Open Access
June 2006 Steiner ratio for hyperbolic surfaces
Nobuhiro Innami, Byung Hak Kim
Proc. Japan Acad. Ser. A Math. Sci. 82(6): 77-79 (June 2006). DOI: 10.3792/pjaa.82.77

Abstract

We prove that the Steiner ratio for hyperbolic surfaces is $1/2$.

Citation

Download Citation

Nobuhiro Innami. Byung Hak Kim. "Steiner ratio for hyperbolic surfaces." Proc. Japan Acad. Ser. A Math. Sci. 82 (6) 77 - 79, June 2006. https://doi.org/10.3792/pjaa.82.77

Information

Published: June 2006
First available in Project Euclid: 17 August 2006

zbMATH: 1114.53034
MathSciNet: MR2255998
Digital Object Identifier: 10.3792/pjaa.82.77

Subjects:
Primary: 53C20
Secondary: 05C05

Keywords: Geodesic , hyperbolic geometry , Riemannian geometry , Steiner ratio , Steiner tree

Rights: Copyright © 2006 The Japan Academy

Vol.82 • No. 6 • June 2006
Back to Top