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114. A Note on the Approximate Functional
Equation for C (s )

By Yoichi VIOTOHASHI
Department of Mathematics, College of Science

and Technology, Nihon University

(Communicated by Kunihiko KOD.CIR., M. $. )., Oct. 12, 1983)

1. Let 0<_z_<l, t_2, XY=t2/4, xy=t/2, and put
( 1 ) (s) n +Z() n-+E(s, x),

n<x n<y

"(s)-- d(n)n-"+ Z"(s) d(n)n-+D(s, X)
nX n<Y

where d is the divisor function and ;(s)-2=-sin (sz/2)F(1-s).
Hardy and Littlewood [1] proved that
( 2 ) E(s, x)(( x q- t/"-y-as well as

D(s X)<<X’- ( X+ Y )’/ log t.
t

Later Titchmarsh [5] replaced the latter by

( 3 ) D(s, X)<< (Xq-Y)*/"- log t.
Also we should note that Jutila [4] remarked recently that (3) is a
consequence o Voronoi’s summation formula.

The arguments of these authors are rather elaborated, mainly
because they treated 5(s) directly, i.e. without recoursing to the known
approximations or (s). Here we shall show that i we make use ot
Dirichlet’s device"
(4) d(n)an-2 7 , anr-- anm,

n<N n /-mN/n n 4-m /-

then, as far as the most interesting case X--Y--t/2 is concerned, (3)
is a quite simple consequence of (2).

For this end let U--t/2z, u=/. Then by (4) we have
d(n)n + Z(s) , d(n)n-nU nKU

=2 , m- n-’+2Z(s), m-mK n< UIm mK nK U/m

--( , m-’) Z.(s)( m’-).
mgu mgu

And by (1) this is equal to
2 m-((s)-z(s) n-’-E(s, U/m)}
mKu n<m

+2Z(s) m-((1--s)--Z(1--s) , n--E(1-s, U/m)}
m<u nKm

+2;(s) m-’ w’--(5(s)-E(s, u)).
m<u n<u

Then, after some rearrangement, we get
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(s)= E d(n)n-+Z(s) E d(n)n-’+ 2(s) E 1
( 5 ) n

+2 m-E(s, U/m)+2Z2(s) m-E(1-s, U/m)+E2(s, u).
mu mu

Inserting (2) into this we readily obtain (3) for the case X=Y=t/2.
2. Next, let us see what the above argument will yield if we

replace (2) by a more precise estimate obtainable by the method of
Riemann and Siegel (see e.g. [6, Chap. 4]). This gives, for lx
gt/2,

I ( xi (w--2i{y}yE(s, x) (2)-e-/F(1- s) y- exp
4y

x(w 2i{y}) x]w) (e 1)dw+ O((t/-y- + x-)t-),+
where {y} =y-[y], and L is a straight line in the direction arg w=z/4
passing between 0 and 2i. Thus we have, in (5),

m-E(s, U/m)

=(2z)_e_,/F(l_s) 1 ; exp( ti w+{. t } )Sm 2m
X (e-l)-’dw+O(t/- log t).

Then we deform L to the curve composed of two parts" w-{2e/, 2_
and _-} and {w=e//, 0_t_} where >0, and let tend to 0.
This gives

-i+ e-(/ sin (({t/2m}-l/2),/D d,,
sin /2

where e/’.
Hence we have

x(s) 1E m-E(s, U/m)= E. 2 m

( 6 ) + (2)-e-’/F(1 s) -2
e-(’/s’) sin (({t/2zm}--l/2),/D d2
m sin 2/2

+ O(t’/- log t).
To estimate this integrand, we introduce the Fourier expansion: For
0vl

sin((v--1/2)/D =--Sz ]-2i sin (2v),
sin /2

which is boundedly convergent uniformly for all real 2. Then, invok-
ing an idea of Hooley [3, p. 104], we have, for any Jl,

sin (({t/2m}-l/2)/D 8 ] sin it
() si. /e a[i %-

+
where
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A(J)-O(min(.lOgJJ
and I is the characteristic function of the set of integers; here the
O-constants are all independent of

Now, we divide the integrand in question into two parts according
to m_tz and tZm_u. Since the sin-factor is 0(1) we see readily
that the first part contributes to (6) the amount of O(t-). As for the
second part we consider, instead, the estimation of the sum

( 8 ) sin (({t/2zm}--l/2),/D,
< sin /2

But we have (7), so the problem is reduced to that of

MmK2M

Appealing to van der Corput’s method (see e.g. [6, p. 90]), this is esti-
mated to be O(M-’/t/]/) if ]0. Hence setting J=t-/M(log t)/ in
(7) we find that (8) is O(t’/(log t)’/) uniformly for all real . Then,
summing partially over and integrating with respect to 2 we con-
clude that the second part in question of the integrand of (6)con-
tributes to it the amount of O(t’/-(log t)/).

Hence we have found

E m-E(s, U/m)=-_()__ E +O(t/-(log t)m)

Inserting this into (5) we obtain the following improvement on (3)"
Theorem.

( 9 ) D(s, t/2u)=O(t/-(log t)/).
Remark. By elaborating our argument one may probably replace

(9) by an asymptotic expansion, i.e. an analogue for (s) of the
Riemann-Siegel formula for (s). Also one may treat the non-sym-
metric case (i.e. XCY) as well. Further we should remark that our
theorem may be incorporated into the asymptotic evaluation of the
fourth power moment of 5(s) (cf. [2]). To these and further improve-
ments we shall return elsewhere.

Added in proof. (i) A refinement of the above argument yields

(10) D(s’)=--2()’/(z(s)+O(t/-)’
in which (x)is defined as (12.1.2) of [6]. Obviously this is better
than (9), and gives an 9-result for D(s, t/2=).

(ii) Professor Jutila kindly sent us a preprint in which he proved
a result similar to (but weaker than) (9). Atso, in a letter to us, he
indicated that his argument might yield a result like (10).
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