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60. A Uniqueness Theorem in an Identification Problem
for Coefficients of Parabolic Equations

By Takashi SUZUKI*) and Reiji MURAYAMA**)

(Communicated by Kodsaku Yo0sIipa, M. J. A., June 12, 1980)

1. Introduction and results. In this paper we consider the par-
abolic equation

ou Y\, .
2t (p(x) —a_wz)u_o (in (0, 00) X 2)

under the Neumann boundary condition

D 4=0  (on (0, ) x32),

on
with the initial condition

U= () (e ),

where 2=(0,1)cR'. In what follows, however, the coefficient p(x)
and the initial value a(x) are to be determined, while values of the
solution on the boundary u(t, £), (£ € 352), are regarded as observed and
known functions of te[T,, T,] for some T, T, with 0<T,<T,<co.
Namely, we are concerned with the following

Problem. Can we determine {p,a} through {u(t,&; T,<t<T,,
£=0,1}?
It is ogvious that the answer is negative without any assumption on
{p,a}. Actually, if a=0, then ©=0 for any p. Hence we introduce
the following

Definition. The realization in L*(2) of the differential operator
p(x) —*/0x* with the Neumann boundary condition is denotedby A,. The
eigenvalues and eigenfunctions of A, are denoted by {1,; n=1,2, ---}
and {¢(-, 2,); n=1,2, - - -}, respectively. Then, an initial value « € L*({2)
is said to be a generating element with respect to 4, iff (a, (-, 2,))#0
for any n, where (, ) is the L*-inner product.

Then we have the following

Theorem. Consider the following equations (I) and (II) for p, q
e C'0,1]. Let a,be L*0,1) and assume that a is a generating ele-
ment with respect to A,

ou AN
o +(p(“)“”‘axz)“‘° 0<t< oo,z e (0, 1)
(I) ou

=0 (0<t<o0)
ox

Ul—o=a(®)  (xe(0,1)),
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ov o\,
E-l'(Q(-”lf') 'a?)”'o 0<t< oo,z (0,1))

(ID) o
ox
V=0 (e (0,1)).

Then, the equality u(t, &)=v(, &) (T, <t<T,, £=0,1) implies p(x)=q(x)

(x e[0,1]) and a(x)=>b(x) (a.e. xz € (0, 1)).

Remark 1. Pierce [7] considered a similar parabolic equation
with null initial condition, with non-homogeneous boundary condition
of the third kind on £¢=0 and with homogeneous boundary condition
of the same kind on é&=1. He showed that in such a case, the values
u(t, &) (0<t<T,, £=0) determines the spectral density function of 4,,
whence p(x)=q(x) follows by the theory of Gel’fand-Levitan [2]. In
proving our Theorem, we are also inspired by Gel’fand-Levitan’s idea
of using a certain integral operator to transform eigenfunctions. How-
ever, our method is rather direct and does not use their theory itself.

Remark 2. Recently, one of the authors has succeeded in con-
structing {p, a} theoretically in terms of {u(t, &) ; T, <t<T,, £=0, 1}. His
method is more heavily based on Gel’fand-Levitan’s theory. Accord-
ing to his result it is necessary for a(x) to be a generating element
with respect to A,, in order that {p, a} should be uniquely determined
by {u(t, & ; T,<t<T, &=0,1}. Detailed discussions of these results are
given in Murayama [5] along with some extensions to other problems
such as determination of the coefficients of A,= —(3/9x)(a(x))(@/3x), or
of the boundary conditions.

Remark 3. As for other works concerning inverse problems for
parabolic equations we refer to Sabatier [9], Prilenko [8], Isakov [3],
Iskenderov [4] and Chavent [1].

2. Outline of the proof of Theorem. The realization in L*Q)
of the operator q(x)—0*/62* with the Neumann boundary condition is
denoted by A,, and its eigenvalues and eigenfunctions are denoted by
{#n} and {y(-, p,)}, respectively. We normalize {¢(-, 2,)} and {y(-, x.)}
as ¢(0, 2,)=v(0, p,)=1 (n,m=1,2, -.-). Then solutions u, v are given
by the following eigenfunction-expansion :

=0  (0<t<o0)

2=0,1

(1) wt, @)= z e, (-, 2)) 0w+ $y A)
(2) o(t, 2)= mz e~ (b, Y+, ) [T (@, 1)

where pn=f é(x, 1,)*dx and am=J‘1 (2, p)’dx. By the hypothesis we
0 0

have u(t, &)=v(t, &) (T, <t<T,, £=0,1), which holds for any tin 0<¢
< oo by analytic continuation in %:
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(8) 35 ea, ¢, )/ pu- 96, 1)

=§_11e"‘"“(b,m!r(-,/xm))/am-«lf(e,ym) (0<t<o0,£=0,1).

Since (a, ¢(+, 1,))#0 and 1, is simple (=1, 2, - - -), we have, by putting
$= 0’

(4) 2n=ﬂm(n)
and
(5) (a, ¢(,/2n))/Pn=(b9 ‘!"(':ﬂm(n)))/am(n);eo

for some m(n). On the other hand, it is well known that
2}{2=nn+0(l) (n—o0)
n

yi,{z—-mn'+0< 1 ) (m—o0).
m

This means that m(#®)=n in (4) and (5). Moreover, by putting é=1
in (3), we have
(6) ¢, )=y, 1)  (@m=L12,.-.).
We need the following
Lemma 1. There exists a C*-class function K=Kz, y) in 0<y<zx
<1 subject to
K, .(x,»—K,(, »+pWK(x, y) =q9@)K(®, y)
K (2,0)=0

1
K@, ®)=5 j {a(8)—p(s)}ds.

Lemma 2. With K(x,y) in the preceding lemma, the eigenfunc-
tions are related to each other as
( 7 ) '\I/’(x: ﬂn)=¢(x’ 2")+I: K(.’I?, ?/)¢(y, Zn)dy (n=1’ 2’ i ')-

Proof of Lemma 2. We denote the right hand side of (7) by v(x).
By use of (p(x) —(d*/ da?))¢(x, 2,)=0, ¢(0, 2,)=0, ¢(0, 2,)=1 and (E), we
obtain

(E)

(8) z«xf(x)+—£—2«p(x)=q(x)w(w) A=1,),
(9) ¥(0)=1

and

(10) #(0)=0.

Indeed, (9) is immediate, and (10) is obvious from

V(@) =¢'(x, 2,)+ Kz, 2)$(x, ln)+f: K (z, Y)Y, 2,)dy.
Finally, (8) is verified as

(= )«k(x)—( 4 )¢(x,z)+(—K<x,x>+Kx(x,x>)¢(x,z)

+K(x, )¢ (x, 2,) +L K(x, 2,6, 2,)dy
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=p(@)d(x, 4,) + (%K(x, z)+ K (x, x))¢(w, )
: ” @
+KG, 0)¢ @, 2) + | K@, 0)|p@) = o 20ay
— p@)g(x, 2.) + (%K(x, )+ K (z, %)+ K, (z, x))¢(x, )

—K,(,0) +j [K..(x, v)+ K@, @) —K, @ 1@, 2.)dy

=q(@)(x) (. (E).
Uniqueness of the solution of the Cauchy problem of (8), (9) and (10)

implies (7). Q.E.D.
Now, by (6), +'(1, 2,)=0 and (7), we have

a [ K@ v 20a=0  @m=12--)

and

12 K@, Dgd, 1)+ j K., 0, 2)dy=0  (n=1,2,---).

Therefore, the completeness of {¢(-,1,);n=1,2, ...} implies K(1,y)
=K,(1,y)=0 (y€[0,1]). By considering the domain of dependence of
the hyperbolic equation in (E), we have K(z, ¥)=0 0<1—z<y<x<1),
so that we have p(x)=q(x) (1/2<2<1) by the last equality of (E).
Now, by transforming x to Z=1—2z and repeating the same argument
as above, we have p(x)=q(x) (0<x<1/2), whence follows p=¢q. There-
fore, (5) implies (a, (-, 2,))=(b, (-, 2,)) (n=1,2, -..), hence we obtain
a(x)=0b(x) (a.e. x€(0,1)). Q.E.D.
Proof of Lemma 1. This lemma can be proved in some standard
way as we sketch below. We extend the coefficients » and ¢ to
peC'[—1,1] and ¢ e C'[0,2] and construct the solution K=K(x, ¥) of
(E) in {(®, ¥); |lx—1|+]y|<1}. By transforming the variables (z, ) to
X,Y) as X=(1/2)(x+vy) and Y=1/2)(x—y), we seek the solution
k=k(X,Y) of the following system of equations (E’) on [0, 1] X [0,1]:
az

aX37 kX, Y)=rX, kX, Y)
(E) ok ok .

(G —ay )& D=0
where k(X,Y)=K(X+Y,X-Y), r(X,Y)=1/2{¢X+Y)—p(X—-Y)} and

FX=1/2 j " {a()—p(s)}ds. Let R(X,Y;X,, Y, be the Riemann’s func-
0

tion of the hyperbolic equation (6*/6XoY)k=7r(X, Y)k (see, e.g., Picard
[6]). Putting QX,Y)=@R/6X—0R/3Y) (Y,Y;X,0), we can show
that Q(X, Y) is in C*([0, 1] X [0, 1]) and that the equation

(® g(X)+f;Y QX, Y)g(Y)dY =21(X)— f(0)
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has a solution g € C*([0,1]1x[0,1]). Furthermore, we can show that
the system of equations
aZ
O0d k=rX,Y)k
kX, X)=9(X)
kX, 0)=f(X)
has a solution k=k(X,Y) in C%([0, 11 [0, 1]) and that k=k(X,Y) is a
solution of (E) simultaneously. In fact, the second equation of (E’)
is obtained by differentiating
[ R, vix,0(2% -2 ), nay o,
0 Y oX
which follows from the Riemann’s formula

k(X, 0)= %{k(X, X)+k(0, 0)}

(E")

1(x ok ok
1 RY,Y;X,O<———> Y, Y
+zjo{ ( oy —ax) P P
R aR)
OE OB\ 1y y.x oy, ¥)\dy.
+<aX 7)) k( )}d

Q.E.D.
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