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O. When V is a Hilbert space over R and ’a’ is a symmetric,
continuous, coercive bilinear orm, the Lax-Milgram theorem is an
immediate consequence o the Riesz representation theorem for Hilbert
spaces. However, the case when ’a’ is no longer symmetric is different.
In this paper, we present a method in 1, which treats the non-
symmetric case also almost on the same lines as the symmetric case.
The method gives actually the Lax-Milgram theorem or any Banach
space. The idea behind the method also generalizes to Banach spaces,
the theorem o Lions-Stampacchia [!] on variational inequalities, prov-
ed by them for Hilbert spaces.

1. Let V be a vector space over R. Let ’a’ be a bilinear orm
on V such that a(x, x)O Vx=/=0. Let ’b’ be the bilinear form defined
as

b(x, y)- a(x, y)-+-a(y, x).x, y e V.
2

Then, ’b’ is symmetric and b(x, x)=a(x, x)x e V. Hence, ’b’ defines
an inner-product on V and endowed with this inner-product, V becomes
a pre-Hilbert space which we denote by V. We shall denote by x II,
the norm of an element x e V. i.e. Ilxll= +/a(x, x). Let Vg denote
the dual of V.

Let us assume that ’a’ is continuous on V V. i.e. let us assume
that lM< +o such that

la(x, y)l<Ma(x, z)a(y, y) Vx, y e V.
Then, under this assumption, we have obvious linear m3ps A and B
from V to V taking an element x e V to Axe V’ (resp. Bx e V’) de-
fined as Ax(y)--a(y, x) (resp. Bx(y)--a(x, y)).

Ax sup lAx(y)[ sup a(y, x) <M x II.
Moreover, if x=/=0,

Hence, if x=/=0,

Ax a(x, x) x Ilo
Ilxll

x < Ax <M x II.
But these inequalities are trivially valid when x-0.
Vx e V,

Hence, we have
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x < Ax <M x [[. (I)
We have, similarly x < Bx <M x Vx e V.

Definition 1. Let ’a’ be continuous on V V. V is said to have
the right (resp. left) Riesz representation property with respect to ’a’
if Vf e Vg, Ix e V such that f(y)-a(y, x) (resp. f(y)---a(x, y))y e V.

In terms of the maps A, B, V has the right (resp. left) Riesz re-
presentation property iff A (resp. B) is onto. From the inequalities
(I), A and B are one-one. Hence, there is always uniqueness of the
element x, that corresponds to f e V in the above definition.

Theorem 1. Let ’a’ be continuous on V V. Then, V has the
right (resp. left)Riesz representation property with respect to ’a’ iff
V is complete i.e. if] V is a Hilbert space.

Proof. We shall prove the theorem for the right Riesz represen-
tation property. The proof or the left Riesz representation property
is similar.

(i) Necessity. Let us assume that V has the right Riesz repre-
sentation property with respect to ’a’. This means A is an isomorphism
o V and Vg. Because of the inequalities (I), A is a topological iso-
morphism too. But V is always complete as the dual o any normed
space over R or C is always complete. Hence, V is also complete.

(ii) Suliciency. Let us assume that V is complete. We have to
prove that A(V)-V. Suppose not, then f e V such that f e A(V).
Since V is complete, the inequalities (I) show that A(V) is a closed
subspace of V. Hence, by the Hahn-Banach theorem, fl e V’, the
double dual of V such that vanishes on A(V), but (f)=/=0. Since
V is complete and hence is a Hilbert space, it is reflexive. Therefore,

fl is given by an element o V. i.e. u e V such that fl(h)= h(u)vh e V.
Thus, an element u e V such that f(u)=/=O, but a(u, v)--O Vv e V. But
a(u, v)---O Vv e Va(u, u)-O in particular, which in turn implies that
u--O. But this contradicts the fact f(u)g=O. Hence, A(V)- V, prov-
ing that V has the right Riesz representation property with respect
to a’.

Corollar), (Lax-Milgram theorem). Let (V, II) be a Banach
space over R. Let ’a’ be a continuous bilinear form on V which is
coercive, i.e. 30 such that a(x, x)>/ IIxll vx e V. Then, vf e Vt,
the dual of (V, II), a unique u e V (resp. unique w e V) such that
f(v)-a(v, u) (resp. f(v)-a(w, v))Vv e V.

Proof. Since ’a’ is coercive, a(x,x)O Vx=/=0. The continuity
and coercivity of ’a’ imply that (V, II) and V are isomorphic.
Hence, ’a’ is continuous on V V and V is complete. Therefore, by
Theorem 1, V has both right and left Riesz representation properties
with respect to ’a’. From this, the corollary follows immediately by
observing that f e Vtf e Vg. Q.E.D.



464 S. IAMASWAMY [Vol. 56 (A),

The idea behind the proof of the Lax-Milgram theorem is, we first
prove it for the space V on which ’a’ is trivially coercive, by assuming
V is complete and ’a’ continuous on VV. This is Theorem 1.
Then, we are able to prove the theorem immediately for the Banch
space (V, II) on which ’’ is continuous nd coercive, as (V, II)
then becomes isomorphic to V.

The same ide helps us to generalize the result of Lions-
Stampacchia [1] on variational inequalities to Bnach spaces. They
proved the theorem for Hilbert spaces.

Theorem 2 (Lions-Stampacchia). Let (V, II) be a Banach space
over R. Let ’a’ be a continuous, bilinear form on V. Then, given
any closed convex set K and any f e V’, a unique u e K such that

a(u, v--u)f(v--u)v e K.
Proof. Since ’a’ is continuous and coercive on (V, II), (V, ]])

and V are isomorphic. Therefore, ’a’ is continuous on VV and
V is a Hilbert space. Further, ’a’ is trivially coercive on V. Hence,
the theorem o Lions-Stampacchia applies in this case. Thus, for any
closed convex set L of V and any f e Vg, ] a unique u e L such that
f(v-u) < a(u, v--u) yv e L. From this, Theorem 2 follows immediately
by observing that (V, II) and V have the same dual and the same
closed convex sets. Q.E.D.

1 Lions-Stampacchia:
20, 493-519 (1967).
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