Open Access
Nov. 2004 On a distribution property of the residual order of $a \pmod {p}$, (2)
Koji Chinen, Leo Murata
Proc. Japan Acad. Ser. A Math. Sci. 80(9): 182-186 (Nov. 2004). DOI: 10.3792/pjaa.80.182

Abstract

Let $a$ be a positive integer which is not a perfect $b$-th power with $b \geq 2$, and $Q_a(x; k,l)$ be the set of primes $p \leq x$ such that the residual order of $a \pmod{p}$ in $\mathbf{Z}/p\mathbf{Z}^*$ is congruent to $l \pmod{k}$. In this paper, which is a sequel of our previous paper [1], under the assumption of the Generalized Riemann Hypothesis, we prove that for any residue class $l \pmod{k}$ the set $Q_a(x; k,l)$ has the natural density $\Delta_a(k,l)$, and the values of $\Delta_a(k,l)$ are effectively computable. We also consider some number theoretical properties of $\Delta_a(k,l)$ as a number theoretical function of $k$ and $l$.

Citation

Download Citation

Koji Chinen. Leo Murata. "On a distribution property of the residual order of $a \pmod {p}$, (2)." Proc. Japan Acad. Ser. A Math. Sci. 80 (9) 182 - 186, Nov. 2004. https://doi.org/10.3792/pjaa.80.182

Information

Published: Nov. 2004
First available in Project Euclid: 18 May 2005

zbMATH: 1045.11066
MathSciNet: MR2104420
Digital Object Identifier: 10.3792/pjaa.80.182

Subjects:
Primary: 11N05
Secondary: 11N25 , 11R18

Keywords: Artin's conjecture (for primitive root) , residual order

Rights: Copyright © 2004 The Japan Academy

Vol.80 • No. 9 • Nov. 2004
Back to Top