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1. The aim of the present series of notes is to develop a study on the
various mean values of the Riemann zeta- and Dirichlet L-functions; here,
to. begin with, we investigate the square mean of L-functions viewing it
as a generalization of the situation considered by Atkinson [1].

Let ; be a Dirichlet character, and put, for two complex variables u
and v

Q(u, v; q)- 1 L(u, z)L(v, 2),
(q) mo

where q2 and is the Euler function. If Re(u)l, Re(v)>l, then
( 1 ) Q(u, v, q) L(u-F v, Y.o) -qf(u, v q) -Ff(v, u q),
where Z0 is the principal character mod q, and

q

f(u, v; q)-- , (qm q- a)- ’(q(m+ n)+ a)-.
a=l m=O n=l

(a, q)

We need an analytic continuation of f(u, v q) valid when Re(u)l, Re(v)
1. This may be obtained by Poisson’s summation formula as in [1], but
we take an alternative way which starts from the following integral repre-
sentation:When Re(u)O, Re(v)>l, Re(u+v)2,

f(u,v; q)-- q-- 1 ;: y- ;: e/+ x’-dxdy"
[’(u)E(v) :-i e+--I

(a, q) --1

To remove the singularity at x+y--O we put

( e/qh(z q)-- =Y’ e- 1
(a, q)=1

and note that when 0 Re (u) 1 and y 0

.[: x-’(x+ y)-’dx y-F(u)F(1 u).

Then, we find that when ORe(u)l, Re(u+v)2,
(2) f(u, v; q)

--(q)q-(+’)F(u-Fv--1)F(1--u){F(v))-(u+v--1)-+-g(u, v; q),
where

g(u, v q)--
F(u)F(v) -- j_ h(x-F y q)x-dxdy.

Next we introduce the. contour C which starts at infinity, proceeds along
the positive real axis to./ (01/2), describes a circle of radius counter-
clockwise round the. origin and returns to infinity along the positive real
axis we have, for 0 (. Re (u)< 1, Re (u+ v) 2,
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(3) g(u, v q)

Y-’ h(x+y; q)x-dxdy,----q- {F(u)F(v)(e-l)(e--l)}-
c j--I c

where x--exp (u log x), yO=exp (v log y) and Im log x, Im log y vary from
0 to 2z round ’. But this double integral is absolutely convergent for
Re(u)l and arbitrary v; thus (2) and (3) provide f(u, v; q) the required
analytic continuation. Hence from (1)-(3) we see that when Re(u)l,
Re(v)l,

Q(u, v q)- L(u+v o)+(q)q--oF(u+v-- 1)(u+v 1)

.F(1--u)- + F(1--v) -+g(u, v; q)Wg(v, u; q).
(v) (u)

In particular, setting v= l-u, we obtain
Lemma 1. If ORe(u)l, then

Q(u, 1-u;q)= (.q)( 1( F’ ) q log p}q
(u) + (1-- u) +2r+logW.p_1

+g(u, 1-- u; q)+ g(1 u, u q),
where is the Euler constant, and p runs over prime divisors of q g-terms
are defined by (3).

2. Now, as an application of the above result we consider the asymp-
totical estimation of

1. L(+it, Z)],(q) (mod q)

where t is real. Heath-Brown [2] studied the special case where t=0, and
obtained an expression which when q is a prime yields an asymptotic
series in terms of q-/. We consider this problem on a little more general
condition that t be arbitrary but fixed. Lemma 1 reduces the problem to
he estimation of g(u, l--u; q), ORe(u)l. For this sake we note first
that

h(z; q)=p()h(; 1)
where Z is the MSbius function. Thus by (3) we get, after some rearrange-
ment,

g(u,l--u; q)=(u)(1--u)()rq
1 ()r; y-

( 4 + 4q sin (u) c e- 1

Ic(h(x+;1)--h(x; 1))x-dxdy.r

This double integral admits an asymptotic expansion in terms of r- which
arises from the power series expansion of h(x+y/r; 1)--h(x; 1) in terms
of y/r. But we are unable to proceed further without assuming that q
has no small prime actors. Thus we restrict ourselves to the simplest
situation where q is a prime number. Then (4) becomes
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g(u, l--u; q)--q-’(u)5(1--u)--q-g(u, l--u; 1)

; ) )+4qsin(=u) ce c
h x+ yq ;1 -h(x;1) x-dxdy,

and this gives rise to an asymptotic expansion for g(u, l-u; q). In par-
ticular we have
( 5 ) g(u, l--u; q)--qU-l(u)(1--u)--q-lg(u, l--u; 1)+O(IqU[q-2).
To show this we need only to remark that the differentiation gives

]h(x+(y/q) 1)-h(x 1)]--O(q-ly[(l+[xl2)-)
uniformly for all x, y e C. Thus by Lemma 1 and (5) we obtain

Theorem. Let t be real and fixed, and let q run over prime numbers.
Then we have

+2q-/ -+it cos(tlogq)--q +it +O(q-

Remark. Our result agrees with that of Heath-Brown [2]; to see this
one should note that (F’//")(1/2) ’-- 2 log 2. Also it should be remarked
that our result suggests some peculiar relation between the zeros of and
the values of L-functions.

3. The study of Q(1/2+it, 1/2-it; q) for variable t and q, which is to
be developed in our later notes, will naturally require more subtle analysis
than that o the preceding paragraph. As a preparation we show here a
further transformation o (3) when u+v 1, Re (u) 0

Lemma 2. If Re (u)0, then

g(u, 1--u q)-----2q- l()r d(n) : x-U(x+ 1)u- cos (2rnx)dx,

where d is the divisor function.
This corresponds precisely to the expression of g(u, l--u; 1) shown in

[1, p. 357]. As or the proof it may be enough to remark that when Re (u)
0 the inner integral of (3) is equal to minus the sum of all residues
arising rom the poles at x y+2in (n +__ 1, + 2, .).
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