Abstract
We show for a minimal counterexample ($G,B$) to the Alperin-McKay conjecture, the Fitting subgroup of $G$ is central and $G$ has a unique $G$-conjugacy class of components.
Citation
Masafumi Murai. "On a minimal counterexample to the Alperin-McKay conjecture." Proc. Japan Acad. Ser. A Math. Sci. 87 (10) 192 - 193, December 2011. https://doi.org/10.3792/pjaa.87.192
Information