Open Access
January 2008 A note on norm estimates of the numerical radius
Takashi Sano
Proc. Japan Acad. Ser. A Math. Sci. 84(1): 5-7 (January 2008). DOI: 10.3792/pjaa.84.5

Abstract

For a bounded linear operator $A$ on a Hilbert space $\mathcal{H}$, let $\| A \|$ denote the operator norm and $w(A)$ the numerical radius. It is well-known that \begin{equation*} \frac{1}{2} \| A \| ≤q w(A) ≤q \| A \|. \end{equation*} For equalities, we consider linear operators $A$ with $A^{2} = 0$ and normaloid matrices.

Citation

Download Citation

Takashi Sano. "A note on norm estimates of the numerical radius." Proc. Japan Acad. Ser. A Math. Sci. 84 (1) 5 - 7, January 2008. https://doi.org/10.3792/pjaa.84.5

Information

Published: January 2008
First available in Project Euclid: 24 January 2008

zbMATH: 1144.15021
MathSciNet: MR2381176
Digital Object Identifier: 10.3792/pjaa.84.5

Subjects:
Primary: 15A60 , 47A12

Keywords: normaloid matrix , numerical radius

Rights: Copyright © 2008 The Japan Academy

Vol.84 • No. 1 • January 2008
Back to Top