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49. On a Problem of Dinaburg and Sinai

By Akio Fujl

Department of Mathematics, Rikkyo University
(Communicated by Shokichi [IYANAGA, M. J. A., Sept. 14, 1992)

§1. Introduction. Let N be a sufficiently large integer. Let
Fy={a/b;1<a<b< N, (a,b) =1, aand b are integers}.
For any fraction @/b in Fy, we can associate the minimum positive integer
Zo < b such that
| azo — byo| = 1
for some integer 7o = 1. Let a1, B1, &2 and B2 be real numbers satisfying
O<a1<‘81<az<ﬁz<1.
Then we put
Sy={a/be Fy;auN < a < BN < a,N < b < B,N}.
Dinaburg and Sinai [1] have studied the distribution of
.I'o/b

as a/b belongs to Sy and N— o, We shall improve both their results and
Remark by Voronin and Tvnek in p.171 of [1].

For any a/b in Fy, we may associate the minimum positive integer
x1 < b such that

ax; — by =1
for some integer y; = 1. We may also treat the distribution of
T /b

as a/b belongs to Fy or Sy and N — 0,

We may describe Xo/b in two ways. For (a, b) = 1, let @ be the unique
positive integer < b such that a@ = 1(mod b). By the definition of x,, we
see first that

Xo = Min(a, b — a).
Wenext express Zo/b in terms of the continued fraction expansion of a/b.
We denote

1
1
+
o as +._ 1
i
by [ai, a,...,a,] and also by p,/¢q, for n = 1, where a;, a3,... and a, are
positive integers. We define po = 0 and go = 1. Now suppose that
a/b=la, as,..., asl

with the minimum integer s = 1. Thus we suppose that as = 2 unless a/b
= 1. When s is odd, then psqs—1 — gsps—1 = (— 1)s*! with ps =a, gs=0>b
and gs-; = a@. Thus

To/b=as/b=qs_1/qs = las, as-y,..., as, ail.
When s is even, then ps = @, ¢s = b and gs—-1 = b — a@ . Thus in this case we
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also have
Zo/b=(b—a/b= qs-1/qs = las, as-y,..., az, a1l.
We may notice that for b = 3, @ < b — a if and only if s is odd.
Similarly, we see first that 21 = a. If the length s of the continued frac-
tion expansion of @/b is odd, then ¢s—; = @ and 21/ b = ¢s-1/qs = las, as-1,
.., @z ay]. If s is even, then ¢s-; = b — @ and
x/b=a/b=1-— (gs-1/¢qs) =1 — las, as—y,..., az, ail
= [1, as — 1, As—1, As—-2,..., A2, al].
Namely, we have x,/b = l[a}, ai—y, . .., az, a1} if a/b=lay, as,. .., al
with the odd integer ¢t = 1.

Dinaburg and Sinai [1] have reduced their problem to the question of
whether a certain special flow over the natural extension of the Gauss trans-
formation in the theory of continued fraction is mixing (cf. p. 165 of [1]). Our
approach is elementary and we shall use the estimate of Kloosterman sums
as is also noticed in Remarks in p. 171 of [1].

§2. Some lemmas. We start with noticing the following lemma which
says that @/b in Fy is uniformly distributed.

Lemma 1. Fora given Bin0 < B <1,

- ._N?
a/beFN,Béa/b<B+x ! ¥ 2C(2) * O(N log N)
uniformly forx im0 < x <1 — B, where 1/{(2) = 6 /72
Proof. The left hand side is
=3 ud = > 1= 2 u@d = > -1

d<N d<N, dlb dla,bB <a<b(B+x) d<N b<N/d bB=<a<b(B+x)

= d b+ 0) = + O(Nlog N
Zoud % @ @) = ZC(Z) (Nlog N).

We next treat the same problem for the fractions in Sy. By the defini-
tion, a/b in Sy must satisfy A < a/b< A + A, where we put A = a1/
and 4 = Bi/az — ay/B:. We shall prove in the following lemma that a/b is
not uniformly distributed in the interval (4, A + 4).

Lemma 2. Foranyx in0 < x < A, we have

2
Z 1=g(x)‘clzr—2)(ﬁz-az)(/31—al)+0(NlogN),

a/beSN, A<a/b<A+x

where g (x) will be defined below.
We define g (x) in the following three cases, separately.
Case 1. BI/BZ < (241 /a'z.

&1(x) for A;<zx<A

- 1 11
¢@) =g (- Az Gt @) for A<es<a
&:(x) for 0<z< A4,

where we put 4, = an /a2 — A A= B1/B: —

y

&) = (Bz — a) (.31 - ay) <a1a2 - % A+ z)aj
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1_pf
_’2‘A+x+(31_a'1).32>

and
_ 1 (A + x)B% o _
8@ = G am G Tt ad s ).
Case II. B,/8; > ai/a..
& (x) for 4, <x=< A4

@ =125 FU+rnDEG+w —a) for H<zs<a

&:(x) for 0 <x<A4,.
Case III. 3:/B: = a1/ as.
gi(x) for 4, =4, <x< A
g(x) for 0 < x < A, = A,
In any case, we have g(4) = 1 and g(0) = 0.

Proof of Lemma 2. In the Case I, we have 4, < 4; < A. We shall treat
only for 4; < £ < A in this case, since the rests are similar.

gx) =

1= X 2 1
a/beSN, A<a/b<A+x a2N<b<B2N alN<a<pBN
bA<a<b(A+x)
(a,b)=1
= X z 1+ p > ‘1
asN<b<B2N aiN<a<BiN azN<b<BzN aiN<a<b(A+x)
BIN/(A+x)<b (a,b)=1 QIN/(A+2)<b<BIN/(A+x) (a,b)=1
= S, + S;, say.
S = 2 ud) 2 2 1
d<N B1N/d(A+x)<b<B2N/d aiN/d<a<BiN/d

= N*@i— o) (B = 1) £ oy + OWlog N,

We have also

S, = 3 u(d) > (b(A+x) —2@"—) + O(Nlog N)

d<N azN/d<b<Bi1N/d(A+x) d

- a2zl Bt _1 s _0uf
=N C(2)[2(A+x) g @t z)ai — o

+ alaz] + O(Nlog N).

These give our result for the present case.
83. The distribution of x;/b. We recall that £y = @. For any 0 <
B<1,05x<1—Bandany0<y<1, we put
FyvB,xz,y) ={a/be Fy;B<a/b<B+x,a/b<y.
Similarly, we define, for0 < x < Adand 0 <y < 1,
Sv(x,y) ={a/bE Sv;A<a/b<A+zx,a/b<y},

where A and 4 are the same as in the previous section. We shall evaluate
the cardinalities fxv(B, x, y) and sy(x, y) of Fy(B, x, y) and S~(zx, y),
respectively. The following theorems will be proved. € denotes always an
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arbitralily small positive number.
Theorem 1. For any 0 < B<1,0<x<1—B and 0<y <1, we
have
(B, z,y) =yxN2/2((2) + O(N?¥?*¢),
Theorem 2. Forany0 < x < A and 0 < y < 1, we have
sv(x, y) = yg(x) N2/{(2) (B: — az) (By — ay) + O(N?¥?*),
where g (x) is the same as in Lemma 2.
As a special case of Theorem 2, we get the following corollary.
Corollary 1. Foranyy in0 < y < 1, we have
#{a/b € SN;égf 0/b<y _ J| < N3,
where # S denotes the cardinality of the set S.

We shall prove only Theorem 2, since Theorem 1 can be proved in a
similar manner.

Proof of Theorem 2. Let x;(¢) be the characteristic function of the inter-
val I. Let 0 be a number in 0 < § < 1/4. Suppose first that 20 < x <1
— 20 and 20 < y <1 — 20. Then by Vinogradov’'s Lemma 2 in p. 196 of
[3], we get two periodic functions @;(¢) and ¢,(#) of period 1 such that

@O @) — xua+on (@) =0 except in

A—0, AU A+zx,A+x+0),
O1(8) — X4+ (@) =0 except in

A, A+ U A+x—0,A+ x),
0<U(t) <lforanytin(A—90,A) U A+zx,A+x+0)
and
O0< p(t) <lforanytin (A4, A+0) U A+x—6,A+x)

and

() @) =x+ Zn-1 (ane(tm) + bue(— tm))
and

01(t) =2+ Zm-1 (@me(tm) + bpe(— tm)),

where e () = %" and

’ ’ N 1 1

Amly | bm |, | Gm |, | b <Mm<——,x, )
[ anl, 1B, .| o T s

Similarly, for the interval [0, y) we get two functions @,(¢#) and ¢,(¢)
having the same properties as above with the Fourier coefficients ¢m, dm, Cm
and dm, respectively.

Using these functions, we have
ez a@els 2 15z wOHE =T

a/beSN a/bESy a/beSN
A<a/b<A+x
a’/b<y

We shall treat only 2.

Zo=y 2 ou(f)+ = w(f)(n(5) -
= ya/ESN X144+ <%) + ya/sz:sN <W1<%> - X[A,A+x)<%)>
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va, 2 (0(3) o)+ 2 (8(5) - 2)(n(3) - 9)

=23+ 2+ 2+ Ze, say.
By Lemma 2, we get

23 =yg(x)(B: — az) (BL — ) C(z) + O(Nlog N).

|

PINRS > 1+ = ‘1K > -1+ > -1.

a/beSN a/beSN a/beFN a/beFN
A-d=<a/b<A A+r<a/b<A+x+0 A-d<a/b<A A+x<a/b<A+x+d

Applying Lemma 1 to the last two sums, we get
>4 < N2+ NlogN.
We take H = N and d = 1/v/N below. By the definition of ¥3(¢), we get

oo el 1) ol

a/beSN 1<m<H Ho
< X L = e |+
1<m=n M lasesy

Using the estimates on Kloosterman sums (cf. Lemma 4 in p. 36 of Hooley
[2]), the last inner sum is

> > e(g——m><< S bEes, m)3,
b azN<b<pB2N

a2N<b<B2N aiN<a<BiN
(a,b)=1
where (b, m) is the greatest common divisor of b and m. Thus we get

S« X L3 piee, m)z+ga<<N7+5

1<m<n ™ aN<b<peN

We shall finally treat 2.
Zo= 2 (2 (ae(§i) +ve(=$4) + ol375))

(2, (ene(§ m) + dne = Gm)) + 0(335)

1 a.. a
K 2 = Z elzij+Tm i
1<im<aIM | aspesn <b 7T >
1 a..a '
151%311 m G/ESN e( A m)

o)+ o ).

Estimating the last two inner sums by Lemma 4 of Hooley [2], we get

1 1 1, N2logN , N? 3
< o bz*e (b, + + & Ni+e,
2 1s;',zm:s;; jym a2N<Zb<BzN 2t (b, m)2 Hé H252 2

Thus we have obtained

21=yg@) (B — az) By — ) C(Z) + O(N“z""s)

Similarly, we get
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22 =yg(x) (B — az) (Br — av) f’%’zz—) + O(N3+9).

Hence, we get

sn(x, ¥) = yg (@) (B — az) (B1 — ) C(2) + OWNE*).

Similarly, we can treat the case when either 20 < x <1 — 20 or
20 <y <1 — 20 fails (cf. p. 244 of Vinogradov [3]).
§3. The distribution of x,/b. We recall that

a ifa<b/2

b—a ifaz=zb/2,
Thus 0 < xy/b < 1/2. As a consequence of Theorem 2, we see the follow-
ing.

o =

Theorem 3. Foramyx in0 <x < Aandy inO < y < 1/2, we have
un(x, y) = 2yg (x) (B, — az) (B — ay) C(z) + O(N7+e)

where un(x, y) is the cardinality of the set
Un(x,y) ={a/bE Sy;A<a/b<A+xand 0 < xzo/b< y}.
To see this, we notice only that

uv(z,y) = X p ‘1
azN<b<B2N aiN<a<BiN,(a, b)=1
A<a/b<A+z, a<b/2, a/b<y

+ = 2 -1
azN<b<BzN aiN<a<BiN,_(a,b)=
A<a/b<A+x,b/2<a@<b, 1— a/b<y

= 2 2 1
azN<b<B2N aiN<a<pBiN, (a,b)=1
A<a/b<A+z, a/b<y

+ = > ‘1.

a2N<b<BzN  aiN<a<B1N, (a,b)=1
A<a/b<A+z, 1-y<a/b<l1

At this stage we use Theorem 2 and get Theorem 3 as described above.
As a special case of this theorem, we get the following corollary.
Corollary 2. Foranyy in 0 < y < 1/2, we get

#{a/b € Snv; 0 <xvb <yl — 2y| « Nb.
# S

This should be compared with Cor. 1 in the previous section and also
with Dinaburg and Sinai’s theorem.
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