125. Geometry of Yang-Mills Connections over a Kähler Surface

By Mitsuhiro ITOH
Institute of Mathematics, University of Tsukuba
(Communicated by Kunihiko Kodaira, M. J. A., Nov. 12, 1983)

1. In [2] and [3] we showed that the moduli space of irreducible anti-self-dual Yang-Mills connections over a compact Kähler surface with positive scalar curvature has a smooth manifold structure. In this paper we exhibit theorems with brief proofs about a complex structure on the moduli space of anti-self-dual connections.

Let A be an anti-self-dual connection on a principal bundle P with positive second Chern class over a Kähler surface. Then for the adjoint bundle \mathfrak{g}_P the sequence

$$0 \longrightarrow \mathcal{Q}^0(\mathfrak{g}_P) \xrightarrow{d_A} \mathcal{Q}^1(\mathfrak{g}_P) \xrightarrow{d_A^+} \mathcal{Q}^2_+(\mathfrak{g}_P) \longrightarrow 0$$

defines an elliptic complex and A induces a holomorphic structure on g_F^c compatible with d_A . We call A generic when the 0-th cohomology group H^0 and the second cohomology group H^2 of the above sequence vanish.

Theorem 1. The moduli space \mathcal{M}_0 of generic anti-self-dual connections over a compact Kähler surface has a complex structure.

Theorem 2. Let M be a compact Kähler surface either with trivial canonical line bundle K_M or with positive total scalar curvature. Then the moduli space of irreducible (i.e., $H^0=0$) anti-self-dual connections over M is a complex manifold.

A (0, 1)-connection \tilde{A} satisfying integrability condition $\bar{\partial} \tilde{A} - \tilde{A} \wedge \tilde{A} = 0$ is called holomorphic. With respect to the moduli space \mathcal{M}_h of holomorphic connections we have

Theorem 3. The moduli space $(\mathcal{M}_h)_0$ of generic, holomorphic connections on an SU(n)-principal bundle has a complex structure of complex dimension $c_2(\mathfrak{g}_r^C)$ —dim $SU(n) \cdot p_a(M)$, if it is not empty. Moreover the canonical map h of \mathcal{M}_0 to $(\mathcal{M}_h)_0$ is holomorphic and of maximal rank, and the image of \mathcal{M}_0 is open and closed in $(\mathcal{M}_h)_0$.

It is easily observed that there is a one-to-one correspondence between the moduli \mathcal{M}_h and moduli \mathcal{M}_J of holomorphic structures on \mathfrak{g}_P^C . It is known on the other hand that over a nonsingular projective surface \mathcal{M}_J on a rank two vector bundle is a quasi-projective variety [7]. From the sufficient evidence that \mathcal{M} has even dimension and each irreducible anti-self-dual connections induces a stable holomorphic

structure on g_F^c [6] it is conjectured by Atiyah that \mathcal{M} must be a complex manifold [1].

2. Anti-self-dual connection and holomorphic connection. Let P be an SU(n)-principal bundle with adjoint bundle \mathfrak{g}_P . A connection A on P with anti-self-dual curvature form $F(A) = dA - A \wedge A$ is called also anti-self-dual. The group of gauge transformations $\mathcal G$ acts on the set of connections $\mathcal C$ and leaves the subset of anti-self-dual connections invariant. Hence we have its quotient, called moduli $\mathcal M$ of anti-self-dual connections on P. A connection A is irreducible (reducible) if $d_A: \Omega^0(\mathfrak{g}_P) \to \Omega^1(\mathfrak{g}_P)$ has zero kernel (non-zero kernel).

A connection \widetilde{A} which induces a covariant derivative of type (0,1) $\overline{\partial}_{\widetilde{A}}: \Omega^0(\mathfrak{g}_P^c) \to \Omega^{0,1}(\mathfrak{g}_P^c)$ is called (0,1)-connection. We call (0,1)-connection \widetilde{A} holomorphic if its curvature $F(\widetilde{A}) = \overline{\partial} \widetilde{A} - \widetilde{A} \wedge \widetilde{A}$ vanishes. The group of complex gauge transformations \mathcal{G}^c acts on the set of (0,1)-connections $\mathcal{C}^{(0,1)}$ and induces moduli space \mathcal{M}_h of holomorphic connections.

For each A in $\mathcal C$ the (0,1)-component $A^{0,1}$ is in $\mathcal C^{(0,1)}$ and further $A^{0,1}$ is holomorphic for anti-self-dual A. Conversely $A=\tilde A-{}^t\widetilde A$ belongs to $\mathcal C$ for each $\tilde A\in\mathcal C^{(0,1)}$. Since $\mathcal G\subset\mathcal G^{\mathcal C}$ we have a canonical map h from $\mathcal M$ to $\mathcal M_h$.

For each holomorphic connection \tilde{A} we have the elliptic complex

$$0 \longrightarrow \Omega^{0}(\mathfrak{g}_{P}^{C}) \xrightarrow{\bar{\partial}_{\bar{A}}} \Omega^{0,1}(\mathfrak{g}_{P}^{C}) \xrightarrow{\bar{\partial}_{\bar{A}}} \Omega^{0,2}(\mathfrak{g}_{P}^{C}) \longrightarrow 0$$

with k-th cohomology group H^k . By using the Atiyah-Singer index theorem the index is given by $-c_2(\mathfrak{g}_P^c) + \dim SU(n) \cdot p_a(M)$. We call holomorphic connection generic if $H^0 = H^2 = 0$.

3. Brief proofs of theorems. Lemma 1. For each irreducible $[\tilde{A}] \in \mathcal{M}_h$, $V_{\tilde{A}} = \{\alpha \in \Omega^{0,1}(\mathfrak{g}_P^C); \|\alpha\| < \varepsilon, \ \bar{\partial}_{\tilde{A}}^*\alpha = 0, \ \bar{\partial}_{\tilde{A}}\alpha = \alpha \wedge \alpha\}$ gives a neighborhood of $[\tilde{A}]$ in \mathcal{M}_h .

Let $\Psi = \Psi_{\tilde{A}} : \Omega^{0,1}(\mathfrak{g}_P^C) \to \Omega^{0,1}(\mathfrak{g}_P^C)$ be given by $\alpha \to \alpha - \bar{\partial}_{\tilde{A}^*}G(\alpha \wedge \alpha)$, where G is the Green operator. Then we have

Lemma 2. $\Psi(V_{\vec{A}}) \subset H^1_{\vec{A}}$ and Ψ has an inverse over an ε -neighborhood $V_{\varepsilon} \subset H^1_{\vec{A}}$ and moreover $\Psi^{-1}|_{V_{\varepsilon}}$ is holomorphic.

To show that each local charts $\Psi_{\tilde{A}}\colon V_{\tilde{A}}{\longrightarrow} V_{\epsilon}$ are holomorphically related we require the following lemma. For each $[\tilde{A}_1]$, $[\tilde{A}_2]\in (\mathcal{M}_h)_0$ satisfying $\pi(\tilde{A}_1+V_{\tilde{A}_1})\cap\pi(\tilde{A}_2+V_{\tilde{A}_2}){\neq}\phi$ we have that for $\alpha\in V_{\tilde{A}_1}$ there exists a unique $f=f_{\alpha}\in\mathcal{G}^c$ such that $f(\tilde{A}_1+\alpha)\in\tilde{A}_2+V_{\tilde{A}_2}$.

Lemma 3. f_{α} depends holomorphically on t, if $\alpha = \Psi^{-1}(t)$ is parametrized by complex coordinates t of $H_{\underline{A}}^{1}$.

This is based on the standard fact that solutions of a quasi-linear elliptic equation with parameters of holomorphic functions of t depend holomorphically on t. By combining these lemmas we obtain the first part of Theorem 3.

Now we let A be an anti-self-dual connection. Then we have by

using the Bochner-Weitzenböck formula of the operator $d_A^+ \circ d_{A^*}^+$ the following

Lemma 4. H_A^2 is R-isomorphic to $H_A^0 \oplus H$, where H denotes $H^0(M; \mathcal{O}(\mathfrak{g}_P^C \otimes K_M))$ with respect to the holomorphic structure of \mathfrak{g}_P^C induced from A, and $H_A^2 \cong H$ for $\tilde{A} = A^{0,1}$.

Lemma 5. If A is irreducible, then so is the holomorphic connection $\tilde{A} = A^{0,1}$.

From these lemmas we have $h(\mathcal{M}_0) \subset (\mathcal{M}_h)_0$. By applying a local slice neighborhood argument we can show that h is a local diffeomorphism. Since $\langle F(A), \omega_g \rangle = 0$ for each $[A] \in \mathcal{M}$, the image $h(\mathcal{M}_0)$ is closed in $(\mathcal{M}_h)_0$. Thus we obtain Theorem 3 and also automatically Theorem 1. Theorem 2 is an easy consequence of Theorem 1 and Lemma 4.

4. Remark. Each $[A] \in \mathcal{M}$ which is not generic gives a singularity of \mathcal{M} [5]. Let L be a nontrivial holomorphic line bundle with $c_1(L) \wedge [\omega_q] = 0$. Then an SU(2)-bundle P associated to $L \oplus L^{-1}$ admits a reducible anti-self-dual connection A. The moduli space \mathcal{M} is of course singular at [A]. Singular points near [A] consist of a $b_1(M)$ -dimensional open ball, if the base space is of positive total scalar curvature. Moreover the bundle P also admits irreducible, hence generic anti-self-dual connections near [A].

Detailed proofs of these theorems and lemmas will be given in a forthcoming paper [4].

References

- [1] Atiyah, M. F.: The moment map in symplectic geometry. Proc. of Symp. on Global Riemannian Geometry, Durham 1982 (to appear).
- [2] Itoh, M.: Moduli of anti-self-dual connections on Kähler manifolds. Proc. Japan Acad., 57A, 176-180 (1981).
- [3] —: On the moduli space of anti-self-dual Yang-Mills connections on Kähler surfaces. Publ. RIMS, Kyoto Univ., 10, 15-32 (1983).
- [4] —: The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold (to appear).
- [5] -: Singularities of the moduli space of Yang-Mills fields (to appear).
- [6] Kobayashi, S.: Curvature and stability of vector bundles. Proc. Japan Acad., 58A, 158-162 (1982).
- [7] Maruyama, M.: Stable vector bundles on an algebraic surface. Nagoya Math. J., 58, 25-68 (1975).