Open Access
April 2005 On Poincaré sums for number fields
Takashi Ono
Proc. Japan Acad. Ser. A Math. Sci. 81(4): 65-68 (April 2005). DOI: 10.3792/pjaa.81.65


Let $G$ be a finite group acting on a ring $R$. To know the twisted Tate cohomology ${\hat{H}}^0(G,R^{+})_{\gamma}$ parametrized by $\gamma=[c]\in H^1(G,R^{\times})$ is a basic theme inspired by Poincaré. We shall consider this when $G$ is the Galois group of a Galois extension $K/k$ of number fields and $R$ is the ring of integers of $K$.


Download Citation

Takashi Ono. "On Poincaré sums for number fields." Proc. Japan Acad. Ser. A Math. Sci. 81 (4) 65 - 68, April 2005.


Published: April 2005
First available in Project Euclid: 18 May 2005

zbMATH: 1088.11085
MathSciNet: MR2136618
Digital Object Identifier: 10.3792/pjaa.81.65

Primary: 11R34

Keywords: ambiguous ideals , cohomology groups , differents , local fields , number fields , ramifications

Rights: Copyright © 2005 The Japan Academy

Vol.81 • No. 4 • April 2005
Back to Top