Open Access
Feb. 2005 On conformally flat critical Riemannian metrics for a curvature functional
Minyo Katagiri
Proc. Japan Acad. Ser. A Math. Sci. 81(2): 27-29 (Feb. 2005). DOI: 10.3792/pjaa.81.27

Abstract

The normalized $L^2$-norm of the traceless part of the Ricci curvature defines a Riemannian functional on the space of Riemannian metrics. In this paper, we will consider the critical Riemannian metrics with a flat conformal structure for this functional.

Citation

Download Citation

Minyo Katagiri. "On conformally flat critical Riemannian metrics for a curvature functional." Proc. Japan Acad. Ser. A Math. Sci. 81 (2) 27 - 29, Feb. 2005. https://doi.org/10.3792/pjaa.81.27

Information

Published: Feb. 2005
First available in Project Euclid: 18 May 2005

zbMATH: 1094.58007
MathSciNet: MR2126073
Digital Object Identifier: 10.3792/pjaa.81.27

Subjects:
Primary: 58E11
Secondary: 53C25

Keywords: Critical Riemannian metrics , Riemannian functionals

Rights: Copyright © 2005 The Japan Academy

Vol.81 • No. 2 • Feb. 2005
Back to Top