No. 5.]

40. Über zusammenhängende kompakte abelsche Gruppen.

Von Kunihiko Kodaira und Makoto Abe. Mathematical Institute, Tokyo Imperial University. (Comm. by T. Takagi, M.I.A. May 13, 1940.)

Jede zusammenhängende (nicht notwendig lokal-zusammenhängende) kompakte separable abelsche Gruppe¹⁾ läßt sich, wie es w. u. (Nr. 4) gezeigt werden soll, als Limesgruppe einer G_n -adischen Folge von (endlich-dimensionalen) Torusgruppen auffassen. Diese letzten Gruppen haben folgende Eigenschaften, die wegen ihrer einfachen (topologischen bzw. algebraischen) Struktur leicht nachzuweisen sind (Nr. 1-3):

Es seien \mathfrak{T} , $\widetilde{\mathfrak{T}}$ zwei endlich-dimensionale Torusgruppen und \mathfrak{R} die additive Gruppe der mod. 1 reduzierten reellen Zahlen; dann gelten:

- a) \mathfrak{T} ist mit $B^1_{\Re}(\mathfrak{T})^{2}$ topologisch isomorph.
- b) Für jede stetige Abbildung f von $\mathfrak T$ in $\widetilde{\mathfrak T}$ gibt es einen und nur einen stetigen Homomorphismus h_f von $\mathfrak T$ in $\widetilde{\mathfrak T}$, der zu f homotop ist.
- c) Die Abbildungsklasse einer stetigen Abbildung f von einem Kompaktum F in $\mathfrak T$ ist durch den von f induzierten stetigen Homomorphismus H_f von $B^1_{\Re}(F)$ in $B^1_{\Re}(\mathfrak T) \cong \mathfrak T$ ($\mathfrak T$ -Charakter H_f von $B^1_{\Re}(F)$) eindeutig bestimmt.

Nun ist zu vermuten, daß diese Behauptungen noch gültig bleiben, wenn man darin die Torusgruppen durch beliebige zusammenhängende kompakte separable abelsche Gruppen, d. h. durch G_n -adische Limesgruppen von Torusgruppen ersetzt. Wir bestätigen im Folgenden, daß dies tatsächlich der Fall ist (Nr. 5–8, Sätze 1–3). Schließlich beweisen wir einen Satz (Satz 4, Nr. 9), daß die n-dimensionale Torusgruppe die einzige n-dimensionale zusammenhängende kompakte separable abelsche Gruppe ist, die sich im (n+1)-dimensionalen Euklidischen Raum topologisch einbetten läßt.³⁾

1. Isomorphie von \mathfrak{T} und $B^1_{\mathfrak{G}}(\mathfrak{T})$.

Die n-dimensionale Torusgruppe $\mathfrak T$ ist die direkte Summe der n Exemplare von $\mathfrak A$:

$$\mathfrak{T} = \underbrace{\mathfrak{R} + \mathfrak{R} + \cdots + \mathfrak{R}}_{n-\text{mal}}.$$

Jedes Element von I läßt sich also in der Form

$$\tau = \tau(x_1, x_2, \ldots, x_n), \qquad x_i \in \Re$$

darstellen. x_i heiße die i-te Koordinate von $\tau \in \mathfrak{T}$. Die Elemente von

¹⁾ Alle vorkommenden Gruppen sind abelsch und additiv geschrieben.

²⁾ Die 1-dimensionale Bettische Gruppe von $\mathfrak T$ in bezug auf den Koeffizientenbereich $\mathfrak A$

Die Sätze 1 und 4 in dieser Note sind schon früher von einem der Verfasser (Kodaira) erhalten und in japanisch veröffentlicht worden [Isô-Sûgaku, Vol. 1, No. 2, 1939].

 \mathfrak{T} , deren Koordinaten mit der einzigen Ausnahme der *i*-ten, alle gleich 0 sind, bilden einen 1-dimensionalen Zyklus Z_i von \mathfrak{T} . Die Homologie-klassen von Z_1, \ldots, Z_n (die wir einfachheitshalber auch mit Z_1, \ldots, Z_n bezeichnen wollen) bilden eine Basis von $B_{\mathfrak{R}}^1(\mathfrak{T})$:

$$B^1_{\mathfrak{R}}(\mathfrak{T}) = \mathfrak{R}Z_1 + \cdots + \mathfrak{R}Z_n$$
.

Ordnet man dem Element $z=x_1Z_1+\cdots+x_nZ_n$ von $B^1_{\Re}(\mathfrak{T})$ das Element $I(z)=\tau(x_1,\ldots,x_n)$ von \mathfrak{T} , so entsteht ein topologischer Isomorphismus I von $B^1_{\Re}(\mathfrak{T})$ auf \mathfrak{T}^{1} .

2. Die Abbildungsklasse einer stetigen Abbildung f von einem Kompaktum F in die n-dimensionale Torusgruppe $\mathfrak T$ ist durch den von f induzierten stetigen Homomorphismus H_f von $B^1_{\mathfrak R}(F)$ in $B^1_{\mathfrak R}(\mathfrak T) \cong \mathfrak T$ eindeutig bestimmt.

Schreibt man f(p) $(p \in F)$ koordinatenweise in der Form

$$f(p) = \tau \Big(f_1(p), \ldots, f_n(p) \Big),$$

so sind f_i stetige Abbildungen von F in \Re . Die Abbildungsklasse von $f_i \in \Re^F$ ist nun durch den von f_i induzierten stetigen Homomorphismus H_{f_i} von $B^1_{\Re}(F)$ in $\Re \cong B^1_{\Re}(\Re)$ völlig bestimmt. Der von f induzierte Homomorphismus H_f von $B^1_{\Re}(F)$ in $B^1_{\Re}(\Im)$ ist offenbar der folgende:

$$H_f(z) = H_{f_1}(z)Z_1 + \cdots + H_{f_n}(z)Z_n$$
, $z \in B^1_{\Re}(F)$.

Die Abbildungsklasse von f ist durch die Abbildungsklassen von $f_1, ..., f_n$, also durch die Homomorphismen $H_{f_1}, ..., H_{f_n}$, also schließlich durch den Homomorphismus H_f völlig bestimmt, w. z. b. w.

3. Für jede stetige Abbildung f von \mathfrak{T} in $\widetilde{\mathfrak{T}}$ gibt es einen und nur einen stetigen Homomorphismus h_f von \mathfrak{T} in $\widetilde{\mathfrak{T}}$, der zu f homotop ist.

Wir bezeichnen mit $\widetilde{\tau}(y_1,\ldots,y_m),y_i\in\Re$ die Elemente von $\widetilde{\mathfrak{T}}$, mit \widetilde{Z}_1 , ..., \widetilde{Z}_m die Basis von $B^1_{\Re}(\widetilde{\mathfrak{T}})$ und mit \widetilde{I} den Isomorphismus von $B^1_{\Re}(\widetilde{\mathfrak{T}})$ auf $\widetilde{\mathfrak{T}}$ in derselben Weise, wie wir in Nr. 1 für \mathfrak{T} erklärt haben. f induziert einen Homomorphismus H_f von $B^1_{\Re}(\widetilde{\mathfrak{T}})$ in $B^1_{\Re}(\widetilde{\mathfrak{T}})$, der als Homologierelation durch

$$H_f(Z_i) \sim \sum_{j=1}^m a_{ij} \widetilde{Z}_j$$
, $i=1,...,n$

ausgedrückt wird. Hierbei ist $A_f = (a_{ij})$ eine ganzzahlige nm-Matrix. Wegen der Isomorphie von $\mathfrak T$ und $B^1_{\Re}(\widetilde{\mathfrak T})$ bzw. $\widetilde{\mathfrak T}$ und $B^1_{\Re}(\widetilde{\mathfrak T})$ veranlaßt H_f einen stetigen Homomorphismus h_f von $\mathfrak T$ in $\widetilde{\mathfrak T}$:

¹⁾ Unter allen möglichen Isomorphismen von $B^1\mathfrak{R}(\mathfrak{T})$ auf \mathfrak{T} betrachten wir im folgenden vorzugsweise nur diesen Isomorphismus; I bedeute immer diesen speziellen Isomorphismus.

²⁾ Für den Fall, wo F ein Polyeder ist, siehe z.B. Alexandroff-Hopf: Topologie I, Kap. XIII, § 3. Bei einem beliebigen Kompaktum läßt sich die Behauptung in üblicher Weise mittels des R_n -adischen Grenzüberganges nachweisen.

$$h_f = \widetilde{I} H_f I^{-1}$$
,

oder
$$h_f \tau(x_1, \ldots, x_n) = \widetilde{I} H_f(x_1 Z_1 + \cdots + x_n Z_n)$$

= $\widetilde{I} \left((\sum_{i=1}^n a_{i1} x_i) \widetilde{Z}_1 + \cdots + (\sum_{i=1}^n a_{im} x_i) \widetilde{Z}_m \right) = \widetilde{\tau} \left(\sum_{i=1}^n a_{i1} x_i, \ldots, \sum_{i=1}^n a_{im} x_i \right).$

Ist jetzt insbesondere f selbst ein Homomorphismus, so läßt sich f in der Form

$$f\tau(x_1, ..., x_n) = \widetilde{\tau}(\sum_{i=1}^n b_{i1}x_i, ..., \sum_{i=1}^n b_{im}x_i)$$

mit den ganzen Koeffizienten b_{ij} darstellen.¹⁾ f induziert dann offenbar den Homomorphismus der Bettischen Gruppen:

$$H_f(Z_i) \sim \sum_{j=1}^m b_{ij} \widetilde{Z}_j$$
, $i=1,...,n$.

 h_f stimmt also in diesem Falle mit f überein.

Kommt man wieder auf den Fall einer allgemeinen Abbildung f zurück, so ist jedenfalls

$$h_f = h_{h_f}$$
.

Daraus folgt $H_f = H_{h_f}$, was aber die Homotopie von f und h_f bedeutet, wie es in der vorigen Nummer bewiesen wurde. Andererseits sind zwei verschiedene Homomorphismen f und g niemals einander homotop, denn aus der Homotopie von f und g folgt $h_f = h_g$, also $f = h_f = h_g = g$. Zu jeder stetigen Abbildung f von $\mathfrak T$ in $\mathfrak T$ gibt es daher einen und nur einen stetigen Homomorphismus $h_f = \tilde{I} H_f I^{-1}$, der zu f homotop ist, w. z. b. w.

Zum Schluß sei noch bemerkt, daß bei den gleichdimensionalen \mathfrak{T} und $\widetilde{\mathfrak{T}}$ der Grad von f definiert ist und zwar gleich dem Werte der Determinante det A_f der Quadratmatrix A_f ist.²⁾

4. Jede zusammenhängende kompakte separable abelsche Gruppe \mathfrak{G} läßt sich als Limesgruppe einer auf- G_{ν} -adischen Folge von Torusgruppen \mathfrak{T}_{ν}

$$h^{\nu}_{\mu}\mathfrak{T}_{\nu} = \mathfrak{T}_{\mu}$$
, $\mu < \nu$, $h^{\mu}_{\lambda}h^{\nu}_{\mu} = h^{\nu}_{\lambda}$, $\mathfrak{S} = \lim_{\nu} \mathfrak{T}_{\nu}$,

auffassen.

¹⁾ Dies sieht man am leichtesten durch die Dualitätsbetrachtung ein. In der Tat sei $\mathfrak D$ bzw. $\widetilde{\mathfrak D}$ die zu $\mathfrak T$ bzw. $\widetilde{\mathfrak T}$ orthogonale Gittergruppe; jeder stetige Homomorphismus f von $\mathfrak T$ in $\widetilde{\mathfrak T}$ ist einem Homomorphismus f^* von $\widetilde{\mathfrak D}$ in $\mathfrak D$ dual, d. h. f ordnet einem Element τ von $\mathfrak T$ (als Charakter von $\mathfrak D$ betrachtet) das Element τf^* von $\widetilde{\mathfrak T}$ (Charakter von $\widetilde{\mathfrak D}$) zu. f^* ist aber eine ganzzahlige lineare Transformation.

²⁾ Dies beweist man z.B. wie folgt. Man kann ohne Beschränkung der Allgemeinheit annehmen, daß f eine homomorphe Abbildung sei. Falls det $A_f \neq 0$ ist, ist f im Kleinen topologisch und hat genau $|\det A_f|$ 0-Stellen mit dem Index +1 bzw. -1 je nach dem Vorzeichen von det A_f . Falls det $A_f = 0$ ist, ist f unwesentlich und hat daher den Grad 0.

Die Charaktergruppe \mathfrak{G}^* von \mathfrak{G} ist diskret, abzählbar, und torsionsfrei; \mathfrak{G}^* ist also die Vereinigungsmenge einer aufsteigenden Folge von freien abelschen Gruppen \mathfrak{T}^*_{ν} endlichen Ranges:

$$\mathfrak{T}_1^* \subset \mathfrak{T}_2^* \subset \cdots \subset \mathfrak{T}_{\nu}^* \subset \cdots, \qquad \sum_{i} \mathfrak{T}_{\nu}^* = \mathfrak{G}^*.$$

Es seien \mathfrak{T}_{ν} Charaktergruppen von \mathfrak{T}_{ν}^* . \mathfrak{T}_{ν} sind dann Torusgruppen endlicher Dimension und bilden eine auf- G_{ν} -adische Folge, die \mathfrak{G} als Limesgruppe hat, w. z. b. w.

Ist speziell \mathfrak{G} *n*-dimensional, so ist \mathfrak{G}^* vom Rang n; man kann daher \mathfrak{T}^*_{ν} so wählen, daß alle \mathfrak{T}^*_{ν} den Rang n, und folglich alle \mathfrak{T}_{ν} die Dimension n haben.

5. Satz 1. Für jede zusammenhängende kompakte separable abelsche Gruppe \mathfrak{G} ist die Bettische Gruppe $B_{\mathfrak{R}}^{1}(\mathfrak{G})$ mit \mathfrak{G} topologisch isomorph.

Beweis. Es sei $\mathfrak{G}=\lim \mathfrak{T}_{\nu}$, $h_{\mu}^{\nu}\mathfrak{T}_{\nu}=\mathfrak{T}_{\mu}$, $\mu<\nu$. Nach Nr. 1 gibt es für jedes ν einen Isomorphismus I_{ν} der Gruppe $B_{\Re}^{1}(\mathfrak{T}_{\nu})$ auf \mathfrak{T}_{ν} . Die Bettischen Gruppen $B_{\Re}^{1}(\mathfrak{T}_{\nu})$ bilden eine \mathfrak{G}_{ν} -adische Folge

$$H_{h^{
u}_{\mu}}B^1_{\Re}(\mathfrak{T}_{
u})\subset B^1_{\Re}(\mathfrak{T}_{\mu})$$
 ,

die die Gruppe $B^1_{\Re}(\mathfrak{G})$ als Limesgruppe hat.¹⁾ Wegen der Gleichung $I_{\mu}H_{h^{\nu}_{\mu}}=h^{\nu}_{\mu}I_{\nu}$ sind die zwei Folgen $\{\mathfrak{T}_{\nu}\}$ und $\{B^1_{\Re}(\mathfrak{T}_{\nu})\}$ topologisch isomorph,²⁾ also sind es auch ihre Limesgruppen, w. z. b. w. Der durch I_{ν} definierte topologische Isomorphismus von $B^1_{\Re}(\mathfrak{G})$ auf \mathfrak{G} heiße I; $I=\lim I_{\nu}$.²⁾

Eine bemerkenswerte Folgerung aus diesem Satz ist die, daß die algebraische Struktur einer zusammenhängenden kompakten separablen abelschen Gruppe schon durch deren topologische Struktur vollständig bestimmt wird.

6. Wir wollen in dieser Note unter Homotopie zweier stetigen Abbildungen f, g eines Kompaktums F' in ein anderes Kompaktum F' folgendes verstehen:

Für eine beliebige stetige Abbildung ψ von F' in ein beliebiges Polyeder Q sind die zusammengesetzten Abbildungen $\psi f, \psi g \in Q^F$ einander homotop.

F' sei nun in eine R_n -adische Polyederfolge

$$\varphi_m^n P_n \subset P_m$$
, $m < n$, $\lim P_n = F'$

entwickelt; $\varphi_m = \lim_n \varphi_m^n$ ist eine Abbildung von F' in P_m . Sind f, g in unserem Sinne einander homotop, so sind $\varphi_m f, \varphi_m g \in P_m^F$ für jedes m einander homotop. Diese Bedingung ist aber für die Homotopie von f, g auch hinreichend. Denn es gibt für fast alle $n \ \psi^n \in Q^{P_n}$, sodaß $\psi^n \varphi_n$ mit ψ homotop sei; ψ ψ ist also mit ψ ψ ψ ψ also schließ-

¹⁾ Freudenthal: Entwicklungen von Räumen und ihren Gruppen, Kap. VI, 40-41, [Comp. Math. 4 (1937), 145-234].

²⁾ Freudenthal: l.c., Kap. I, 8 u. Kap. II, 19.

³⁾ Vgl. M. Abe: Über die Methode der Polyederentwicklung der Kompakten und ihre Anwendungen auf die Abbildungstheorie, § 2, Vorbemerkung 2), [Comp. Math. 7 (1939), 185-193].

lich mit ψg homotop (für jedes Q und jedes ψ).

Es ist klar, daß unsere Definition der Homotopie mit der üblichen übereinstimmen, falls F' ein Polyeder ist.

7. Satz 2. \mathfrak{S} , \mathfrak{S} seien zwei zusammenhängende kompakte separable abelsche Gruppen. Für jede stetige Abbildung f von \mathfrak{S} in \mathfrak{S} gibt es einen und nur einen stetigen Homomorphismus h_f , der zu f homotop ist.

Beweis. 1) Der Fall $\widetilde{\mathfrak{G}} = \widetilde{\mathfrak{T}}$ (Torusgruppe). Es sei $\mathfrak{G} = \lim \mathfrak{T}_{\nu}$, $h_{\mu}^{\nu} T_{\nu} = T_{\mu}$. Wählt man für eine stetige Abbildung f von \mathfrak{G} in $\widetilde{\mathfrak{T}}$ ein genügend großes ν , so kann man für dieses ν eine stetige Abbildung f^{ν} von \mathfrak{T}_{ν} in $\widetilde{\mathfrak{T}}$ so konstruieren, daß f mit $f^{\nu}h_{\nu}$ homotop sei. Dann ist $H_{f} = H_{f^{\nu}}H_{h_{\nu}}$, als $h_{f} = h_{f^{\nu}}h_{h_{\nu}} = h_{f^{\nu}}h_{\nu}$. Ist speziell f ein Homomorphismus, so läßt sich f^{ν} auch homomorph wählen, und zwar so, daß $f = f^{\nu}h_{\nu}$ ist. Da nach Nr. 3 $h_{f^{\nu}} = f^{\nu}$ ist, gilt in diesem Fall $h_{f} = h_{f^{\nu}}h_{\nu} = f^{\nu}h_{\nu} = f$.

Folglich ist für eine beliebige stetige Abbildung f

$$h_f = h_{h_f}$$
,

das heißt aber nach Nr. 2, daß h_f zu f homotop ist. Andererseits beweist man genau wie in Nr. 3, daß zwei verschiedene Homomorphismen niemals einander homotop sein können.

2) Der allgemeine Fall. $\tilde{\mathbb{S}}$ sei auf- G_{ν} -adisch in der Folge

$$\widetilde{\mathfrak{G}} = \lim \widetilde{\mathfrak{T}}_{\nu}$$
, $\widetilde{h}_{\mu}^{\nu} \widetilde{\mathfrak{T}}_{\nu} = \widetilde{\mathfrak{T}}_{\mu}$

entwickelt. f sei eine beliebige stetige Abbildung von \mathfrak{G} in $\widetilde{\mathfrak{G}}$. Man setze $f_{\nu} = \widetilde{h}_{\nu} f$. Aus $f_{\nu} = \widetilde{h}_{\nu} f$ folgt $h_{f_{\nu}} = \widetilde{h}_{\nu} h_{f}$. Nun ist $h_{f_{\nu}}$ nach der ersten Hälfte dieses Beweises für jedes ν zu f_{ν} homotop. h_{f} ist also definitionsgemäß zu f homotop.

Ist f speziell ein Homomorphismus, so ist $h_{f_{\nu}} = f_{\nu}$ für jedes ν , woraus $h_f = f$ folgt. Die weitere Betrachtung verläuft ebenso wie früher.

8. Folgender Satz läßt sich aus der Nr. 2 mit derselben Schlußweise wie in der vorigen Nummer ableiten.

Satz 3. Die Abbildungsklasse einer stetigen Abbildung f eines Kompaktums F in eine zusammenhängende kompakte separable abelsche Gruppe \mathfrak{S} ist durch den von f induzierten stetigen Homomorphismus H_f der Gruppe $B^1_{\mathfrak{R}}(F)$ in die Gruppe $B^1_{\mathfrak{R}}(\mathfrak{S}) \cong \mathfrak{S}$ vollständig bestimmt.

Ob es für jeden \mathfrak{G} -Charakter von $B^1_{\mathfrak{R}}(F)$ eine zugehörige Abbildungs-

¹⁾ Siehe Fußnote 3), S. 170.

²⁾ Es ist definitionsgemäß $h_f=\tilde{I}$ H_fI^{-1} , $h_f\nu=\tilde{I}$ $H_f\nu I_\nu^{-1}$ und $h_{h_\nu}=I_\nu H_{h_\nu}I^{-1}$ (= h_ν nach Nr. 3).

³⁾ Freudenthal: l.c., Kap. II, Vierter Dualitätssatz.

klasse existiert oder nicht, ist eine offene Frage; jedenfalls gibt es solche, wenn $F=\emptyset$ ist (Satz 2).

9. Satz 4. Die einzige n-dimensionale zusammenhängende kompakte separable abelsche Gruppe \mathfrak{G} , die sich in den (n+1)-dimensionalen Euklidischen Raum \mathbb{R}^{n+1} topologisch einbetten lä β t, ist die Torusgruppe.

Beweis. Daß die n-dimensionale Torusgruppe sich in \mathbb{R}^{n+1} topologisch einbetten läßt, ist ohne weiteres klar. Es sei nun \mathfrak{G} in \mathbb{R}^{n+1} eingebettet; man entwickle \mathfrak{G} in eine auf- G_{ν} -adische Folge

$$h^{\nu}_{\mu}\mathfrak{T}_{\nu}=\mathfrak{T}_{\mu}$$
, $\mu<\nu$, $\lim \mathfrak{T}_{\nu}=\mathfrak{G}$,

wobei \mathfrak{T}_{ν} alle n-dimensionale Torusgruppen seien. $B^{00}_{\mathfrak{R}}(R^{n+1}-\mathfrak{G})^{1)}$ ist nach dem Alexander-Pontrjaginschen Dualitätssatz die Charaktergruppe von $B^n_{\mathfrak{R}}(\mathfrak{G})$, also die G_{ν} -ale Limesgruppe der Charaktergruppen von $B^n_{\mathfrak{R}}(\mathfrak{T}_{\nu})$, die alle mit \mathfrak{F} isomorph sind; $B^{00}_{\mathfrak{R}}(R^{n+1}-\mathfrak{G})$ ist also jedenfalls eine diskrete Gruppe vom Rang 1. Andererseits ist $B^{00}_{\mathfrak{R}}(R^{n+1}-\mathfrak{G})$ direkte Summe der endlich- oder abzählbarunendlichvielen mit \mathfrak{F} isomorphen Gruppen; folglich muß $B^{00}_{\mathfrak{R}}(R^{n+1}-\mathfrak{G})\cong\mathfrak{F}$ sein. Dafür sollten aber für fast alle ν die von $h^{\nu+1}_{\nu}$ induzierten Homomorphismen der n-ten Bettischen Gruppen Isomorhismen sein, d. h. es muß (nach der Schlußbemerkung der Nr. 3) det $A_{h^{\nu+1}_{\nu}}=\pm 1$ gelten, also müssen $h^{\nu+1}_{\nu}$ selbst Isomorphismen sein. Dies bedeutet aber, daß \mathfrak{F} eine n-dimensionale Torusgruppe ist, w. z. b. w.

Die Solenoide (G_{ν} -adische Limites der Kreisgruppen) lassen sich also im allgemeinen in eine Ebene nicht einbetten. Sie bilden also Beispiele der 1-dimensionalen homogenen Kontinua, die in eine Ebene nicht topologisch einbettbar sind.

¹⁾ D. h. die Bettische Gruppe der 0-dimensionalen berandungsfähigen Zyklen in bezug auf die additive Gruppe \Im der ganzen Zahlen als Koeffizientenbereich.