Open Access
November 2006 Symmetric crystals and affine Hecke algebras of type B
Kashiwara Masaki, Enomoto Naoya
Proc. Japan Acad. Ser. A Math. Sci. 82(8): 131-136 (November 2006). DOI: 10.3792/pjaa.82.131

Abstract

The Lascoux-Leclerc-Thibon conjecture, reformulated and solved by S. Ariki, asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra $\mathfrak{g}$ where $\mathfrak{g}$ is $\mathfrak{gl}_\infty$ or the affine Lie algebra $A^{(1)}_\ell$, and the irreducible representations correspond to the upper global bases. In this note, we formulate analogous conjectures for certain classes of irreducible representations of affine Hecke algebras of type B.

Citation

Download Citation

Kashiwara Masaki. Enomoto Naoya. "Symmetric crystals and affine Hecke algebras of type B." Proc. Japan Acad. Ser. A Math. Sci. 82 (8) 131 - 136, November 2006. https://doi.org/10.3792/pjaa.82.131

Information

Published: November 2006
First available in Project Euclid: 6 November 2006

zbMATH: 1130.20008
MathSciNet: MR2279279
Digital Object Identifier: 10.3792/pjaa.82.131

Subjects:
Primary: 20C08 , 20G05

Keywords: affine Hecke algebras , Crystal bases , LLT conjecture

Rights: Copyright © 2006 The Japan Academy

Vol.82 • No. 8 • November 2006
Back to Top