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Abstract: Let A be a BSE Banach algebra and B be an essential abstract Segal algebra

with respect to A. In this paper we present a necessary and sufficient condition for B to be a BSE

algebra as well. Furthermore we study BSE property of some certain abstract Segal algebras

which are not discussed in previous works.
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1. Introduction. Let A be a commutative

Banach algebra without order. Denote by �ðAÞ and

MðAÞ the Gelfand spectrum and the multiplier

algebra of A, respectively. A bounded continuous

function � on �ðAÞ is called a BSE-function if there

exists a constant C > 0 such that for every finite

number of ’1; . . . ; ’n in �ðAÞ and the same number

of complex numbers c1; . . . ; cn, the inequalityXn
j¼1

cj�ð’jÞ
�����

����� � C: Xn
j¼1

cj’j

�����
�����
A�

holds. The BSE-norm of �, k�kBSE , is defined to be

the infimum of all such C. The set of all BSE-

functions is denoted by CBSEð�ðAÞÞ. Takahasi and

Hatori [19] showed that under the norm k:kBSE ,

CBSEð�ðAÞÞ is a commutative semisimple Banach

algebra. The algebra A is called a BSE-algebra (or

said to have the BSE-property) if the BSE-functions

on �ðAÞ are precisely the Gelfand transforms of the

elements of MðAÞ. That is A is a BSE-algebra if

and only if

CBSEð�ðAÞÞ ¼ dMðAÞMðAÞ:
The abbreviation BSE stands for Bochner-

Schoenberg-Eberlein and refers to the famous

theorem, proved by Bochner and Schoenberg [2,18]

for the additive group of real numbers and in

general by Eberlein [6] for locally compact abelian

groups G, saying that, in the above terminology,

the group algebra L1ðGÞ is a BSE-algebra (See [17]

for a proof).

The notion of BSE-algebra and the algebra of

BSE-functions were introduced and studied by

Takahasi and Hatori [19,20] and later by Kaniuth

and Ülger [12]. Also the authors have got some new

results on BSE algebras such as BSE property of

direct sum of Banach algebras [11].

In 2000, Inoue and Takahasi [8] proved that

every Segal algebra SðGÞ of a locally compact group

G is a BSE-algebra if and only if it has a �-weak

bounded approximate identity.

In this paper we generalize this result to

abstract Segal algebras. Indeed, we prove that an

abstract essential Segal algebra with respect to a

BSE-algebra is BSE if and only if it has a �-weak

bounded approximate identity.

In last section, we study the BSE property for

certain abstract Segal algebras which are not

discussed before.

2. Preliminaries.

Definition 2.1. Let ðA; k:kAÞ be a Banach

algebra. A Banach algebra ðB; k:kBÞ is an abstract

Segal algebra with respect to A if

(i) B is a dense ideal in A.

(ii) There exists M > 0 such that kbkA �
MkbkB, for all b 2 B.

(iii) There exists C > 0 such that kabkB �
CkakAkbkB, for all a; b 2 B.

We quote the following result from [3]:

Proposition 2.2. Let ðB; k:kBÞ be an ab-

stract Segal algebra with respect to the commutative

Banach algebra ðA; k:kAÞ. Then �ðAÞ and �ðBÞ are

homeomorphic.

Definition 2.3. An ideal B in a Banach

algebra A is called essential, if
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B ¼ fax : a 2 A; x 2 Bg:

Dunford [4] proved that any Segal algebra SðGÞ
on a locally compact group G is an essential ideal in

L1ðGÞ.
A linear bounded operator on A is called a

multiplier if it satisfies xT ðyÞ ¼ T ðxyÞ for all

x; y 2 A. The set MðAÞ of all multipliers on A is a

unital commutative Banach algebra, called the

multiplier algebra of A.

For each T 2MðAÞ there exists a unique

continuous function bTT on �ðAÞ such that dTðaÞTðaÞð’Þ ¼bTT ð’Þâað’Þ for all a 2 A and ’ 2 �ðAÞ. See [15] for a

proof.

A bounded net ðe�Þ� in A is called a bounded

approximate identity for A if it satisfies ke�a�
ak ! 0 for all a 2 A. A bounded net ðe�Þ� in A is

called a �-weak bounded approximate identity for

A if it satisfies ’ðe�aÞ ! ’ðaÞ ða 2 A; ’ 2 �ðAÞ.
Such approximate identities were studied in [10].

Takahasi and Hatori obtained the following result

in [19]:

Proposition 2.4. Let A be a commutative

Banach algebra without order. A has a �-weak

bounded approximate identity if and only ifdMðAÞMðAÞ � CBSEð�ðAÞÞ.
3. Main result.

Theorem 3.1. Let ðA; k:kAÞ be a BSE-alge-

bra and ðB; k:kBÞ an essential abstract Segal algebra

with respect to A. Then B is a BSE-algebra if and

only if it has a �-weak bounded approximate

identity.

Proof. Suppose that B is a BSE-algebra. Then

by Proposition 2.4 it has a �-weak bounded ap-

proximate identity. Conversely, suppose that B has

a �-weak bounded approximate identity, then by

the same proposition,dMðBÞMðBÞ � CBSEð�ðBÞÞ:
So it remains to show that CBSEð�ðBÞÞ � dMðBÞMðBÞ.
Suppose that � 2 CBSEð�ðBÞÞ. Then there exists a

positive number C such that for any finite number

of ’1; . . . ; ’n 2 �ðBÞ and c1; . . . ; cn 2 C,Xn
i¼1

ci�ð’iÞ
�����

����� � C Xn
i¼1

ci’i

�����
�����
B�
:

Now for every f 2 A� and x 2 A, we have

jfðxÞj � kfkA�kxkA. By definition of abstract Segal

algebra, there exists M > 0 such that kxkA �
MkxkB ðx 2 BÞ. It follows that

jfðxÞj � kfkA�kxkA �MkfkA�kxkB ðx 2 BÞ:

Hence kfkB� �MkfkA� : Especially, we have:Xn
i¼1

ci�ð’iÞ
�����

����� � C Xn
i¼1

ci’i

�����
�����
B�
� CM

Xn
i¼1

ci’i

�����
�����
A�
:

By Proposition 2.2, �ðBÞ is homeomorphic to

�ðAÞ and we may consider ’1; . . . ; ’n 2 �ðAÞ. It

means that � 2 CBSEð�ðAÞÞ. Since A is a BSE-

algebra, � 2 dMðAÞMðAÞ. Therefore there exists T 2
MðAÞ such that � ¼ bTT . We have to show that

T jB 2MðBÞ. Since T 2MðAÞ, it is obvious that

T ðxyÞ ¼ T ðxÞy ðx; y 2 BÞ. So it is enough to show

that TB � B. Indeed, if it is shown that TB � B,

then T is continuous in the k:kB-topology by the

closed graph theorem because B has no nonzero

annihilators. Let x 2 B. Since B is an essential ideal

of A, there exist a 2 A and y 2 B such that x ¼ ay
and hence

T ðxÞ ¼ T ðayÞ ¼ T ðaÞy 2 B:

Thus � 2 dMðBÞMðBÞ. Hence B is a BSE-algebra. �

Remark 3.2. When B is an abstract Segal

algebra with respect to A, as it is shown in the proof

of Theorem 3.1, we have

CBSEð�ðBÞÞ � CBSEð�ðAÞÞ:

4. BSE property of certain abstract Segal

algebras. In this section we study the BSE

property of some abstract Segal algebras which

are not discussed in [8].

4.1. Segal algebras of compact abelian

groups. A dense ideal SðGÞ of the convolution

group algebra L1ðGÞ of a locally compact group G is

said to be a Segal algebra if it satisfies the following

conditions:

(a) SðGÞ is a Banach space under some norm k:kS
and kfkS � kfk1.

(b) SðGÞ is left translation invariant, i.e. kLxfkS ¼
kfkS for all x 2 G and f 2 SðGÞ, and the map

x 7! Lxf from G into SðGÞ is continuous.

Every Segal algebra is an abstract segal algebra

with respect to L1ðGÞ (see [9], Proposition 1).

Proposition 4.1. Let G be an abelian com-

pact group. Then a Segal algebra SðGÞ is a BSE

algebra if and only if SðGÞ ¼ L1ðGÞ.
Proof. The ‘‘if’’ part is clear, since L1ðGÞ is a

BSE algebra. Conversely, suppose that SðGÞ is a

BSE algebra. Since G is an abelian compact group,

then SðGÞ is an ideal in its second dual [16]. By
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semisimplicity of SðGÞ and by Theorem 3.1 of [12],

it has a bounded approximate identity which by

Theorem 1.2 of [3] implies that SðGÞ ¼ L1ðGÞ. �

For a locally compact group G, let AðGÞ be the

Fourier algebra defined in [5] and let

LAðGÞ ¼ AðGÞ \ L1ðGÞ

with norm

kfk ¼ kfkAðGÞ þ kfk1:

ðLAðGÞ; k:kÞ with convolution product is a

Segal algebra, called Lebesgue-Fourier algebra.

Note that LAðGÞ with pointwise multiplication is

an abstract Segal algebra of AðGÞ.
The concept of Lebesgue-Fourier algebra was

introduced and extensively studied by Ghahramani

and Lau [7].

Corollary 4.2. Let G be an abelian compact

group. Then the Banach algebra LAðGÞ is a BSE

algebra if and only if G is finite.

Proof. By Proposition 2.3 of [7], LAðGÞ ¼
L1ðGÞ if and only if G is discrete. Then by

Proposition 4.1, LAðGÞ is BSE if and only if G is

discrete and by compactness of G, if and only if it is

finite. �

Remark 4.3. Let G be a discrete group and

suppose that LAðGÞ is equipped with the pointwise

product. Then LAðGÞ is a BSE algebra if and only if

G is finite. In fact, when G is discrete, LAðGÞ ¼
l1ðGÞ with poinwise multiplication and this algebra

is BSE if and only if G is finite [20].

4.2. Wp-algebras. Consider the additive

group of vectors in Rn and

Q ¼
�
x ¼ ðx1; . . . ; xnÞ

2 Rn : �
1

2
� xi <

1

2
ð1 � i � nÞ

�
:

For t 2 Rn, define Qt :¼ ftþ x : x 2 Qg and ft
denotes the translated function ftðxÞ ¼ fðx� tÞ.
For an arbitrary set A, �A will denote the charac-

teristic function of A. For simplicity we write �t
instead of �Qt

.

For 1 < p <1, let

Wp ¼ f 2 L1ðRnÞ :
X
m2Zn

k�mfkp <1
( )

:

By Proposition 3.1 of [14], Wp is a Segal algebra

with respect to L1ðRnÞ by the norm

kfkWp ¼ max
t2Q

X
m2Zn

k�mftkp ðf 2WpÞ:

Proposition 4.4. The Segal algebra Wp is

not BSE.

Proof. By Corollary 3.8 of [14], there is a

multiplier in MðWpÞ which is not a measure. It

means that there exists T 2MðWpÞ and T =2
MðRnÞ. Since MðRnÞ is a semisimple Banach

algebra, bTT 2 dMðWpÞMðWpÞ and bTT =2 dMðRnÞMðRnÞ. L1ðRnÞ is a

BSE algebra, then bTT =2 CBSEð�ðL1ðRnÞÞ and con-

sequently by Remark 3.2, bTT =2 CBSEð�ðWpÞÞÞ. It

follows that dMðWpÞMðWpÞ 6¼ CBSEð�ðWpÞÞ and Wp is not

a BSE algebra. �

Corollary 4.5. Wp has no �-weak bounded

approximate identity.

Proof. By Proposition 4.4 and Theorem 3.1,

the result is obvious. �

4.3. C�-Segal algebra Cw
0 ðXÞ. Let X be a

locally compact Hausdorff space, and let w : X ! R

be an upper semicontinuous function such that

wðtÞ � 1 for every t 2 X. Define

Cw
0 ðXÞ :¼ff 2CðXÞ : fw vanishes at infinity on Xg;

where CðXÞ denotes the set of all continuous

complex-valued functions on X.

Equipped with pointwise operations and the

weighted supremum norm

kfkw :¼ sup
t2X

wðtÞjfðtÞj ðf 2 Cw
0 ðXÞÞ;

Cw
0 ðXÞ is a self-adjoint C�-Segal algebra (abstract

segal algebra with respect to C0ðXÞ) [13].

By Proposition 2.2, �ðCw
0 ðXÞÞ ¼ �ðC0ðXÞÞ ¼

X. In fact, the function x$ �x, where �xðfÞ ¼
fðxÞðx 2 X; f 2 Cw

0 ðXÞÞ, is a homeomorphism from

X onto �ðCw
0 ðXÞÞ.

Proposition 4.6. Cw
0 ðXÞ is a BSE algebra if

and only if w is bounded.

Proof. When w is bounded, by [1], Cw
0 ðXÞ ¼

C0ðXÞ is a C�-algebra and so by Theorem 3 of [19]

is a BSE algebra. Now suppose that Cw
0 ðXÞ is a BSE

algebra. Then by Proposition 2.4, it has a �-weak

approximate identity. It means that there exists a

bounded net ff�g� 2 Cw
0 ðXÞ such that lim

�
f�ðtÞ ¼ 1;

for all t 2 X and there exists � > 0 such that

sup
�
kf�kw ¼ sup

�
sup
t2X
jf�ðtÞjwðtÞ � �:

On the other hand, lim
�
f�ðtÞ ¼ 1 implies that

lim
�
jf�ðtÞjwðtÞ ¼ wðtÞ. Thus wðtÞ � � ðt 2 XÞ which

means that w is bounded. �
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As it is shown in Corollary 3.6 of [1], Cw
0 ðXÞ has

a bounded approximate identity if and only if w is

bounded. By Theorem 3.1 and Proposition 4.6, we

conclude the following result:

Corollary 4.7. Cw
0 ðXÞ has a �-weak bound-

ed approximate identity if and only if w is bounded.
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