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A Uniqueness Theorem in an Identification Problem
for Coefficients of Parabolic Equations

By Takashi SUZUKI*) and Reiji MURAYAMA**)

(Communicated by KSsaku YOSIDA, M. J. A., June 12, 1980)

1. Introduction and results. In this paper we consider the par-
abolic equation

u (-under the Neumann boundary condition

---u= 0 (on (0, ) 9),
3n

with the initial condition
ul=o=a(x) (x e 9),

where 9=(0, 1)R. In what ollows, however, the coefficient p(x)
and the initial value a(x) are to be determined, while values of the
solution on the boundary u(t, ), ( e 9), are regarded as observed and
known unctions of t e [T, T] for some T, T with 0
Namely, we are concerned with the following

Problem. Can we determine {p, a} through {u(t, ) TtT,

It is obvious that the answer is negative without any assumption on
{p, a}. Actually, if a=0, then u0 or any p. Hence we introduce
the ollowing

Definition. The realization in L(9) of the differential operator
p(x)-/3x with the Neumann boundary condition is denoted byA. The
eigenvalues and eigenfunctions of Av are denoted by {2n ;n=l, 2,...}
and {(., 2) n= 1, 2, }, respectively. Then, an initial value a e L(9)
is said to be a generating element with respect to A iff (a, (., 2))
or any n, where (,) is the LMnner product.

Then we have the following
Theorem. Consider the following eqtions (I) and (II) for p, q

e C[0, 1]. Let a, b e L(O, 1) and assume that a is a generating ele-
ment with respect to

+ p(x)- u=0 (0< t , x e (0, 1))

(o<t<

[ul=o=a(x) (x e (0, 1)),
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(II) V --0 (0<t<

 vl :0= b(x) (x e (0,

Then, the equality u(t, )-v(t, ) (TtT., =0, 1) implies p(x)=q(x)
(x e [0, 1]) and a(x)= b(x) (a.e. x e (0, 1)).

Remark 1. Pierce [7] considered a similar parabolic equation
with null initial condition, with non-homogeneous boundary condition
of the third kind on =0 and with homogeneous boundary condition
of the same kind on = 1. He showed that in such a case, the values
u(t, ) (0 t T, 0) determines the spectral density function of A,
whence p(x)=q(x) ollows by the theory of Gel’fand-Levitaa [2].
proving our Theorem, we are also inspired by Gel’fand-Levitan’s idea
of using a certain integral operator to transform eigenfunctions. How-
ever, our method is rather direct and does not use their theory itself.

Remark 2. Recently, one of the authors has succeeded in con-
structing {p, a} theoretically in terms of {u(t, ) Tx t T, =0, 1}. His
method is more heavily based on Gel’fand-Levitan’s theory. Accord-
ing to his result it is necessary for a(x) to be a generating element
with respect to A, in order that {p, a} should be uniquely determined
by {u(t, ) Tx t T, :0, 1}. Detailed discussions of these results are
given in Murayama [5] along with some extensions to other problems
such as determination of the coefficients of A,=--(8/8x)(a(x))(8/8x), or
of the boundary conditions.

Remark 3. As for other works concerning inverse problems for
parabolic equations we refer to Sabatier [9], Prilenko [8], Isakov [3],
Iskenderov [4] and Chavent [1].

2. Outline of the proof of Theorem. The realization in
of the operator q(x)-O/8x with the Neumann boundary condition is
denoted by Aq, and its eigenvalues and eigenfunctions are denoted by
{} and {+(., )}, respectively. We normalize ((., 2)} and {+(., Z)}
as (0, 2) (0, p) 1 (n, m 1, 2, .). Then solutions u, v are given
by the following eigenfunction-expansion

( 1 ) u(t, x): e-t(a, (., n))/Pn" (X, n)

( 2 ) v(t, x)= E e-"(b, (’, ))/a.(x, ),

we

have u(t,)=v(t,)(TtT,=0,1), which holds for any t in Ot
by analytic continuation in t’
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( 3 ) Y, e-’t(a, (’, 2,))/pn’(G 2,)

--Y-. e-,t(b,q(.,l))/a,.q(G[,) (0(t(oo, =0, 1).

Since (a, (., ))0 and2 is simple (n=l, 2, ...), we have, by putting

(4)
and
(5)
for some m(n).

(a, (., 2))/p (b, @(.,/()))/aM(n) =/= 0
On the other hand, it is well known that

/=n+0()(n-.oo)

This means that m(n)=n in (4) and (5). Moreover, by putting =1
in (3), we have
( 6 ) (1, 2) @(1, g) (n 1, 2, ).
We need the following

Lemma 1. There exists a C-class function K=K(x, y) in OGyGx
1 subject to

K(x, y)-K(x, y)+ p(y)K(x, y)= q(x)K(x, y)

Kv(x, 0)=0
(

g(, g {q(-

Lemma Z. With K(, ) i the reeedig lemm, the
tio re elted to eeh other

( 7 (z, (z, +.[ (z, (,a (=1, ,...
Proof of Lemma . We denote he righ hand side o (7) by ().

By use of (()-(d/g))(, 2)=0, ’(0, 2)=0, (0, 2)=1 and (N), we
obtain

( a ) (+ g( q()() ( ),

(0)=1(9)
and
(0) q/(0)=0.
Indeed, (9) is immediate, and (10) is obvious from

2)+K(x, x)(x, 2) +.[ K(x, y)(y, ,)dy.’(x) ’(x,
Finally, (8) is verified as

d d ( ff---K(x, x) K(x, x) )(+ dx-)q(x) (-d +)(X,n)/ + )(X,
g(x, x)’(x, 2n) + [x g(x, Y)2n(Y, 2n)dy+

jo
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=p(x)(x, n) + (xK(X, X)+Kx(x, x))(x, 2n)

--K(x, O) +.[ [K(x, y)+K(x, y)p(y)-Kv(x, y)](y, ,)dy

=q(x)4x(x) (’.’(E)).
Uniqueness of the solution of the Cauchy problem of (8), (9)and (10)
implies (7). Q.E.D.

Now, by (6), ’(1, n)=0 and (7), we have

(11) [. K(1, y)(y, 2n)dY--0 (n-- 1, 2,...)
and

(12) K(1, 1)(1, 2) +.l’i K(1, y)(y,,)dy=O (n=l, 2,...).

Therefore, the completeness of {(., ) n= 1, 2, } implies K(1, y)
.=K(1, y)--0 (y e [0, 1]). By considering the domain of dependence of
the hyperbolic equation in (E), we have K(x, y)=0
so that we have p(x)--q(x)(1/2=<xgl) by the last equality of (E).
Now, by transforming x to 2 1-x and repeating the same argument
as above, we have p(x)=q(x) (0_<_xl/2), whence follows p--q. There-
fore, (5) implies (a, (., 2)) (b, (., 2)) (n= 1, 2, .), hence we obtain
a(x)= b(x) (a.e. x e (0, 1)). Q.E.D.

Proof of Lemma 1o This lemma can be proved in some standard
way as we sketch below. We extend the coefficients p and q to
p e C1[ 1, 1] and q e C[0, 2] and construct the solution K=K(x, y) of
(E) in {(x, y);Ix-ll+]yll}. By transforming the variables (x, y) to
(X, Y) as X=(1/2)(x+y) and Y=(1/2)(x-y), we seek the solution
k= k(X, Y) of the following system of equations (E’) on [0, 1] [0, 1]"

k(X, Y)=r(X, Y)k(X, Y)
3XY

(E’) (. k k )(X,X)=03X 8Y
,/c(X, 0) f(X),

where k(X, Y)=K(X+ Y,X-- Y), r(X, Y)= 1/2{q(X+ Y)--p(X-- Y)} and

f(X)= 1/2 .[ {q(s)--p(s)}ds. Let R(X, Y;Xo, Yo) be the Riemann’s func-

tion of the hyperbolic equation (/XY)k=r(X, Y)k (see, e.g., Picard
[6]). Putting Q(X, Y)=(3R/3X-3R/3Y) (Y, Y;X, 0), we can show
that Q(X, Y) is in C([0, 1] [0, 1]) and that the equation

(G ) g(Z) + V(Z, Y)g(Y)dY 2f(Z)- f(0)
jo
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has a solution g e C"([0, 1] [0, 1]).
the system o equations

Furthermore, we can show that

3X3Y
k r(X, Y)k

(E")
k(X, X)-- g(X)
k(X, O)-- f(X)

has a solution k=k(X, Y) in C([0, 1] [0, 1]) and that/c=/c(X, Y)is a
solution of (E’) simultaneously. In fact, the second equation of (E’)
is obtained by differentiating

Xo R(Y, Y X, O)(.k k )(Y, Y)dY=O3Y 3X
which ollows from the Riemann’s formula

1 {k(X, X)+ k(O, 0)}k(x, o)=-+_1 o {R(Y, Y X, O)(3y3k 3x3k )(y, y)

+(3R 3R.)(y, Y X, O)k(Y, Y)}dY.3X .Y
Q.E.D.
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