Open Access
Translator Disclaimer
Sept. 2002 Arithmetic forms of Selberg zeta functions with applications to prime geodesic theorem
Tsuneo Arakawa, Shin-ya Koyama, Maki Nakasuji
Proc. Japan Acad. Ser. A Math. Sci. 78(7): 120-125 (Sept. 2002). DOI: 10.3792/pjaa.78.120

Abstract

We obtain an arithmetic expression of the Selberg zeta function for cocompact Fuchsian group defined via an indefinite division quaternion algebra over $\mathbf{Q}$. As application to the prime geodesic theorem, we prove certain uniformity of the distribution.

Citation

Download Citation

Tsuneo Arakawa. Shin-ya Koyama. Maki Nakasuji. "Arithmetic forms of Selberg zeta functions with applications to prime geodesic theorem." Proc. Japan Acad. Ser. A Math. Sci. 78 (7) 120 - 125, Sept. 2002. https://doi.org/10.3792/pjaa.78.120

Information

Published: Sept. 2002
First available in Project Euclid: 23 May 2006

zbMATH: 1027.11065
MathSciNet: MR1930215
Digital Object Identifier: 10.3792/pjaa.78.120

Subjects:
Primary: 11R52
Secondary: 11M72 , 58E10

Keywords: prime geodesic theorem , quaternion algebra , Selberg zeta function

Rights: Copyright © 2002 The Japan Academy

JOURNAL ARTICLE
6 PAGES


SHARE
Vol.78 • No. 7 • Sept. 2002
Back to Top