Multiplicative quadratic forms on algebraic varieties

By Akinari Hoshi
Department of Mathematical Sciences, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555
(Communicated by Heisuke Hironaka, m. J. A., April 14, 2003)

Abstract

In this note we extend Hurwitz-type multiplication of quadratic forms. For a regular quadratic space $\left(K^{n}, q\right)$, we restrict the domain of q to an algebraic variety $V \subsetneq K^{n}$ and require a Hurwitz-type "bilinear condition" on V. This means the existence of a bilinear map $\varphi: K^{n} \times K^{n} \rightarrow K^{n}$ such that $\varphi(V \times V) \subset V$ and $q(\mathbf{X}) q(\mathbf{Y})=q(\varphi(\mathbf{X}, \mathbf{Y}))$ for any $\mathbf{X}, \mathbf{Y} \in V$. We show that the m-fold Pfister form is multiplicative on certain proper subvariety in $K^{2^{m}}$ for any m. We also show the existence of multiplicative quadratic forms which are different from Pfister forms on certain algebraic varieties for $n=4,6$. Especially for $n=4$ we give a certain family of them.

Key words: Multiplicative quadratic forms; Pfister forms; Dickson's system.

1. Introduction. Let K be a field whose characteristic is not 2. In 1898, Hurwitz showed that if there is an identity of the type

$$
\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)\left(Y_{1}^{2}+\cdots+Y_{n}^{2}\right)=Z_{1}^{2}+\cdots+Z_{n}^{2}
$$

where the Z_{k} 's are bilinear forms of the independent variables X_{i} and Y_{j} over K then $n=1,2,4,8$. In general, for a regular quadratic form $q(\mathbf{X}):=$ $q\left(X_{1}, \ldots, X_{n}\right)$ over $K, q(\mathbf{X})$ is called multiplicative if there exists a formula

$$
\begin{equation*}
q(\mathbf{X}) q(\mathbf{Y})=q(\boldsymbol{Z}) \tag{1}
\end{equation*}
$$

where the X_{i} and Y_{j} are independent variables and $Z_{k} \in K(\mathbf{X}, \mathbf{Y}) . \quad q(\mathbf{X})$ is called strictly multiplicative if there exists a formula (1) with Z_{k} linear in Y_{j} over $K(\mathbf{X})$. It is known that if $q(\mathbf{X})$ is isotropic then $q(\mathbf{X})$ is always multiplicative and in this case $q(\mathbf{X})$ is strictly multiplicative if and only if $q(\mathbf{X})$ is hyperbolic (see [4] or [7]). A quadratic form is called Pfister form if it is expressible as a tensor product of binary quadratic forms of the type $\langle 1, a\rangle$. We denote by $\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle\right.$ the m-fold Pfister form $\left\langle 1, a_{1}\right\rangle \otimes$ $\left\langle 1, a_{2}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{m}\right\rangle$. In 1965, A. Pfister showed the following theorem.

Theorem (Pfister [3]). If q is a Pfister form, then q is strictly multiplicative. Conversely if q is an anisotropic multiplicative form over K, then q must be a Pfister form.

Let $D_{K}(n)$ be the set of values in K^{\times}represented by a sum of n squares in K, namely

[^0]$$
D_{K}(n)=\left\{\alpha \in K^{\times} \mid \alpha=\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}, \alpha_{j} \in K\right\} .
$$

The Stufe (or level) of a field K is defined as $s(K):=$ $\operatorname{Inf}\left\{n \in \mathbf{N}:-1 \in D_{K}(n)\right\}$. From above theorem, we see that if n is a power of 2 then $D_{K}(n)$ is a multiplicative group. Using this fact, Pfister proved the following remarkable theorem (see [2] or [7]).

Theorem (Pfister). For any field $K, s(K) i s$, if finite, always a power of 2 . Conversely every power of 2 is the Stufe of some field K.
2. Multiplicative quadratic forms on algebraic varieties. In this section, we extend the Hurwitz-type multiplicative quadratic forms in different way. For a regular quadratic space $\left(K^{n}, q\right)$, we restrict the domain of q to an algebraic variety $V \subsetneq K^{n}$. Furthermore we require the Hurwitz-type "bilinear condition" for q on V. More precisely, we make the following.

Definition. Let $V \subsetneq K^{n}$ be an algebraic variety. We say a regular quadratic form $q(\mathbf{X})$ is multiplicative on V if there is a bilinear map $\varphi: K^{n} \times$ $K^{n} \rightarrow K^{n}$ such that

$$
\begin{aligned}
& \varphi(V \times V) \subset V \quad \text { and } \\
& q(\mathbf{X}) q(\mathbf{Y})=q(\varphi(\mathbf{X}, \mathbf{Y})) \text { for any } \mathbf{X}, \mathbf{Y} \in V
\end{aligned}
$$

Then the following natural problems arise.
Problem 1. Given a regular quadratic form $q(\mathbf{X})$, determine whether an algebraic variety $V \subsetneq$ K^{n} exists on which $q(\mathbf{X})$ is multiplicative.

Problem 2. Given an algebraic variety $V \subsetneq$ K^{n}, determine whether a quadratic form $q(\mathbf{X})$ which is multiplicative on V exists.

Problem 3. If Problem 1 or 2 is affirmative, find a bilinear map φ explicitly.

Note that in the classical case $V=K^{n}$, an anisotropic quadratic form is multiplicative if and only if it is a Pfister form. Moreover, when we require the Hurwitz-type "bilinear condition" a multiplicative quadratic form exists only for dimension 1 , 2,4 and 8 . In this note we assume that the quadratic form is diagonal in order to simplify an argument.

We first describe a simple example which is a slight generalization of Hurwitz's theorem (see [5]). Let A be a finite-dimensional K-algebra with involution τ. We define an algebraic variety $V_{\tau}:=\{x \in A \mid$ $\left.x \cdot x^{\tau} \in K\right\}$ and a quadratic form $N_{\tau}(\alpha):=\alpha \cdot \alpha^{\tau}$, $\alpha \in V_{\tau}$. Then we see that

$$
\begin{aligned}
N_{\tau}(\alpha \beta) & =\alpha \beta(\alpha \beta)^{\tau}=\alpha \beta\left(\beta^{\tau} \alpha^{\tau}\right)=\alpha\left(\beta \beta^{\tau}\right) \alpha^{\tau} \\
& =N_{\tau}(\alpha) N_{\tau}(\beta), \text { for any } \alpha, \beta \in V_{\tau} .
\end{aligned}
$$

In particular we consider the following case, from which one can recover the Pfister form in natural way. Let $a_{1}, \ldots, a_{m} \in K^{\times}$and suppose $L=$ $K\left(\sqrt{-a_{1}}, \ldots, \sqrt{-a_{m}}\right)$ is an extension field of degree 2^{m} over K. We put $S_{m}:=\{1,2, \ldots, m\}$ then $\left\{e_{I}:=\right.$ $\left.\prod_{i \in I} \sqrt{-a_{i}} \mid I \subseteq S_{m}\right\}$ is a basis for L / K. For $1 \leq$ $i \leq m$, we define $\sigma_{i} \in \operatorname{Aut}(L / K)$ by

$$
\sigma_{i}\left(\sqrt{-a_{k}}\right)=\left\{\begin{aligned}
-\sqrt{-a_{k}}, & \text { if } k=i \\
\sqrt{-a_{k}}, & \text { if } k \neq i
\end{aligned}\right.
$$

Hence $\operatorname{Gal}(L / K) \cong\left\langle\sigma_{1}, \ldots, \sigma_{m}\right\rangle$. We now consider $\tau \in \operatorname{Gal}(L / K)$ of order 2 and define $\operatorname{sgn}_{\tau}(i) \in\{ \pm 1\}$ for $1 \leq i \leq m$ by the equation

$$
\tau\left(\sqrt{-a_{i}}\right)=\operatorname{sgn}_{\tau}(i) \sqrt{-a_{i}} .
$$

For $\alpha \in L$, we write

$$
\alpha=\sum_{I \subseteq S_{m}} u_{I} e_{I}, \quad u_{I} \in K
$$

and define

$$
N_{\tau}(\alpha):=N_{L / L^{\langle\tau\rangle}}(\alpha)=\alpha \cdot \alpha^{\tau} \in L^{\langle\tau\rangle} .
$$

Then there are 2^{m-1} quadratic forms $f_{J}(\mathbf{X}):=$ $f_{J}\left(X_{1}, \ldots, X_{2^{m}}\right),\left(J \subseteq S_{m}, \tau\left(e_{J}\right)=e_{J}\right)$ such that

$$
\begin{equation*}
N_{\tau}(\alpha)=\sum_{\substack{J \subseteq S_{m} \\ \tau\left(e_{J}\right)=e_{J}}} f_{J}\left(u_{J}\right) e_{J} \tag{2}
\end{equation*}
$$

Note that $f_{\emptyset}(\mathbf{X})$ is the m-fold Pfister form $\left\langle\left\langle-\operatorname{sgn}_{\tau}(1) a_{1}, \ldots,-\operatorname{sgn}_{\tau}(m) a_{m}\right\rangle\right\rangle$. We see that

$$
\left\{\alpha \in L^{\times} \mid N_{\tau}(\alpha) \in K\right\}
$$

is a multiplicative group. Therefore we obtain the following fundamental proposition of the theory of multiplicative quadratic forms on algebraic varieties.

Proposition 1. Let $f_{J}(\mathbf{X})$ be 2^{m-1} quadratic forms defined in (2) and let V be defined by the $2^{m-1}-1$ equations $f_{J}(\mathbf{X})=0,(J \neq \emptyset)$. The m-fold Pfister form $f_{\emptyset}(\mathbf{X})=\left\langle\left\langle-s g n_{\tau}(1) a_{1}, \ldots\right.\right.$, $\left.-s g n_{\tau}(m) a_{m}\right\rangle$ is multiplicative on V.

Let $V \subsetneq K^{n}$ be an algebraic variety and q be a quadratic form on V. Define $D_{V}(q)$ to be the set of values in K^{\times}represented by q on V, namely

$$
\begin{aligned}
D_{V}(q)=\left\{\alpha \in K^{\times} \mid\right. & \alpha=q\left(\alpha_{1}, \ldots, \alpha_{n}\right), \\
& \text { for } \left.\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in V\right\} .
\end{aligned}
$$

We see that if q is multiplicative on V and represents 1 then $D_{V}(q)$ is a multiplicative group. Note that we can also consider q over a commutative ring R requiring the Hurwitz-type "bilinear condition" over R. We shall give an application which is the case over the ring of integers \mathbf{Z} in Section 3.

We now present an example of Proposition 1.
Example 2. The case $m=2$. Suppose $L=$ $K\left(\sqrt{-a_{1}}, \sqrt{-a_{2}}\right)$ is an biquadratic extension field of K and let $\tau \in \operatorname{Gal}(L / K)$ of order 2 such that

$$
\tau\left(\sqrt{-a_{1}}\right)=-\sqrt{-a_{1}}, \quad \tau\left(\sqrt{-a_{2}}\right)=-\sqrt{-a_{2}} .
$$

For $\alpha, \beta \in L$, we write

$$
\begin{aligned}
& \alpha=X_{1}+X_{2} \sqrt{-a_{1}}+X_{3} \sqrt{-a_{2}}+X_{4} \sqrt{-a_{1}} \sqrt{-a_{2}} \\
& \beta=Y_{1}+Y_{2} \sqrt{-a_{1}}+Y_{3} \sqrt{-a_{2}}+Y_{4} \sqrt{-a_{1}} \sqrt{-a_{2}} .
\end{aligned}
$$

We have

$$
\begin{aligned}
N_{\tau}(\alpha)=X_{1}^{2} & +a_{1} X_{2}^{2}+a_{2} X_{3}^{2}+a_{1} a_{2} X_{4}^{2} \\
& +2\left(X_{1} X_{4}-X_{2} X_{3}\right) \sqrt{-a_{1}} \sqrt{-a_{2}}
\end{aligned}
$$

and put

$$
\begin{aligned}
q(\mathbf{X}) & :=f_{\emptyset}(\mathbf{X})=X_{1}^{2}+a_{1} X_{2}^{2}+a_{2} X_{3}^{2}+a_{1} a_{2} X_{4}^{2} \\
h(\mathbf{X}) & :=f_{1,2}(\mathbf{X})=2\left(X_{1} X_{4}-X_{2} X_{3}\right)
\end{aligned}
$$

From Proposition $1, q(\mathbf{X})$ is multiplicative on V : $h(\mathbf{X})=0$. Namely if $h(\mathbf{X})=0$ and $h(\mathbf{Y})=0$ then there is the bilinear map $\varphi: K^{4} \times K^{4} \rightarrow K^{4}$ such that $q(\mathbf{X}) q(\mathbf{Y})=q(\varphi(\mathbf{X}, \mathbf{Y}))$ and $h(\varphi(\mathbf{X}, \mathbf{Y}))=0$. Since $N_{\tau}(\alpha) N_{\tau}(\beta)=N_{\tau}(\alpha \beta)$ and

$$
\begin{aligned}
\alpha \beta= & \left(X_{1} Y_{1}-a_{1} X_{2} Y_{2}-a_{2} X_{3} Y_{3}+a_{1} a_{2} X_{4} Y_{4}\right) \\
& +\left(X_{2} Y_{1}+X_{1} Y_{2}-a_{2} X_{4} Y_{3}-a_{2} X_{3} Y_{4}\right) \sqrt{-a_{1}} \\
& +\left(X_{3} Y_{1}-a_{1} X_{4} Y_{2}+X_{1} Y_{3}-a_{1} X_{2} Y_{4}\right) \sqrt{-a_{2}} \\
& +\left(X_{4} Y_{1}+X_{3} Y_{2}+X_{2} Y_{3}+X_{1} Y_{4}\right) \sqrt{-a_{1}} \sqrt{-a_{2}},
\end{aligned}
$$

we obtain the bilinear map φ explicitly as follows:

$$
\begin{aligned}
\varphi(\mathbf{X}, \mathbf{Y})= & \left(X_{1} Y_{1}-a_{1} X_{2} Y_{2}-a_{2} X_{3} Y_{3}+a_{1} a_{2} X_{4} Y_{4},\right. \\
& X_{2} Y_{1}+X_{1} Y_{2}-a_{2} X_{4} Y_{3}-a_{2} X_{3} Y_{4}, \\
& X_{3} Y_{1}-a_{1} X_{4} Y_{2}+X_{1} Y_{3}-a_{1} X_{2} Y_{4}, \\
& \left.X_{4} Y_{1}+X_{3} Y_{2}+X_{2} Y_{3}+X_{1} Y_{4}\right) .
\end{aligned}
$$

Moreover using above bilinear map φ, we have the following equations.

Corollary 3. Let $q(\mathbf{X}), h(\mathbf{X}), \varphi(\mathbf{X}, \mathbf{Y})$ be as above in Example 2. Then

$$
\begin{aligned}
q(\mathbf{X}) q(\mathbf{Y}) & =q(\varphi(\mathbf{X}, \mathbf{Y}))-a_{1} a_{2} h(\mathbf{X}) h(\mathbf{Y}), \\
h(\varphi(\mathbf{X}, \mathbf{Y})) & =q(\mathbf{X}) h(\mathbf{Y})+h(\mathbf{X}) q(\mathbf{Y})
\end{aligned}
$$

where the X_{i} and Y_{j} are independent variables.
Remark. From Corollary 3, the 2-fold Pfister form $q(\mathbf{X})=X_{1}^{2}+a_{1} X_{2}^{2}+a_{2} X_{3}^{2}+a_{1} a_{2} X_{4}^{2}, a_{1}, a_{2} \in$ K^{\times}is multiplicative on $V: h(\mathbf{X})=0$ without the supposition that $K\left(\sqrt{-a_{1}}, \sqrt{-a_{2}}\right)$ is a field of degree 4 over K as in Example 2.

The following problem arises as the next natural question after Proposition 1.

Problem 4. Does there exist a quadratic form $q(\mathbf{X})$ which is different from a Pfister form and multiplicative on an algebraic variety $V \subsetneq K^{n}$.

As in the case which is over vector space K^{n}, one might expect that a multiplicative quadratic form on algebraic variety is always a Pfister form. However we give the following result for 4-dimensional quadratic forms.

Theorem 4. For $a, b, c \in K^{\times}$with $b^{2}+4 a c \neq$ 0 , let $V_{(a, b, c)}$ be a hypersurface on \mathbf{A}^{4} defined by $X_{1} X_{2}+a X_{3}^{2}+b X_{3} X_{4}-c X_{4}^{2}=0$. For any $\lambda \in K^{\times}$, $q(\mathbf{X})=X_{1}^{2}+\left(b^{2}+4 a c\right) a c \lambda^{2} X_{2}^{2}+\left(b^{2}+4 a c\right) a \lambda X_{3}^{2}+$ $\left(b^{2}+4 a c\right) c \lambda X_{4}^{2}$ is multiplicative on $V_{(a, b, c)}$. Moreover the bilinear map φ is given explicitly as follows:

$$
\begin{aligned}
\varphi(\mathbf{X}, \mathbf{Y}) & = \\
\left(X_{1} Y_{1}\right. & +\left(b^{2}+4 a c\right) a c \lambda^{2} X_{2} Y_{2} \\
& +\left(b^{2}+4 a c\right) a \lambda X_{3} Y_{3}+\left(b^{2}+4 a c\right) c \lambda X_{4} Y_{4} \\
X_{2} Y_{1} & +X_{1} Y_{2}+2 a X_{3} Y_{3} \\
& +b X_{4} Y_{3}+b X_{3} Y_{4}-2 c X_{4} Y_{4} \\
X_{3} Y_{1} & +2 a c \lambda X_{3} Y_{2}+b c \lambda X_{4} Y_{2} \\
& -X_{1} Y_{3}-2 a c \lambda X_{2} Y_{3}-b c \lambda X_{2} Y_{4} \\
X_{4} Y_{1} & +a b \lambda X_{3} Y_{2}-2 a c \lambda X_{4} Y_{2} \\
& \left.-a b \lambda X_{2} Y_{3}-X_{1} Y_{4}+2 a c \lambda X_{2} Y_{4}\right)
\end{aligned}
$$

Proof. Put $f(\mathbf{X}):=X_{1} X_{2}+a X_{3}^{2}+b X_{3} X_{4}-$ $c X_{4}^{2}$. Using φ, we can show the following relations by direct calculation.

$$
\begin{aligned}
q(\mathbf{X}) q(\mathbf{Y})= & q(\varphi(\mathbf{X}, \mathbf{Y})) \\
& -4\left(b^{2}+4 a c\right) a c \lambda^{2} f(\mathbf{X}) f(\mathbf{Y}) \\
f(\varphi(\mathbf{X}, \mathbf{Y}))= & q(\mathbf{X}) f(\mathbf{Y})+f(\mathbf{X}) q(\mathbf{Y})
\end{aligned}
$$

Corollary 5. Let $a, b, c, V_{(a, b, c)}$ be as above in Theorem 4. Suppose $b^{2}+4 a c \notin K^{\times 2}$. Then there are infinitely many 4-dimensional diagonal multiplicative quadratic forms on $V_{(a, b, c)}$ which are different from Pfister forms.

Remark. For Theorem 4, if we consider $q(\mathbf{X})$ over the field $K\left(\sqrt{b^{2}+4 a c}\right)$ then we see that Theorem 4 is a consequence of Proposition 1. In fact if we use the non-singular linear transformation of variables as follows:

$$
\begin{aligned}
& X_{1} \rightarrow \widetilde{X}_{1}, \quad X_{2} \rightarrow \widetilde{X}_{4} \\
& X_{3} \rightarrow \frac{1}{2 a}\left(\widetilde{X}_{2}-a \widetilde{X}_{3}-\frac{b\left(\widetilde{X}_{2}+a \widetilde{X}_{3}\right)}{\sqrt{b^{2}+4 a c}}\right) \\
& X_{4} \rightarrow \frac{\widetilde{X}_{2}+a \widetilde{X}_{3}}{\sqrt{b^{2}+4 a c}}
\end{aligned}
$$

then we can show that $q(\mathbf{X})$ and $f(\mathbf{X})$ in Theorem 4 are transformed to

$$
\begin{aligned}
& q(\widetilde{\mathbf{X}})=\widetilde{X}_{1}^{2}+m_{1} \widetilde{X}_{2}^{2}+m_{2} \widetilde{X}_{3}^{2}+m_{3} \widetilde{X}_{4}^{2} \\
& f(\widetilde{\mathbf{X}})=\widetilde{X}_{1} \widetilde{X}_{4}-\widetilde{X}_{2} \widetilde{X}_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& m_{1}=\frac{\lambda}{2 a}\left(b^{2}+4 a c-b \sqrt{b^{2}+4 a c}\right) \\
& m_{2}=\frac{a \lambda}{2}\left(b^{2}+4 a c+b \sqrt{b^{2}+4 a c}\right) \\
& m_{3}=m_{1} m_{2}=\left(b^{2}+4 a c\right) a c \lambda^{2}
\end{aligned}
$$

The following theorem shows that, in contrast to the classical case, a multiplicative quadratic form $q(\mathbf{X})$ exists in the non 2-power dimensional case for some algebraic varieties V.

Theorem 6. Let $q(\mathbf{X})=X_{1}^{2}+21 X_{2}^{2}+21 X_{3}^{2}+$ $21 X_{4}^{2}+14 X_{5}^{2}+42 X_{6}^{2}$ and V :
$\left\{\begin{array}{l}3 X_{2}^{2}+6 X_{2} X_{3}-6 X_{2} X_{4}+12 X_{3} X_{4} \\ -3 X_{4}^{2}+3 X_{5}^{2}+4 X_{1} X_{6}+2 X_{5} X_{6}-9 X_{6}^{2}=0, \\ 12 X_{2} X_{3}+3 X_{3}^{2}+6 X_{2} X_{4}+6 X_{3} X_{4}-3 X_{4}^{2} \\ +2 X_{1} X_{5}+X_{5}^{2}+2 X_{1} X_{6}+10 X_{5} X_{6}-3 X_{6}^{2}=0 .\end{array}\right.$

Then $q(\mathbf{X})$ is multiplicative on V. Moreover the bilinear map φ is given explicitly as follows:

$$
\begin{aligned}
& \varphi(\mathbf{X}, \mathbf{Y})= \\
& \left(-X_{1} Y_{1}-21 X_{2} Y_{2}\right. \\
& -21 X_{3} Y_{3}-21 X_{4} Y_{4}-14 X_{5} Y_{5}-42 X_{6} Y_{6} \text {, } \\
& X_{2} Y_{1}-X_{1} Y_{2}+X_{5} Y_{2}-3 X_{6} Y_{2} \\
& -3 X_{5} Y_{3}-3 X_{6} Y_{3}-3 X_{5} Y_{4}+3 X_{6} Y_{4}-X_{2} Y_{5} \\
& +3 X_{3} Y_{5}+3 X_{4} Y_{5}+3 X_{2} Y_{6}+3 X_{3} Y_{6}-3 X_{4} Y_{6} \text {, } \\
& X_{3} Y_{1}-3 X_{5} Y_{2}-3 X_{6} Y_{2}-X_{1} Y_{3}-2 X_{5} Y_{3} \\
& -6 X_{6} Y_{4}+3 X_{2} Y_{5}+2 X_{3} Y_{5}+3 X_{2} Y_{6}+6 X_{4} Y_{6}, \\
& X_{4} Y_{1}-3 X_{5} Y_{2}+3 X_{6} Y_{2} \\
& -6 X_{6} Y_{3}-X_{1} Y_{4}+X_{5} Y_{4}+3 X_{6} Y_{4} \\
& +3 X_{2} Y_{5}-X_{4} Y_{5}-3 X_{2} Y_{6}+6 X_{3} Y_{6}-3 X_{4} Y_{6} \text {, } \\
& \left(-2 X_{5} Y_{1}+3 X_{2} Y_{2}-9 X_{3} Y_{2}\right. \\
& -9 X_{4} Y_{2}-9 X_{2} Y_{3}-6 X_{3} Y_{3}-9 X_{2} Y_{4} \\
& \left.+3 X_{4} Y_{4}-2 X_{1} Y_{5}+X_{5} Y_{5}-9 X_{6} Y_{5}-9 X_{5} Y_{6}\right) / 2, \\
& \left(-2 X_{6} Y_{1}-3 X_{2} Y_{2}-3 X_{3} Y_{2}+3 X_{4} Y_{2}-3 X_{2} Y_{3}\right. \\
& -3 X_{6} Y_{6}-6 X_{4} Y_{3}+3 X_{2} Y_{4}-6 X_{3} Y_{4}+3 X_{4} Y_{4} \\
& \left.\left.-3 X_{5} Y_{5}-X_{6} Y_{5}-2 X_{1} Y_{6}-X_{5} Y_{6}+9 X_{6} Y_{6}\right) / 2\right) \text {. }
\end{aligned}
$$

Proof. We put

$$
\begin{aligned}
f_{1}(\mathbf{X}): & =3 X_{2}^{2}+6 X_{2} X_{3}-6 X_{2} X_{4}+12 X_{3} X_{4}-3 X_{4}^{2} \\
& +3 X_{5}^{2}+4 X_{1} X_{6}+2 X_{5} X_{6}-9 X_{6}^{2} \\
f_{2}(\mathbf{X}): & =12 X_{2} X_{3}+3 X_{3}^{2}+6 X_{2} X_{4}+6 X_{3} X_{4}-3 X_{4}^{2} \\
& +2 X_{1} X_{5}+X_{5}^{2}+2 X_{1} X_{6}+10 X_{5} X_{6}-3 X_{6}^{2} .
\end{aligned}
$$

Using φ, we find the following relations which can be checked by direct calculation.

$$
\begin{aligned}
q(\mathbf{X}) q(\mathbf{Y})= & q(\varphi(\mathbf{X}, \mathbf{Y}))-14 f_{1}(\mathbf{X}) f_{1}(\mathbf{Y}) \\
& +7 f_{1}(\mathbf{X}) f_{2}(\mathbf{Y})+7 f_{2}(\mathbf{X}) f_{1}(\mathbf{Y}) \\
& -14 f_{2}(\mathbf{X}) f_{2}(\mathbf{Y}), \\
f_{1}(\varphi(\mathbf{X}, \mathbf{Y}))= & q(\mathbf{X}) f_{1}(\mathbf{Y})+f_{1}(\mathbf{X}) q(\mathbf{Y}) \\
& -2 f_{1}(\mathbf{X}) f_{1}(\mathbf{Y})-f_{1}(\mathbf{X}) f_{2}(\mathbf{Y}) \\
& -f_{2}(\mathbf{X}) f_{1}(\mathbf{Y})+3 f_{2}(\mathbf{X}) f_{2}(\mathbf{Y}), \\
f_{2}(\varphi(\mathbf{X}, \mathbf{Y}))= & q(\mathbf{X}) f_{2}(\mathbf{Y})+f_{2}(\mathbf{X}) q(\mathbf{Y}) \\
& -3 f_{1}(\mathbf{X}) f_{1}(\mathbf{Y})+2 f_{1}(\mathbf{X}) f_{2}(\mathbf{Y}) \\
& +2 f_{2}(\mathbf{X}) f_{1}(\mathbf{Y})+f_{2}(\mathbf{X}) f_{2}(\mathbf{Y})
\end{aligned}
$$

3. Applications. We give one example of applications which use the multiplicative quadratic
forms on algebraic varieties over the ring of integers Z.

Let p be a prime $\equiv 1(\bmod 5)$. It is well known that the following system of diophantine equations has exactly four integer solutions.

$$
\begin{align*}
16 p & =x^{2}+125 w^{2}+50 v^{2}+50 u^{2} \tag{3}\\
x w & =v^{2}-4 u v-u^{2} \tag{4}\\
x & \equiv-1 \quad(\bmod 5) . \tag{5}
\end{align*}
$$

This system is often called "Dickson's system" since above result was discovered by Dickson [1] in 1935. If (x, w, v, u) is one integer solution then the remaining three are $(x,-w,-u, v),(x, w,-v,-u)$, $(x,-w, u,-v)$.

We are able to apply Theorem 4 to above system of diophantine equations. Using Theorem 4 for $a=$ $-1, b=4, c=-1, \lambda=-5 / 2$, we see that the quadratic form $q(\mathbf{X})=X_{1}^{2}+125 X_{2}^{2}+50 X_{3}^{2}+50 X_{4}^{2}$ is multiplicative on $V: X_{1} X_{2}=X_{3}^{2}-4 X_{3} X_{4}-$ X_{4}^{2}. The bilinear map $\varphi: \mathbf{Z}^{4} \times \mathbf{Z}^{4} \rightarrow \mathbf{Z}^{4}$ such that $q(\mathbf{X}) q(\mathbf{Y})=q(\varphi(\mathbf{X}, \mathbf{Y}))$ is given as follows:

$$
\begin{align*}
& \varphi(\mathbf{X}, \mathbf{Y})= \tag{6}\\
&\left(X_{1} Y_{1}\right.+125 X_{2} Y_{2}+50 X_{3} Y_{3}+50 X_{4} Y_{4} \\
& X_{2} Y_{1}+X_{1} Y_{2}-2 X_{3} Y_{3} \\
&+4 X_{4} Y_{3}+4 X_{3} Y_{4}+2 X_{4} Y_{4} \\
& X_{3} Y_{1}-5 X_{3} Y_{2}+10 X_{4} Y_{2} \\
&-X_{1} Y_{3}+5 X_{2} Y_{3}-10 X_{2} Y_{4} \\
& X_{4} Y_{1}+10 X_{3} Y_{2}+5 X_{4} Y_{2} \\
&\left.-10 X_{2} Y_{3}-X_{1} Y_{4}-5 X_{2} Y_{4}\right)
\end{align*}
$$

Using this φ, we obtain the following extended result of Dickson's system.

Theorem 7. Let N be an integer such that $N=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$, where $p_{i} \equiv 1(\bmod 5)$ is a prime for each i. Then the system of diophantine equations (3)-(5) with N instead of p has integer solutions.

Let p_{1} and p_{2} be primes such that $p_{1} \equiv$ $p_{2} \equiv 1(\bmod 5)$. Let $\left(x_{p_{1}}, w_{p_{1}}, v_{p_{1}}, u_{p_{1}}\right)$ (resp. $\left.\left(x_{p_{2}}, w_{p_{2}}, v_{p_{2}}, u_{p_{2}}\right)\right)$ be one of integer solutions of the system of (3)-(5) which belongs to p_{1} (resp. p_{2}). For the product $p_{1} p_{2}$, we define $\left(x_{p_{1} p_{2}}, w_{p_{1} p_{2}}, v_{p_{1} p_{2}}, u_{p_{1} p_{2}}\right) \in \mathbf{Z}[1 / 2]^{4}$ by
(7) $\left(x_{p_{1} p_{2}}, w_{p_{1} p_{2}}, v_{p_{1} p_{2}}, u_{p_{1} p_{2}}\right)$

$$
:=\frac{\varphi\left(\left(x_{p_{1}}, w_{p_{1}}, v_{p_{1}}, u_{p_{1}}\right),\left(x_{p_{2}}, w_{p_{2}}, v_{p_{2}}, u_{p_{2}}\right)\right)}{4}
$$

where φ is the bilinear map in (6). Furthermore,
we define $\left(x_{N}, w_{N}, v_{N}, u_{N}\right) \in \mathbf{Z}[1 / 2]^{4}$, for $N=$ $p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$, each p_{i} is prime $\equiv 1(\bmod 5)$, by repeating and using the definition (7). We see that the 4 -tuple $\left(x_{N}, w_{N}, v_{N}, u_{N}\right)$ is the solution of the Dickson's system (3)-(5) which belongs to N. Therefore to prove Theorem 7 we have to show that the 4-tuple is integral: $\left(x_{N}, w_{N}, v_{N}, u_{N}\right) \in \mathbf{Z}^{4}$.

Lemma 8. Let p be a prime $\equiv 1(\bmod 5)$. Then the solution $\left(x_{p}, w_{p}, v_{p}, u_{p}\right) \in \mathbf{Z}^{4}$ of the system (3)-(5) satisfies the following congruences.

$$
\begin{cases}-x_{p}+w_{p}+2 u_{p} \equiv 0 & (\bmod 4), \tag{8}\\ -x_{p}-w_{p}+2 v_{p} \equiv 0 & (\bmod 4)\end{cases}
$$

Proof. See, for example, [6, Lemma 1 (d)].
Lemma 9. Let $N_{1}=l_{1}^{a_{1}} l_{2}^{a_{2}} \cdots l_{m}^{a_{m}}$ and $N_{2}=$ $q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{n}^{b_{n}}$, each l_{j}, q_{k} is prime $\equiv 1(\bmod 5)$. If $\left(x_{N_{i}}, w_{N_{i}}, v_{N_{i}}, u_{N_{i}}\right) \in \mathbf{Z}^{4}$ and it satisfies (8) for $i=$ 1,2 then $\left(x_{N_{1} N_{2}}, w_{N_{1} N_{2}}, v_{N_{1} N_{2}}, u_{N_{1} N_{2}}\right) \in \mathbf{Z}^{4}$ and it also satisfies (8).

Proof. If $\left(x_{N_{i}}, w_{N_{i}}, v_{N_{i}}, u_{N_{i}}\right) \in \mathbf{Z}^{4}$ and it satisfies (8) for $i=1,2$ then there are $s_{1}, t_{1}, s_{2}, t_{2} \in \mathbf{Z}$ such that

$$
\begin{cases}x_{N_{i}}=w_{N_{i}}+2 u_{N_{i}}+4 s_{i}, & (i=1,2), \tag{9}\\ v_{N_{i}}=w_{N_{i}}+u_{N_{i}}+2 t_{i}, & (i=1,2)\end{cases}
$$

By the definition (7) and using (9) we see that the 4 -tuple ($x_{N_{1} N_{2}}, w_{N_{1} N_{2}}, v_{N_{1} N_{2}}, u_{N_{1} N_{2}}$) is equal to

$$
\begin{aligned}
& \left(4 s_{1} s_{2}+50 t_{1} t_{2}+2 s_{2} u_{1}+25 t_{2} u_{1}\right. \\
& \quad+2 s_{1} u_{2}+25 t_{1} u_{2}+26 u_{1} u_{2}+s_{2} w_{1}+25 t_{2} w_{1} \\
& \quad+13 u_{2} w_{1}+s_{1} w_{2}+25 t_{1} w_{2}+13 u_{1} w_{2}+44 w_{1} w_{2} \\
& s_{2} w_{1}-2 t_{1} t_{2}+t_{2} u_{1}+t_{1} u_{2} \\
& \quad+2 u_{1} u_{2}-t_{2} w_{1}+u_{2} w_{1}+s_{1} w_{2}-t_{1} w_{2}+u_{1} w_{2} \\
& 2 s_{2} t_{1}-2 s_{1} t_{2}+s_{2} u_{1}-t_{2} u_{1}-s_{1} u_{2}+t_{1} u_{2} \\
& \quad+s_{2} w_{1}+2 t_{2} w_{1}-u_{2} w_{1}-s_{1} w_{2}-2 t_{1} w_{2}+u_{1} w_{2} \\
& \left.s_{2} u_{1}-s_{1} u_{2}-5 t_{2} w_{1}-4 u_{2} w_{1}+5 t_{1} w_{2}+4 u_{1} w_{2}\right)
\end{aligned}
$$

where $\left(w_{i}, u_{i}\right)=\left(w_{N_{i}}, u_{N_{i}}\right)$ for $i=1,2$.
Hence $\left(x_{N_{1} N_{2}}, w_{N_{1} N_{2}}, v_{N_{1} N_{2}}, u_{N_{1} N_{2}}\right) \in \mathbf{Z}^{4}$. Using
this it is easily verified that this 4 -tuple satisfies (8).
Proof of Theorem 7. By the definition (7), the system of diophantine equations (3)-(4) which belongs to N has solutions $\left(x_{N}, w_{N}, v_{N}, u_{N}\right) \in \mathbf{Z}[1 / 2]^{4}$. By Lemma 8 and Lemma 9, we obtain that this 4 tuple $\left(x_{N}, w_{N}, v_{N}, u_{N}\right)$ is in \mathbf{Z}^{4}. It remains to show that $x_{N} \equiv-1(\bmod 5)$. This follows from (6) and (7).

It is well known that the Dickson's system (3)(5) is related very deeply to the Jacobi sums. In fact for a prime $p \equiv 1(\bmod 5)$ the solution of Dickson's system (3)-(5) give the coefficients of Jacobi sum for \mathbf{F}_{p}. We can study the Jacobi sum for $\mathbf{F}_{q}, q=p^{\alpha}$ in detail by using Theorem 4 . We shall discuss it in separate paper because it is much more elaborate.

Acknowledgement. The author thanks Professor K. Hashimoto who gave him various suggestions during this study.

References

[1] Dickson, L. E.: Cyclotomy, higher congruences and Waring's problem. Amer. J. Math., 57, 391424 (1935).
[2] Pfister, A.: Zur Darstellung von -1 als Summe von Quadraten in einem Körper. J. London Math. Soc., 40, 159-165 (1965).
[3] Pfister, A.: Multiplikative quadratische Formen. Arch. Math., 16, 363-370 (1965).
[4] Pfister, A.: Quadratic forms with applications to algebraic geometry and topology. London Mathematical Society Lecture Note Series, no. 217, Cambridge University Press, Cambridge (1995).
[5] Schafer, R. D.: An Introduction to Nonassociative Algebras. Dover Publications, Inc., New York (1995).
[6] Katre, S. A., and Rajwade, A. R.: Unique determination of cyclotomic numbers of order five. Manuscripta Math., 53, 65-75 (1985).
[7] Rajwade, A. R.: Squares. London Mathematical Society Lecture Note Series, no. 171, Cambridge University Press, Cambridge (1993).

[^0]: 2000 Mathematics Subject Classification. Primary 11E04, 11E25; Secondary 11T22.

