Open Access
August 2007 Sur les Résultants cycliques
Jean-Paul Bézivin
Proc. Japan Acad. Ser. A Math. Sci. 83(8): 157-160 (August 2007). DOI: 10.3792/pjaa.83.157


Let $P$ be a non constant polynomial. For $n\geq 1$, the $n$-th cyclic resultant of $P$ is the resultant of $P$ and of $x^{n}-1$. C.Hillar has proven a general result giving conditions on two polynomials to have the same set of non zero cyclic resultants. In this note, we give an alternative elementary proof of C.Hillar’s theorem.


Download Citation

Jean-Paul Bézivin. "Sur les Résultants cycliques." Proc. Japan Acad. Ser. A Math. Sci. 83 (8) 157 - 160, August 2007.


Published: August 2007
First available in Project Euclid: 22 January 2008

zbMATH: 1160.11007
MathSciNet: MR2371523
Digital Object Identifier: 10.3792/pjaa.83.157

Primary: 11B37 , 11B83

Keywords: Cyclic resultant , polynomials , recurring sequences

Rights: Copyright © 2007 The Japan Academy

Vol.83 • No. 8 • August 2007
Back to Top