Open Access
January 2016 Schrödinger operators with $n$ positive eigenvalues: an explicit construction involving complex-valued potentials
Serge Richard, Jun Uchiyama, Tomio Umeda
Proc. Japan Acad. Ser. A Math. Sci. 92(1): 7-12 (January 2016). DOI: 10.3792/pjaa.92.7

Abstract

An explicit construction is provided for embedding $n$ positive eigenvalues in the spectrum of a Schrödinger operator on the half-line with a Dirichlet boundary condition at the origin. The resulting potential is of von Neumann-Wigner type, but can be real-valued as well as complex-valued.

Citation

Download Citation

Serge Richard. Jun Uchiyama. Tomio Umeda. "Schrödinger operators with $n$ positive eigenvalues: an explicit construction involving complex-valued potentials." Proc. Japan Acad. Ser. A Math. Sci. 92 (1) 7 - 12, January 2016. https://doi.org/10.3792/pjaa.92.7

Information

Published: January 2016
First available in Project Euclid: 28 December 2015

zbMATH: 0476.03047
MathSciNet: MR3447743
Digital Object Identifier: 10.3792/pjaa.92.7

Subjects:
Primary: 35P05
Secondary: 81Q10

Keywords: positive eigenvalues , Schrödinger operators , von Neumann-Wigner

Rights: Copyright © 2016 The Japan Academy

Vol.92 • No. 1 • January 2016
Back to Top