60. A Uniqueness Theorem in an Identification Problem for Coefficients of Parabolic Equations

By Takashi Suzuki*) and Reiji Murayama**)

(Communicated by Kôsaku Yosida, M. J. A., June 12, 1980)

1. Introduction and results. In this paper we consider the parabolic equation

$$\frac{\partial u}{\partial t} + \left(p(x) - \frac{\partial^2}{\partial x^2}\right) u = 0 \qquad \text{(in } (0, \infty) \times \Omega)$$

under the Neumann boundary condition

$$\frac{\partial}{\partial n}u=0$$
 (on $(0,\infty)\times\partial\Omega$),

with the initial condition

$$u|_{t=0}=a(x)$$
 $(x \in \Omega),$

where $\Omega = (0,1) \subset R^1$. In what follows, however, the coefficient p(x) and the initial value a(x) are to be determined, while values of the solution on the boundary $u(t,\xi)$, $(\xi \in \partial \Omega)$, are regarded as observed and known functions of $t \in [T_1,T_2]$ for some T_1,T_2 with $0 < T_1 < T_2 < \infty$. Namely, we are concerned with the following

Problem. Can we determine $\{p,a\}$ through $\{u(t,\xi); T_1 < t < T_2, \xi = 0, 1\}$?

It is obvious that the answer is negative without any assumption on $\{p,a\}$. Actually, if a=0, then $u\equiv 0$ for any p. Hence we introduce the following

Definition. The realization in $L^2(\Omega)$ of the differential operator $p(x)-\partial^2/\partial x^2$ with the Neumann boundary condition is denoted by A_p . The eigenvalues and eigenfunctions of A_p are denoted by $\{\lambda_n; n=1,2,\cdots\}$ and $\{\phi(\cdot,\lambda_n); n=1,2,\cdots\}$, respectively. Then, an initial value $\alpha\in L^2(\Omega)$ is said to be a generating element with respect to A_p iff $(a,\phi(\cdot,\lambda_n))\neq 0$ for any n, where (\cdot, \cdot) is the L^2 -inner product.

Then we have the following

Theorem. Consider the following equations (I) and (II) for $p, q \in C^1[0, 1]$. Let $a, b \in L^2(0, 1)$ and assume that a is a generating element with respect to A_n :

(1)
$$\begin{cases} \frac{\partial u}{\partial t} + \left(p(x) - \frac{\partial^2}{\partial x^2}\right)u = 0 & (0 < t < \infty, x \in (0, 1)) \\ \frac{\partial u}{\partial x}\Big|_{x=0,1} = 0 & (0 < t < \infty) \\ u\Big|_{t=0} = a(x) & (x \in (0, 1)), \end{cases}$$

^{*)} Department of Mathematics, Faculty of Science, University of Tokyo.

^{**)} Ministry of Health and Welfare.

(II)
$$\begin{cases} \frac{\partial v}{\partial t} + \left(q(x) - \frac{\partial^2}{\partial x^2}\right)v = 0 & (0 < t < \infty, x \in (0, 1)) \\ \frac{\partial v}{\partial x}\Big|_{x=0,1} = 0 & (0 < t < \infty) \\ v\Big|_{t=0} = b(x) & (x \in (0, 1)). \end{cases}$$

Then, the equality $u(t,\xi) = v(t,\xi)$ $(T_1 < t < T_2, \xi = 0, 1)$ implies p(x) = q(x) $(x \in [0,1])$ and a(x) = b(x) (a.e. $x \in (0,1)$).

Remark 1. Pierce [7] considered a similar parabolic equation with null initial condition, with non-homogeneous boundary condition of the third kind on $\xi=0$ and with homogeneous boundary condition of the same kind on $\xi=1$. He showed that in such a case, the values $u(t,\xi)$ $(0 < t < T_1,\xi=0)$ determines the spectral density function of A_p , whence p(x)=q(x) follows by the theory of Gel'fand-Levitan [2]. In proving our Theorem, we are also inspired by Gel'fand-Levitan's idea of using a certain integral operator to transform eigenfunctions. However, our method is rather direct and does not use their theory itself.

Remark 2. Recently, one of the authors has succeeded in constructing $\{p,a\}$ theoretically in terms of $\{u(t,\xi)\,;\,T_1{<}t{<}T_2,\xi{=}0,1\}$. His method is more heavily based on Gel'fand-Levitan's theory. According to his result it is necessary for a(x) to be a generating element with respect to A_p , in order that $\{p,a\}$ should be uniquely determined by $\{u(t,\xi)\,;\,T_1{<}t{<}T_2,\xi{=}0,1\}$. Detailed discussions of these results are given in Murayama [5] along with some extensions to other problems such as determination of the coefficients of $A_a=-(\partial/\partial x)(\alpha(x))(\partial/\partial x)$, or of the boundary conditions.

Remark 3. As for other works concerning inverse problems for parabolic equations we refer to Sabatier [9], Prilenko [8], Isakov [3], Iskenderov [4] and Chavent [1].

2. Outline of the proof of Theorem. The realization in $L^2(\Omega)$ of the operator $q(x)-\partial^2/\partial x^2$ with the Neumann boundary condition is denoted by A_q , and its eigenvalues and eigenfunctions are denoted by $\{\mu_m\}$ and $\{\psi(\cdot,\mu_m)\}$, respectively. We normalize $\{\phi(\cdot,\lambda_n)\}$ and $\{\psi(\cdot,\mu_m)\}$ as $\phi(0,\lambda_n)=\psi(0,\mu_m)=1$ $(n,m=1,2,\cdots)$. Then solutions u,v are given by the following eigenfunction-expansion:

(1)
$$u(t,x) = \sum_{n=1}^{\infty} e^{-\lambda_n t}(a,\phi(\cdot,\lambda_n))/\rho_n \cdot \phi(x,\lambda_n)$$

(2)
$$v(t,x) = \sum_{m=1}^{\infty} e^{-\mu_m t}(b, \psi(\cdot, \mu_m)) / \sigma \cdot \psi(x, \mu_m),$$

where $\rho_n = \int_0^1 \phi(x, \lambda_n)^2 dx$ and $\sigma_m = \int_0^1 \psi(x, \mu_m)^2 dx$. By the hypothesis we have $u(t, \xi) = v(t, \xi)$ $(T_1 < t < T_2, \xi = 0, 1)$, which holds for any t in $0 < t < \infty$ by analytic continuation in t:

$$(3) \quad \sum_{n=1}^{\infty} e^{-\lambda_n t}(a, \phi(\cdot, \lambda_n))/\rho_n \cdot \phi(\xi, \lambda_n)$$

$$= \sum_{m=1}^{\infty} e^{-\mu_m t}(b, \psi(\cdot, \mu_m))/\sigma_m \cdot \psi(\xi, \mu_m) \qquad (0 < t < \infty, \xi = 0, 1).$$

Since $(a, \phi(\cdot, \lambda_n)) \neq 0$ and λ_n is simple $(n=1, 2, \dots)$, we have, by putting $\xi = 0$,

$$\lambda_n = \mu_{m(n)}$$

and

$$(5) \qquad (a, \phi(\cdot, \lambda_n))/\rho_n = (b, \psi(\cdot, \mu_{m(n)}))/\sigma_{m(n)} \neq 0$$

for some m(n). On the other hand, it is well known that

$$\lambda_n^{1/2} = n\pi + 0\left(\frac{1}{n}\right) \qquad (n \to \infty)$$

$$\mu_m^{1/2} = m\pi + 0\left(\frac{1}{m}\right) \qquad (m \to \infty).$$

This means that m(n)=n in (4) and (5). Moreover, by putting $\xi=1$ in (3), we have

(6)
$$\phi(1, \lambda_n) = \psi(1, \mu_n) \quad (n = 1, 2, \cdots).$$

We need the following

Lemma 1. There exists a C²-class function K = K(x, y) in $0 \le y \le x \le 1$ subject to

(E)
$$\begin{cases} K_{xx}(x, y) - K_{yy}(x, y) + p(y)K(x, y) = q(x)K(x, y) \\ K_{y}(x, 0) = 0 \\ K(x, x) = \frac{1}{2} \int_{0}^{x} \{q(s) - p(s)\} ds. \end{cases}$$

Lemma 2. With K(x, y) in the preceding lemma, the eigenfunctions are related to each other as

(7)
$$\psi(x,\mu_n) = \phi(x,\lambda_n) + \int_0^x K(x,y)\phi(y,\lambda_n)dy \qquad (n=1,2,\cdots).$$

Proof of Lemma 2. We denote the right hand side of (7) by $\psi(x)$. By use of $(p(x)-(d^2/dx^2))\phi(x,\lambda_n)=0$, $\phi'(0,\lambda_n)=0$, $\phi(0,\lambda_n)=1$ and (E), we obtain

(8)
$$\lambda \psi(x) + \frac{d^2}{dx^2} \psi(x) = q(x) \psi(x) \qquad (\lambda = \lambda_n),$$

$$\psi(0) = 1$$

and

(10)
$$\psi'(0) = 0.$$

Indeed, (9) is immediate, and (10) is obvious from

$$\psi'(x) = \phi'(x, \lambda_n) + K(x, x)\phi(x, \lambda_n) + \int_0^x K_x(x, y)\phi(y, \lambda_n)dy.$$

Finally, (8) is verified as

$$\left(\lambda_n + rac{d^2}{dx^2}
ight)\psi(x) = \left(rac{d^2}{dx^2} + \lambda_n
ight)\phi(x,\lambda_n) + \left(rac{d}{dx}K(x,x) + K_x(x,x)
ight)\phi(x,\lambda_n) + K(x,x)\phi'(x,\lambda_n) + \int_0^x K(x,y)\lambda_n\phi(y,\lambda_n)dy$$

$$\begin{split} &= p(x)\phi(x,\lambda_n) + \left(\frac{d}{dx}K(x,x) + K_x(x,x)\right)\phi(x,\lambda_n) \\ &\quad + K(x,x)\phi'(x,\lambda_n) + \int_0^x K(x,y) \left[p(y) - \frac{d^2}{dy^2}\right]\phi(y,\lambda_n)dy \\ &= p(x)\phi(x,\lambda_n) + \left(\frac{d}{dx}K(x,x) + K_x(x,x) + K_y(x,x)\right)\phi(x,\lambda_n) \\ &\quad - K_y(x,0) + \int_0^x \left[K_{xx}(x,y) + K(x,y)p(y) - K_{yy}(x,y)\right]\phi(y,\lambda_n)dy \\ &= q(x)\psi(x) \qquad (\because (E)). \end{split}$$

Uniqueness of the solution of the Cauchy problem of (8), (9) and (10) implies (7).

Q.E.D.

Now, by (6), $\psi'(1, \lambda_n) = 0$ and (7), we have

(11)
$$\int_0^1 K(1,y)\phi(y,\lambda_n)dy = 0 \qquad (n=1,2,\cdots)$$
 and

(12)
$$K(1,1)\phi(1,\lambda_n) + \int_0^1 K_x(1,y)\phi(y,\lambda_n)dy = 0$$
 $(n=1,2,\cdots).$

Therefore, the completeness of $\{\phi(\cdot,\lambda_n); n=1,2,\cdots\}$ implies $K(1,y)=K_x(1,y)=0$ $(y\in[0,1])$. By considering the domain of dependence of the hyperbolic equation in (E), we have K(x,y)=0 $(0\le 1-x\le y\le x\le 1)$, so that we have p(x)=q(x) $(1/2\le x\le 1)$ by the last equality of (E). Now, by transforming x to $\tilde{x}=1-x$ and repeating the same argument as above, we have p(x)=q(x) $(0\le x\le 1/2)$, whence follows $p\equiv q$. Therefore, (5) implies $(a,\phi(\cdot,\lambda_n))=(b,\phi(\cdot,\lambda_n))$ $(n=1,2,\cdots)$, hence we obtain a(x)=b(x) (a.e. $x\in(0,1)$).

Proof of Lemma 1. This lemma can be proved in some standard way as we sketch below. We extend the coefficients p and q to $p \in C^1[-1,1]$ and $q \in C^1[0,2]$ and construct the solution K=K(x,y) of (E) in $\{(x,y); |x-1|+|y|<1\}$. By transforming the variables (x,y) to (X,Y) as X=(1/2)(x+y) and Y=(1/2)(x-y), we seek the solution k=k(X,Y) of the following system of equations (E') on $[0,1]\times[0,1]$:

(E')
$$\begin{cases} \frac{\partial^{2}}{\partial X \partial Y} k(X, Y) = r(X, Y) k(X, Y) \\ \left(\frac{\partial k}{\partial X} - \frac{\partial k}{\partial Y} \right) (X, X) = 0 \\ k(X, 0) = f(X), \end{cases}$$

where k(X,Y) = K(X+Y,X-Y), $r(X,Y) = 1/2\{q(X+Y) - p(X-Y)\}$ and $f(X) = 1/2 \int_0^x \{q(s) - p(s)\} ds$. Let $R(X,Y;X_0,Y_0)$ be the Riemann's function of the hyperbolic equation $(\partial^2/\partial X \partial Y)k = r(X,Y)k$ (see, e.g., Picard [6]). Putting $Q(X,Y) = (\partial R/\partial X - \partial R/\partial Y)$ (Y,Y;X,0), we can show that Q(X,Y) is in $C^2([0,1] \times [0,1])$ and that the equation

(G)
$$g(X) + \int_0^X Q(X, Y)g(Y)dY = 2f(X) - f(0)$$

has a solution $g \in C^2([0,1] \times [0,1])$. Furthermore, we can show that the system of equations

(E'')
$$\begin{cases} \frac{\partial^2}{\partial X \partial Y} k = r(X, Y)k \\ k(X, X) = g(X) \\ k(X, 0) = f(X) \end{cases}$$

has a solution k=k(X,Y) in $C^2([0,1]\times[0,1])$ and that k=k(X,Y) is a solution of (E') simultaneously. In fact, the second equation of (E') is obtained by differentiating

$$\int_0^X R(Y,Y;X,0) \left(\frac{\partial k}{\partial Y} - \frac{\partial k}{\partial X} \right) (Y,Y) dY = 0,$$

which follows from the Riemann's formula

$$k(X, 0) = \frac{1}{2} \{k(X, X) + k(0, 0)\}$$

$$+ \frac{1}{2} \int_{0}^{X} \left\{ R(Y, Y; X, 0) \left(\frac{\partial k}{\partial Y} - \frac{\partial k}{\partial X} \right) (Y, Y) + \left(\frac{\partial R}{\partial X} - \frac{\partial R}{\partial Y} \right) (Y, Y; X, 0) k(Y, Y) \right\} dY.$$

Q.E.D.

Acknowledgement. The authors wish to express their sincere thanks to Prof. H. Fujita for his suggesting the present problem to them and for his hearty encouragement.

References

- [1] Chavent, G.: Analyse fonctionelle et identification de coefficient répartis dans les équations aux dérivées partielles. Thesis, Paris (1971).
- [2] Gel'fand, I. M., and Levitan, B. M.: On the determination of a differential equation from its spectral function. Izv. Acad. Nauk. SSSR, Ser. Mat., 15 (4) (1951) (in Russian): Amer. Math. Soc. Trans., Ser. 2, 1, 253-304 (1955) (English transl.).
- [3] Isakov, V. M.: Uniqueness theorems for inverse problems of heat potentials. Siberian Math. J., 17(2), 202-212 (1977).
- [4] Iskenderov, A. D.: Multidimensional inverse problems for linear and quasilinear parabolic equations. Dokl. Acad. Nauk. SSSR, 225 (5), 1564-1568 (1975).
- [5] Murayama, R.: On certain inverse problems in parabolic equations. Master's Thesis, University of Tokyo (1980).
- [6] Picard, E.: Leçons sur quelques types simples d'équations aux dérivées partielles. Paris-Imprimerie Gauthier-Villars (1950).
- [7] Pierce, A.: Unique identification of eigenvalues and coefficients in a parabolic problem. SIAM J., Control and Optimization, 17(4), 494-499 (1979).
- [8] Prilenko, A. I.: Inverse problems of potential theory (elliptic, parabolic, hyperbolic, and transport equations). Math. Notes, 14, 990-996 (1973).
- [9] Sabatier, P. C.: Introduction to applied inverse problems. Lect. Note in Physics, vol. 85, Springer, pp. 1-26 (1978).