Abstract
For a bounded linear operator $A$ on a Hilbert space $\mathcal{H}$, let $\| A \|$ denote the operator norm and $w(A)$ the numerical radius. It is well-known that \begin{equation*} \frac{1}{2} \| A \| ≤q w(A) ≤q \| A \|. \end{equation*} For equalities, we consider linear operators $A$ with $A^{2} = 0$ and normaloid matrices.
Citation
Takashi Sano. "A note on norm estimates of the numerical radius." Proc. Japan Acad. Ser. A Math. Sci. 84 (1) 5 - 7, January 2008. https://doi.org/10.3792/pjaa.84.5
Information