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114. A Note on the Approximate Functional
Equation for &'(s)

By Yoichi MOTOHASHI
Department of Mathematics, College of Science
and Technology, Nihon University

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1983)

1. Let 0<o<], t>2, XY =1{*/42% ay=t/2x, and put
(1) C(S)=§ n=+X(8) ;n*“+E(s, x),
nsx nsy
(8)= é}xd(n)n"+ X(s) gyol(n)n"1 +D(s, X)
where d is the divisor function and X(s)=2'*-!sin (sz/2)I'(1—s).
Hardy and Littlewood [1] proved that

(2) E(S, x)<<x—o+tl/2—nya-1
as well as

Ds, X)<<X’/2‘”(X—‘:Y—)m log ¢.

Later Titchmarsh [5] replaced the latter by

(3) D(s, X)K (X+Y)"*- log ¢.

Also we should note that Jutila [4] remarked recently that (3) is a
consequence of Voronoi’s summation formula.

The arguments of these authors are rather elaborated, mainly
because they treated *(s) directly, i.e. without recoursing to the known
approximations for £(s). Here we shall show that if we make use of
Dirichlet’s device:

(4) 220, =2 3 3 Gun— 25 DL G,

n<N n< VN m<N/n n< VN m< VN
then, as far as the most interesting case X=Y =t/2r is concerned, (3)
is a quite simple consequence of (2).

For this end let U=t/2r, u=+/U. Then by (4) we have
> dm)n-t421%(s) 3, dm)n'!
n<U nsU
=23 m™* >, n420(s) XS mt > ntt

m<u n<U/m m<u nsU/m
_ (méwm-s)z _ xz(s)(gums-l)z.
And by (1) this is equal to
2 ; m={E(s) —x(s) ; n-'—FE(s, U/m)}

+214(s) 5 m LA =)~ 1 —8) T n~ ~ B —s, U/m)}

n<m

+21(8) 3 mg} n' ' — () —E(s, ).

mIu

Then, after some rearrangement, we get
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F®= Z dm)n=*+2*(s) Z dm)n®~* + 2X(s) Z =

n<u N

+2 > m~E(s, U/m)+21%(s) Z} m* ' EQ—s, U/m)+E*s, u).

m<u
Inserting (2) into this we readily obtam (3) for the case X=Y=t¢/2x.
2. Next, let us see what the above argument will yield if we
replace (2) by a more precise estimate obtainable by the method of
Riemann and Siegel (see e.g. [6, Chap. 4]). This gives, for 1<z
<t/2r,

E(s, 2)=@2r) e "'l —s)y*~' | exp (i (w—2xi{y})
L 4dry

+a(w —2xi{y}) — [90]’&0) (e* —1Ddw+O((t*-2y*~* +x-)t-7%),

where {y}=y—[y], and L is a straight line in the direction argw=x=/4
passing between 0 and 2zi. Thus we have, in (5),

> m~E(s, U/m)

mLu
1 ti t
= 2r)*-2e-"2 (1 — L e ( we { }’W)
(@z)~te ( 8)7r§u m Jz xp 8rim’ + 2rm

X (e*—1)'dw-+ Ot~ log t).
Then we deform L to the curve composed of two parts: w={1e"*, 1>6
and 1< —46} and {w=4de'’*"», 0<O<r} where >0, and let ¢ tend to 0.
This gives

— — ~ (t/872m2) 12 Sln (({t/2n’m} 1/2)2/5) dz
L m+e.“ ¢ sin 4/2¢

where e=¢e"/,
Hence we have
1
TN OIS 4
ZmEeum=—10 2 L

$-2,-nis/2 _ e~ A=mDE gin (({t/2am}—1/2)1]¢)
(6) +e@n)-te- (1 —s) j Pap e d

+ 07 log t).
To estimate this integrand, we introduce the Fourier expansion: For
0<v<1
sin((v—1/2)4/¢) _ i
sin 2/2¢ =1 4n'f? +22
which is boundedly convergent uniformly for all real 2. Then, invok-
ing an idea of Hooley [3, p. 104], we have, for any J>1,

sin (({t/2xm}—1/2)/e) _ gt
(1) sin 2/2¢ Z=: 4z7* 2+22 (m)

FO(Z Ao (3] )) o (m

— sin 2zjv),

where
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A,(J)=O(min (l°§ I, ;’ ))
and I is the characteristic function of the set of integers; here the
O-constants are all independent of A.

Now, we divide the integrand in question into two parts according
to m <t and t*<m<u. Since the sin-factor is O(1) we see readily
that the first part contributes to (6) the amount of O(t'#-°). As for the
second part we consider, instead, the estimation of the sum

MIm<IM sin 2/26
But we have (7), so the problem is reduced to that of
ejti/m .

M<m<2M
Appealing to van der Corput’s method (see e.g. [6, p. 90]), this is esti-
mated to be O(M-"*/%§'/*) if j=0. Hence setting J=%¢-*M(log t)'”* in
(7) we find that (8) is O('*(log ¢)'/?) uniformly for all real 2. Then,
summing partially over m and integrating with respect to 2 we con-
clude that the second part in question of the integrand of (6) con-
tributes to it the amount of O(t'2-°(log t)*?).
Hence we have found

Z m—sE(s, U/’m,) = — &), Z _1_ + O(tl/s—u(log t)s/z).
2 m=zu m

msu
Inserting this into (5) we obtain the following improvement on (3):
Theorem.
9) D(s, t/2m)=0("*-*(log t)**).

Remark. By elaborating our argument one may probably replace
(9) by an asymptotic expansion, i.e. an analogue for £*(s) of the
Riemann-Siegel formula for ¢(s). Also one may treat the non-sym-
metric case (i.e. X+Y) as well. Further we should remark that our
theorem may be incorporated into the asymptotic evaluation of the
fourth power moment of £(s) (cf. [2]). To these and further improve-
ments we shall return elsewhere.

Added in proof. (i) A refinement of the above argument yields
(10) D(s, ¢ )=-2(1)'/2A(L>x(s)+O(tw—«),

27 t 2r

in which 4(x) is defined as (12.1.2) of [6]. Obviously this is better
than (9), and gives an 2-result for D(s, t/2x).

(ii) Professor Jutila kindly sent us a preprint in which he proved
a result similar to (but weaker than) (9). Also, in a letter to us, he
indicated that his argument might yield a result like (10).
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