Open Access
Sept. 2005 Strong symplectic structures on spaces of probability measures with positive density function
Yuichi Shishido
Proc. Japan Acad. Ser. A Math. Sci. 81(7): 134-136 (Sept. 2005). DOI: 10.3792/pjaa.81.134

Abstract

Spaces of probability measures with positive density function on a compact Riemannian manifold are endowed with a closed 2-form associated with the Fisher information metric by using a divergence-free vector field. In this note we give a necessary and sufficient condition on the vector field that this 2-form is a strong symplectic structure.

Citation

Download Citation

Yuichi Shishido. "Strong symplectic structures on spaces of probability measures with positive density function." Proc. Japan Acad. Ser. A Math. Sci. 81 (7) 134 - 136, Sept. 2005. https://doi.org/10.3792/pjaa.81.134

Information

Published: Sept. 2005
First available in Project Euclid: 3 October 2005

zbMATH: 1095.53054
MathSciNet: MR2172604
Digital Object Identifier: 10.3792/pjaa.81.134

Subjects:
Primary: 53D05

Keywords: Fisher information metric , Hilbert manifold , probability measure , symplectic structure

Rights: Copyright © 2005 The Japan Academy

Vol.81 • No. 7 • Sept. 2005
Back to Top