arbitrary, we find that

$$\frac{a(x)}{g(x)}\left(\frac{U(x+yg(x))}{U(x)}-1\right) \to 0.$$

The theorem then follows. Special Cases

- (a) As a first case, we take g(x) = 1 and a(x) = x,
 x° = 1. In this case we find back the result of Seneta as mentioned above.
- (b) As a second case, we take g(x) = 1 and $a(x) = \sqrt{x}$, $x^{\circ} = 0$. We find that

$$\sqrt{x}\left(\frac{U(x+y)}{U(x)}-1\right) \to 0$$

if and only if for x large and $\epsilon > 0$ we have

$$U(x+y) \times \exp \epsilon \int_0^{x+y} t^{-1/2} dt$$
$$\geq U(x) \times \exp \epsilon \int_0^x t^{-1/2} dt$$

and

$$U(x+y) \times \exp{-\epsilon \int_0^{x+y} t^{-1/2} dt}$$

$$\leq U(x) \times \exp{-\epsilon \int_0^x t^{-1/2} dt},$$

or

$$U(x+y) \times \exp 2\epsilon (x+y)^{1/2} \ge U(x) \times \exp 2\epsilon x^{1/2}$$

and

and

$$\begin{split} U(x+y) & \times \exp{-2\epsilon(x+y)^{1/2}} \\ & \leq U(x) \times \exp{-2\epsilon x^{1/2}}. \end{split}$$

(c) Now we assume that g(x) = 1 and $a(x) \in RV_{\lambda}$ with $0 < \lambda < 1$. In the case we find that

$$\int_{x^{\circ}}^{x} \frac{1}{a(t)} dt \sim \frac{x}{a(x)(1-\lambda)},$$

where $f(x) \sim g(x)$ means $\lim_{x\to\infty} f(x)/g(x) =$ 1. Using this relationship, we can alter the inequalities in the lemma to find

$$U(x+y) \times \exp \epsilon A(x+y) \ge U(x) \times \exp \epsilon A(x)$$

and

$$U(x+y) \times \exp{-\epsilon A(x+y)}$$

$$\leq U(x) \times \exp{-\epsilon A(x)},$$

where $A(x) = x/a(x) \in RV_{1-\lambda}$.

(d) As a next example, we take $V(x) = U(x) \times e^{-\tau x}$. Clearly we have

$$\frac{U(x+y)}{U(x)} - e^{\tau y} = e^{\tau y} \left(\frac{V(x+y)}{V(x)} - 1 \right)$$

and then,

$$b(x)\left(\frac{U(x+y)}{U(x)} - e^{\tau y}\right) \to 0$$

if and only if

$$b(x)\left(\frac{V(x+y)}{V(x)}-1\right) \to 0,$$

and the previous results can be applied.

2.4. A representation theorem for Z(g, a). The following result is inspired by a result of Bojanic and Karamata [2] on the Zygmund class, see e.g. Theorem 1.5.5 in [1].

Theorem 2. Assume that $g \in SN$, $a \in \Gamma_0(g)$, g(x) = o(a(x)) and g(x) > 0. Assume that $U \in Z(g, a)$. Then, for some function f and for $x \ge A$ for some A > 0,

$$U(x) = \exp c + \int_A^x f(t)dt$$

where $a(x)f(x) \to 0$.

Proof. Let $U \in Z(g, a)$. Then, by Theorem 1, the inequalities in such a theorem hold. Taking logarithms in such inequalities, denoting $V(x) = \log U(x)$, gives for $x \ge x^{\circ}$ for some $x^{\circ} > 0$ and $\epsilon > 0$

$$V(x + yg(x)) + \epsilon \int_{x^{\circ}}^{x + yg(x)} a^{-1}(t)dt$$
$$\geq V(x) + \epsilon \int_{x^{\circ}}^{x} a^{-1}(t)dt$$

and

$$\begin{split} V(x+yg(x)) &- \epsilon \int_{x^{\circ}}^{x+yg(x)} a^{-1}(t) dt \\ &\leq V(x) - \epsilon \int_{x^{\circ}}^{x} a^{-1}(t) dt. \end{split}$$

Whence we have

$$V(x+yg(x)) - V(x) \ge -\epsilon \int_x^{x+yg(x)} a^{-1}(t)dt$$

and

$$V(x+yg(x)) - V(x) \le \epsilon \int_x^{x+yg(x)} a^{-1}(t)dt,$$

and thus

$$|V(x + yg(x)) - V(x)| \le \epsilon \int_{x}^{x + yg(x)} a^{-1}(t) dt.$$

We then have, put $t = x + \theta g(x)$,

$$|V(x+yg(x)) - V(x)| \le \epsilon \frac{g(x)}{a(x)} \int_0^y \frac{a(x)}{a(x+\theta g(x))} d\theta.$$

Since $a \in \Gamma_0(g)$, we have for $x \ge x^*$ for some $x^* \ge x^\circ$ and for any $\theta \in [0, y]$

$$\frac{a(x)}{a(x+\theta g(x))} \le 1+\epsilon.$$

Thus we have, as $x \to \infty$,

(5)
$$|V(x+yg(x))-V(x)| \le (1+\epsilon)\epsilon y \frac{g(x)}{a(x)} \to 0.$$

This convergence is uniform on $y \in [0, A)$ for any A > 0. Moreover, V is ultimately absolutely continuous, thus then V is ultimately differentiable almost everywhere.

Therefore, we have, for x > A for some $A \ge \max(x^{\circ}, x^{*}),$

$$V(x) = V(A) + \int_{A}^{x} f(t)dt$$

where f is a measurable function satisfying f(x) = V'(x) almost everywhere in (A, ∞) . One may redefine f(x) = 0 where V'(x) does not exist. Also, according to (5), we have, taking z = x + yg(x), for $x \ge A$,

$$a(x)|V(z) - V(x)| \le (1+\epsilon)\epsilon|z - x|.$$

Then, when $y \to 0$, which implies that $z \to x$, we have, for x enough large such that V'(x) exists,

$$(1+\epsilon)\epsilon \le a(x)V'(x) \le (1+\epsilon)\epsilon$$

which implies that $a(x)V'(x) \to 0$ as $x \to \infty$. Hence, we have

$$U(x) = \exp V(x) = \exp V(A) + \int_A^x f(t)dt.$$

Remarks 3.

- (a) It is easy to prove that the converse of Theorem 2 holds.
- (b) If L is slowly varying in the sense of Zygmund, this function thus has the canonical representation given by, see e.g. [15],

$$L(x) = \exp c + \int_{B}^{x} \frac{\epsilon(t)}{t} dt,$$

for a constant c and a bounded measurable function $\epsilon(x)$ which satisfies $\epsilon(x) \to 0$ as $x \to \infty$. Taking g(x) = 1 and a(x) = x, these conditions satisfy $g \in SN$ and g(x) = o(a(x)). We then have $a(x)(\epsilon(x)/x) \to 0$ as $x \to \infty$. The previous remark thus implies that $L \in Z(g, a)$.

References

- N. H. Bingham, C. M. Goldie and J. L. Teugels, *Regular variation*, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987.
- [2] R. Bojanic and J. Karamata, On slowly varying functions and asymptotic relations, in *Math. Research Center Tech. Report*, 432, Madison, Wisconsin, 1963.
- [3] L. Y. Chan, Some properties of asymptotic functions and their applications, Proc. Amer. Math. Soc. 72 (1978), no. 2, 239–247.
- Y. Chen, Theorems of asymptotic approximation, Math. Ann. 140 (1960), 360–407.
- Y. Chen, On two-functional spaces, Studia Math. 24 (1964), 61–88.
- [6] J. Karamata, Sur un mode de croissance régulière

des fonctions, Mathematica (Cluj) 4 (1930), 38–53.

- J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. France 61 (1933), 55–62.
- [8] R. Koenker and I. Mizera, Quasi-concave density estimation, Ann. Statist. 38 (2010), no. 5, 2998–3027.
- [9] J. Németh, Generalizations of the Hardy-Littlewood inequality. II, Acta Sci. Math. (Szeged) 35 (1973), 127–134.
- [10] E. Omey, On the class gamma and related classes of functions, Publ. Inst. Math. (Beograd) (N.S.)
 93 (2013), no. 107, 1–18.
- [11] L.-E. Persson, On a weak-type theorem with applications, Proc. London Math. Soc. (3) 38 (1979), no. 2, 295–308.
- [12] L.-E. Persson and I. Wik, Integrability conditions on periodic functions related to their Fourier

transforms, J. Math. Anal. Appl. 44 (1973), 291–309.

- [13] G. Schechtman, Th. Schlumprecht and J. Zinn, On the Gaussian measure of the intersection, Ann. Probab. 26 (1998), no. 1, 346–357.
- [14] E. Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin, 1976.
- E. Seneta, Slowly varying functions in the Zygmund sense and generalized regular variation, J. Math. Anal. Appl. 475 (2019), no. 2, 1647– 1657.
- [16] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operations, J. Math. Pures Appl. (9) 35 (1956), 223–248.
- [17] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959.