Abstract
It is known that a positive integer $n$ is the area of a right triangle with rational sides if and only if the elliptic curve $E^{(n)}: y^{2} = x(x^{2}-n^{2})$ has a rational point of order different than 2. A generalization of this result states that a positive integer $n$ is the area of a triangle with rational sides if and only if there is a nonzero rational number $\tau$ such that the elliptic curve $E^{(n)}_{\tau}: y^{2} = x(x-n\tau)(n+n\tau^{-1})$ has a rational point of order different than 2. Such $n$ are called $\tau$-congruent numbers. It is shown that for a given integer $m>1$, each congruence class modulo $m$ contains infinitely many distinct $\tau$-congruent numbers.
Citation
Chad Tyler Davis. Blair Kenneth Spearman. "On the distribution of $\tau$-congruent numbers." Proc. Japan Acad. Ser. A Math. Sci. 91 (7) 101 - 103, July 2015. https://doi.org/10.3792/pjaa.91.101
Information