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1. In this note we will consider the class of functions defined in
the finite interval (a, b).

Let %. be a class of continuous functions defined in (a,d). If any
sequence of functions in §. contains a uniformly convergent subsequence,
then ¥, is called compact or compact in (C), where (C) denotes the
class of all continuous functions. Arzéla’s theorem concerning the com-
pactness of e, is well known, which runs as follows:

Theorem A. In order that the class F. be compact, it is necessary
and sufficient that

1°. . is bounded, that s, there is a comstant K such that
|f)| < K for all f in Fa

2°, & is equally continuous, that is, for amy positive mumber 5,
there is am 7 >0 such that the oscillation of functions in any interval
with length less than 7 18 less than 6.

Instead of (C) we take the class (L?) (p=1). Let ¥; be a class
of functions in (L?). If any sequence in {; contains a mean con-
vergent subsequence with index p, then &, is called compact or com-
pact in (L?). Fréchet has proved the following theorem? :

Theorem B. In order that the class ¥, be compact, it is necessary
and sufficient that 1°. &, 8 almost equally continuous and 2°. F, is
equally integrable.

Finally let (S) be the class of all finite measurable functions. Let
&. be a class of functions in (S). If any sequence in ., contains a
subsequence convergent in measure, then , is called compact or com-
pact in (S). Fréchet has also proved that®

Theorem C. In order that the class . be compact, it is necessary
and sufficient that 1°. . is almost equally bounded and 2°. ¥, is almost
equally continuous.

On the other hand Kolmogoroff® has proved the following theorem :

Theorem D. In order that §; in (L”) be compact, it is mecessary
and sufficient that

1°. B 18 bounded, that is, there i3 a constant K such that

[1rora<k
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2°. For any 7>0, there is an N, such that
b
[[1re)-rera<y
for all N> N, and for all f in ), where
)=f@) if |flx)|<N; f¥x)=0, otherwise.
3°. For any 7>>0, there 18 a &, such that
b
|1 -t rdn <
for all positive 8 <8 and for all f in %, where f,,(ac)=% s"f(x+t)dt.
0

The object of this paper is to prove two theorems concerning the
compactness of &, and &, the condition being of the type of Theorem D.

2. Theorem 1. In order that . in (C) be compact, it is meces-
sary and sufficient that 1°. §. is bounded and 2°.

. 1 _
1) l;_)nol 5 sof(x+t) dt=f(x)

uniformly for all x and all f in F..

Let us suppose that . is compact. The condition 1° is evidently
necessary. If ¥, is compact, then {. is equally continuous and then
the condition 2° follows.

Conversely, suppose that the conditions in the theorem be satisfied.

Let {f.(x)} be any sequence in ¥. By 1°
[r@ra<k.
By 2°, for any 7> 0, there is a 3, such that
[1re-(e)ple<s  @=12.)

for all 6<<d&. By Theorem D, {f.(r)} contains a subsequence {f, ()}
which converges in mean, that is, there is a function f(x) such that

(@) tim "1, ) 1) | do=0.
On the other hand
[ @) = ()| < | o ) — (fr ) )3] + | (fure))3— (1))

+|(f@))o—fla)|.
For any 7 >0, we can take 3, such that

@) = (f@)a|<7, |fo@d—(fu@)dr|<7  (K=1,2,..).
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|(uc@)ao— (7)o =2 (frylot0)—flo O3 ]
1 (9 1(®
_<__~3—j0 | gl )= flatt) < jalfn,{(t)—f(t)ldt,

which tends to zero as K— o by (2). Therefore {f,,K(x)} is uniformly

convergent. Thus the conditions 1° and 2° are sufficient.

3. Theorem A can be deduced from Theorem 1. The direct proof
of Theorem 1 can be done by the method used in proving Theorem A.
Theorem D is proved by the use of Theorem A. Above consideration
shows that Theorem. A is proved by the use of Theorem D.

Let (M) be the class of all bounded measurable functions. When
the class §,, in (M) is considered instead of %, we get the following
theorem :

Theorem 2. In order that any sequence in-the bounded class ¥
contains a uniformly convergent subsequence, it is necessary and sufficient
that (1) holds umiformly for all x and for all f in Fm.

This is the analogy of the Veress’s theorem.

In this theorem, if we replace uniform convergence by the almost
everywhere uniform convergence, then the necessary and sufficient con-
dition becomes that (1) holds almost everywhere uniformly.

4. Let us consider the class (S). In (S) we introduce the metric
due to Fréchet such that

Vi (3]
fl=1 =2 dt.
171 Ja 1+]f(@®)]
Theorem 8. In order that the class &, is compact, it 18 necessary

and sufficient that
1°. For any 6>0 and N>0, there exists an M such that

%UZ {Ffa+t}Vdt| <M

for all x and for all f in Fm

2°. For any 7>0, there exists N, such that |f—fN|<» for all
NZ=N,.

8°. For any 7>0, there exist Ny and & such that |f—fY|<7
Sor all N=N; and for all 64,

Proof is done similarly as that of Theorem D.



