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1. Introduction

Functional inequalities have been thoroughly studied in different contexts [66, 9]
and one important motivation is to quantify the relaxation of stochastic dynam-
ics by using Poincaré and (possibly modified) log-Sobolev inequalities [72, 55, 91,
40, 25]. Statistical mechanics offers an interesting setting to apply these inequal-
ities and to analyse the information they provide in various physical regimes.
Indeed, one would like to describe the relaxation to equilibrium of lattice gas and
spin dynamics, which are modelled by stochastic evolutions on high-dimensional
state spaces. Their continuum limits, often described by (singular) SPDEs, are
also of a lot of interest.

The structure of the equilibrium Gibbs measures is sensitive to the occurrence
of phase transitions and the dynamical behaviour will also be strongly influenced
by phase transitions. In the uniqueness regime, namely in absence of a phase
transition (typically at high temperatures), one expects that the dynamics relax
exponentially fast uniformly in the dimension of the state space with a speed
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of relaxation diverging when the temperature approaches the critical point. We
refer to Sections 2.6 and 2.7 for more details. In a phase transition regime
(typically corresponding to low temperatures), one expects different types of
behaviours depending strongly on the type of boundary conditions and we will
not discuss the corresponding phenomena in these notes.

The fast relaxation towards equilibrium in the uniqueness regime (or at least
deep in it) is well understood and we refer to [72, 73, 55] for very complete
accounts of the corresponding theory. Roughly speaking, it has been shown for
a wide range of models that good mixing properties of the equilibrium measure
are equivalent to fast relaxation of the dynamics, namely uniform bounds (with
respect to the domains and the boundary conditions) on the Poincaré or the log-
Sobolev constants. For the Ising model [72, 38, 42], the validity of the mixing
properties have been proved in the whole uniqueness regime leading to strong
relaxation statements on the dynamics, and more detailed dynamical features
are also understood in that regime [71, 70]. For more general systems and in
particular continuous spin systems, the picture is much less complete.

The main goal of this survey is to present a different perspective on the deriva-
tion of functional inequalities based on the renormalisation group theory, intro-
duced in physics by Wilson [94], and with its continuous formulation emphasised
in particular by Polchinski [83]. The renormalisation group was introduced to
study the critical behaviour and the existence of continuum limits of equilibrium
models of statistical physics and quantum field theory from a unified perspec-
tive. The renormalisation group formalism associates with a Gibbs measure a
flow of measures defined in terms of a renormalised potential (see Section 3.2).
We show how this structure can be used to prove log-Sobolev inequalities under
a condition on the renormalised potential which is a multiscale generalisation of
the Bakry-Émery criterion (see Section 3.3). The renormalised potential obeys
a second-order Hamilton–Jacobi type equation (the Polchinski equation) with
characteristics given by a stochastic evolution (see Section 4.1) which coincide
with the stochastic process of Eldan’s stochastic localisation method introduced
for very different purposes [45]. Section 4.5 provides a dictionary to relate both
points of view.

An alternative to the multiscale Bakry–Émery method to derive log-Sobolev
inequalities (with much similarity and both advantages and disadvantages) is
the entropic stability estimate recently established in [31] and reviewed in Sec-
tion 3.7. This estimate applies to the same Polchinki flow, or its equivalent
interpretation as stochastic localisation. It originated in the spectral and en-
tropic independence estimates [6, 4] which are similar estimates for a different
flow that takes the role of the Polchinski flow in another kind of model. This
analogy has already been highlighted in [31] to which we refer for a discussion of
this relation. Compared to the established approaches to functional inequalities
for statistical mechanical models, which typically rely on spatial decomposi-
tions, all of the approaches discussed here are more spectral in nature. Spectral
quantities are more global and therefore allow to capture for example the near-
critical behaviour better. This is illustrated in a series of applications reviewed
in Section 6.
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The Polchinski renormalisation and the stochastic localisation can be seen
as two sides of the same coin, sharing thus very similar structures. In fact, this
type of stochastic equations have been considered much earlier by Föllmer [39]
as an optimal way to generate a target measure. In Section 5, the Polchinski
renormalisation flow is shown to coincide with the optimal stochastic process
associated with a suitable varying metric. In applications to statistical mechanics
models, this metric captures the notion of scale so that the Polchinski flow (a
continuous renormalisation group flow) provides a canonical way of decomposing
the entropy according to scale. Finally, in Section 5.2, the renormalised potential
is rewritten as a variational principle using the Polchinski flow, known as the
Boué-Dupuis or Borell formula in the generic context, see [67], whose origin is
in stochastic optimal control theory. This correspondence is at the heart of the
Barashkov–Gubinelli variational method [10].

In Appendix A, these results are compared with the corresponding control
theory for classical Hamilton–Jacobi equations, and a simple comparison with
the line of research initiated in [78] is also given.

2. Background on stochastic dynamics

2.1. Motivation: spin models and their stochastic dynamics

Our goal is to study dynamical (and also some equilibrium) aspects of continuous
and discrete spin models of statistical mechanics such as Euclidean field theories
or Ising-type spin models. Throughout this article, Λ will be a general finite set
(of vertices), but we have Λ ⊂ Z

d large in mind, or Λ ⊂ εZd approximating R
d

(or a subset of it) when ε → 0 in the case of models defined in the continuum.
Sometimes we identify Λ with [N ] = {1, . . . , N}. Spin fields are then random
functions ϕ : Λ → T where, for example, T = R in the case of continuous scalar
spins or T = {±1} in the case of (discrete) Ising spins. For discrete spins, we
often write σ instead of ϕ for a spin configuration.

Continuous spins In the setting of continuous spins, the equilibrium Gibbs
measures have expectation of the form

Eν [F (ϕ)] ∝
∫
RΛ

e−H(ϕ) F (ϕ) dϕ (2.1)

where the symbol ∝ denotes the equality of the measures up to a normalisation
factor. We will refer to H as the action or as the Hamiltonian (depending on the
context). The main class of H that we will focus on are of the following form:
for spins ϕ = (ϕx)x∈Λ taking values in R (or vector spins with values in R

n),
an interaction matrix A, and a local potential V ,

H(ϕ) = 1
2(ϕ,Aϕ) + V0(ϕ), V0(ϕ) =

∑
x∈Λ

V (ϕx). (2.2)
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Defining the discrete Laplace operator on Λ ⊂ Z
d by

∀x ∈ Λ : (ΔΛf)x :=
∑

y∈Λ:y∼x

(fy − fx), (2.3)

a classical choice of interaction is obtained by setting A = −βΔΛ for some
(inverse temperature) parameter β > 0. In this case, the Hamiltonian reads

∀ϕ ∈ R
Λ : H(ϕ) = β

4
∑

x,y∈Λ,
x∼y

(ϕx − ϕy)2 + V0(ϕ), (2.4)

where the nearest neighbour interaction is denoted by x ∼ y and the sum
counts each pair {x, y} twice. As an example, a typical choice for the single-spin
potential V is the Ginzburg–Landau–Wilson ϕ4 potential, in which case one
usually sets β = 1 (and r has the role of a temperature),

V (ϕ) = 1
4g|ϕ|

4 + 1
2r|ϕ|

2 with g > 0 and r < 0. (2.5)

The following Glauber–Langevin dynamics is reversible for the measure intro-
duced in (2.1):

dϕt = −∇H(ϕt) dt +
√

2dBt. (2.6)
For the choices (2.4) and (2.5), this stochastic differential equation (SDE) reads

dϕt = −Aϕt dt−∇V (ϕt) dt+
√

2dBt = ΔΛϕt dt− g|ϕt|2ϕt dt− rϕt dt+
√

2dBt.
(2.7)

In this survey, we are interested in the long time behaviour of these dynamics
when the number of spins is large. We will consider two cases: either Λ → Z

d for
the Glauber dynamics of an Ising-type model with continuous spins; or Λ ⊂ εZd

with Λ → R
d or Λ → [0, 1]d in which case a suitably normalised version of ϕ

describes the solution of a singular SPDE in the limit ε → 0.

Discrete spins In the setting of discrete spins, we focus on the Ising model
where σ ∈ {±1}Λ and

Eν [F (σ)] ∝
∑

σ∈{±1}Λ

e−
β
2 (σ,Aσ)F (σ) (2.8)

for some symmetric coupling matrix A. Its Glauber dynamics is a continuous-
or discrete-time Markov process with local transition rates c(σ, σx) from a con-
figuration σ to σx where σx ∈ {±1}Λ denotes the configuration obtained from
σ ∈ {±1}Λ by flipping the sign of the spin at x. The transition rates are assumed
to satisfy the detailed-balance condition

ν(σ)c(σ, σx) = ν(σx)c(σx, σ), (2.9)

which implies that the measure (2.8) is invariant. Typical choices are described
below in the next section. We will be interested in the large time behaviour of
the dynamics when Λ → Z

d.
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2.2. Generalities on Glauber–Langevin dynamics

We now discuss some standard general properties of the stochastic dynamics
such as its (finite-dimensional state space) ergodicity.

Continuous spins The Glauber–Langevin dynamics (2.6) is a Markov pro-
cess with generator

ΔH = Δ − (∇H,∇) = e+H(∇, e−H∇) (2.10)

where
Δ =

∑
x∈Λ

∂2

∂ϕ2
x

, (∇H,∇) =
∑
x∈Λ

∂H

∂ϕx

∂

∂ϕx
. (2.11)

The state space R
Λ will often be denoted by X. The distribution of the spin

configuration evolves in time along the stochastic dynamics and we denote by mt

the distribution at time t starting from an initial measure m0: given F0 : X → R,

Emt [F0] = Em0 [Ft] with Ft(ϕ) = TtF (ϕ) := Eϕ0=ϕ [F (ϕt)] , (2.12)

where Tt is the semigroup associated with the generator ΔH . In particular,
Ft = TtF solves the Kolmogorov backward equation

∂

∂t
Ft = ΔHFt. (2.13)

Starting from the SDE, this can be verified using Itô’s formula. The mea-
sure ν, introduced in (2.1), is reversible with respect to this dynamics, and the
following integration by parts formula holds for sufficiently smooth F :

Eν [F (−ΔHG)] = Eν [(∇F,∇G)]. (2.14)

The right-hand side is the Dirichlet form:

Dν(F,G) := Eν [(∇F,∇G)] and Dν(F ) := Dν(F, F ). (2.15)

In particular, the measure ν is invariant, i.e., if ϕ0 is distributed according to ν
then ϕt also is:

∂

∂t
Eν [Ft] = Eν [ΔHFt] = Eν [(∇Ft,∇1)] = 0. (2.16)

Moreover, we will always impose the following ergodicity assumption:

∀F0 ∈ L2(ν) : Ft → Eν [F0] in L2(ν). (2.17)

In particular, for any bounded smooth functions F0 : X → R and g : R → R,

lim
t→∞

Eν [g(Ft)] = g(Eν [F0]). (2.18)

As the next exercise shows, the ergodicity assumption is qualitative if Λ is finite
and holds in all examples of interest.
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Exercise 2.1. Show that 1
2 |∇H|2−ΔH → ∞ as |ϕ| → ∞ implies that −ΔH has

discrete spectrum on L2(ν) with unique minimal eigenvalue 0, and deduce (2.17)
and (2.18).

For the discreteness of the spectrum, one may observe that the multiplication
operator U = e

1
2H is an isometry from L2(ν) onto L2(RN ) that maps −ΔH to

the Schrödinger operator −Δ+W on R
N with W = 1

4 |∇H|2− 1
2ΔH. The result

therefore follows from the spectral theorem and the result that a Schrödinger
operator with a potential W ∈ L1

loc(RN ) that is bounded below and satisfies
W → ∞ has compact resolvent [84, Theorem XIII.67] (a version of Rellich’s
theorem).

For further general facts on stochastic dynamics in the continuous setting, we
refer to [9, 55, 91]. Even though we will not need it, let us also mention that if
the distribution of mt is written as dmt = Gt dν where ν = m∞ is the invariant
measure and Gt = dmt/dν is the density of mt relative to it, then

∂

∂t
Gt = (ΔH)∗Gt = ΔHGt (2.19)

where (ΔH)∗ = ΔH is the adjoint of ΔH with respect to ν. This can also be
expressed as an equation for mt (interpreted in a weak sense), which is the
Fokker–Planck equation:

∂mt

∂t
= Δmt + (∇,mt∇H) = (∇,mt∇(logmt + H)). (2.20)

Discrete spins A similar structure can also be associated with discrete dy-
namics. In particular, the Glauber dynamics of an Ising model is determined by
its local jump rates c(σ, σx) satisfying the detailed balance condition as in (2.9).
For all F : Ω → R, where Ω = {±1}Λ is the finite state space, the generator and
Dirichlet form associated with the Glauber dynamics are

ΔcF (σ) =
∑
x∈Λ

c(σ, σx)(F (σx) − F (σ)) (2.21)

and

Dν(F ) = −
∑
σ∈Ω

F (σ)ΔcF (σ)ν(σ) = 1
2
∑
x∈Λ

∑
σ∈Ω

c(σ, σx)(F (σx) − F (σ))2ν(σ),

(2.22)
where we used the detailed balance condition for the second equality. We will
again write Dν(F, F ) for the quadratic form associated with Dν(F ) by polar-
isation. As in the continuous setting, we will always impose an irreducibility
assumption which is equivalent to the analogue of (2.17):

∀F0 : Ω → R : Ft → Eν [F0], (2.23)

where Ft(σ) = eΔctF0(σ) = Eσ0=σ[F (σt)]. Indeed, assuming irreducibility, the
convergence (2.23) is a consequence of the Perron–Frobenius theorem, see, e.g.,
[86].
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Many choices of jump rates can be considered, but as long as the jump rates
are uniformly bounded from above and below the different Dirichlet forms are
equivalent and the large time behaviour of the microscopic dynamics will be
similar. Often a natural choice of jump rates is that corresponding to the stan-
dard Dirichlet form. This choice formally corresponds to c(σ, σx) = 1 in (2.22)
which however are not the jump rates of the associated Markov process because
the constant function 1 does not satisfy the detailed balance condition. However,
rewriting (2.22) as

Dν(F ) = 1
2
∑
x∈Λ

∑
σ∈Ω

1
2

[
c(σ, σx) + c(σx, σ)ν(σx)

ν(σ)

]
(F (σx) − F (σ))2ν(σ), (2.24)

we see that the standard Dirichlet form corresponds to the jump rates (satisfying
detailed balance)

c(σ, σx) = 1
2

(
1 + ν(σx)

ν(σ)

)
. (2.25)

Another popular choice are the heat-bath jump rates which are given by

cHB(σ, σx) = ν(σx)
ν(σ) + ν(σx) =

(
1 + ν(σ)

ν(σx)

)−1
(2.26)

with the corresponding Dirichlet form

DHB
ν (F ) = 1

2
∑
x∈Λ

∑
σ∈Ω

Ψ(ν(σ), ν(σx))(F (σ) − F (σx))2, Ψ(a, b) = ab

a + b
.

(2.27)
The Metropolis jump rates correspond to Ψ(a, b) = min{a, b}. For further gen-
eral discussion of Glauber dynamics in the discrete case, see [72] and [86, 25].

As in (2.12), the distribution at time t will be denoted by mt.

2.3. Log-Sobolev inequality

In the above examples (with Λ finite), one always has the qualitative ergodicity
mt → ν = m∞ which amounts to an irreducibility condition. One of the main
questions we are interested in is how fast this convergence is. A very good mea-
sure for the distance between mt and ν = m∞, with many further applications,
is the relative entropy:

H(mt|ν) = Eν [Ft logFt] = Entν(Ft), Ft = dmt

dν
. (2.28)

More generally, when F is nonnegative but does not necessarily satisfy Eν [F ] =
1, define

Entν(F ) = Eν [Φ(F )] − Φ(Eν [F ]), Φ(x) = x log x. (2.29)



208 R. Bauerschmidt et al.

The relative entropy is not symmetric and thus not a metric, but it has many
very useful properties making it a good quantity, and it controls the total vari-
ation distance by Pinsker’s inequality:

‖mt − ν‖2
TV � 2H(mt|ν). (2.30)

One of the most important properties is that the relative entropy decreases
under the dynamics. We begin with the continuous case.

Proposition 2.2 (de Bruijn identity). Consider the (continuous spin) stochas-
tic dynamics (2.6) with invariant measure ν and Dirichlet form Dν defined
in (2.15). Then for Ft(ϕ) = Eϕ0=ϕ [F (ϕt)] as in (2.12),

∂

∂t
Entν(Ft) = −Dν(logFt, Ft) = −Iν(Ft) � 0, (2.31)

where the Fisher information is defined in terms of the Dirichlet form (2.15):

Iν(Ft) := Eν

[
(∇Ft)2

Ft

]
= 4Dν

(√
Ft

)
. (2.32)

Proof. Since Φ(Eν [Ft]) = Φ(Eν [F0]) is independent of t and recalling that ΔH

is defined in (2.10),

∂

∂t
Entν(Ft) = ∂

∂t
Eν [Φ(Ft)] = Eν [Φ′(Ft)Ḟt] = Eν [Φ′(Ft)ΔHFt]

= −Dν(Φ′(Ft), Ft) = −Dν(logFt + 1, Ft) = −Dν(logFt, Ft).
(2.33)

To complete the identity (2.31), it is enough to notice that

Dν(logFt, Ft) = Eν [(∇ logFt,∇Ft)] = Eν

[
(∇Ft)2

Ft

]
= 4Eν [(∇

√
Ft)2].

(2.34)

Using the identity (2.31), the decay of the entropy can be quantified in terms
of the log-Sobolev constant which will be a key quantity we study.

Definition 2.3. A probability measure ν on X = R
N , satisfies the log-Sobolev

inequality (LSI) with respect to Dν if there is a constant γ > 0 such that the
following holds for any smooth, compactly supported function F : X → R+:

Entν(F ) � 2
γ
Dν(

√
F ). (2.35)

The largest choice of γ in this inequality is the log-Sobolev constant (with re-
spect to Dν). The normalisation with the above factor 2 is convenient (see
Proposition 2.5).
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The upshot is that the exponential decay of the relative entropy H(mt|ν) of
the distribution mt (defined in (2.12)) along the flow of the Glauber-Langevin
dynamics,

H(mt|ν) � e−2γt
H(m0|ν), (2.36)

follows, by Grönwall’s lemma, from
∂

∂t
H(mt|ν) � −2γH(mt|ν), (2.37)

which, by the de Bruijn identity, is a consequence of the log-Sobolev inequal-
ity (2.35). Thus the log-Sobolev constant provides a quantitative estimate on
the speed of relaxation of the dynamics towards its stationary measure. This is
one of the main motivations for deriving the log-Sobolev inequality.

The log-Sobolev inequality (2.35) has also other consequences. Especially, it
is equivalent to the hypercontractivity of the associated Markov semigroup. The
hypercontractivity was, in fact, its original motivation [53], see also [80, 50].

Theorem 2.4 (Hypercontractivity [53]). The measure ν satisfies the log-Sobolev
inequality (2.35) with constant γ if and only if the associated semigroup Tt is
hypercontractive:

‖TtF‖Lq(t)(ν) � ‖F‖Lp(ν) with q(t) − 1
p− 1 = e2γt. (2.38)

We note that the hypercontractivity does not follow in this form from the
modified log-Sobolev inequality which will be introduced in (2.41) below for
dynamics with discrete state spaces.

More generally, the log-Sobolev inequality is part of a larger class of functional
inequalities. In particular, it implies the spectral gap inequality (also called
Poincaré inequality).

Proposition 2.5 (Spectral gap inequality). The log-Sobolev inequality with
constant γ implies the spectral gap inequality (also called Poincaré inequality)
with the same constant:

Varν [F ] � 1
γ
Eν

[
(∇F )2

]
. (2.39)

The same conclusion holds assuming the modified log-Sobolev inequality (2.41)
below instead of the log-Sobolev inequality. The proof follows by applying the
log-Sobolev inequality to the test function 1 + εF and then letting ε tend to 0,
see, e.g., [86, Lemma 2.2.2].

We refer to [9] for an in-depth account on related functional inequalities and
to [66] for applications of the log-Sobolev inequality to the concentration of
measure phenomenon.

For discrete spin models, the counterpart of Proposition 2.2 is the following
proposition.
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Proposition 2.6 (de Bruijn identity). Consider the discrete dynamics with
invariant measure ν (2.8) and Dirichlet form Dν defined in (2.22). Then for
Ft(σ) = Eσ0=σ [F (σt)],

∂

∂t
Entν(Ft) = −Dν(logFt, Ft) � 0. (2.40)

The proof is identical to (2.33) replacing the continuous generator by Δc

defined in (2.21). As the chain rule no longer applies in the discrete setting, the
Fisher information cannot be recovered. Nevertheless the exponential decay of
the entropy (2.36) can be established under the modified log-Sobolev inequality
(mLSI), i.e., if there is γ > 0 such that for any function F : {±1}Λ �→ R

+:

Entν(F ) � 1
2γDν(logF, F ). (2.41)

In view of Exercise 2.7, this inequality is weaker than the standard log-Sobolev
inequality (2.35), a point discussed in detail in [25].

Exercise 2.7. In the discrete case, the different quantities in (2.34) are not
equal. Verify the inequality 4(

√
a −

√
b)2 � (a − b) log(a/b) for a, b > 0 and

hence show Dν(logF, F ) � 4Dν(
√
F ).

2.4. Bakry–Émery theorem

In verifying the log-Sobolev inequality for spins taking values in a continuous
space, a very useful criterion is the Bakry–Émery theorem which applies to
log-concave probability measures.

Theorem 2.8 (Bakry–Émery [8]). Consider a probability measure on X = R
N

(or a linear subspace) of the form (2.1) and assume that there is λ > 0 such
that as quadratic forms:

∀ϕ ∈ X : HessH(ϕ) � λ id. (2.42)

Then the log-Sobolev constant of ν satisfies γ � λ.

For quadratic H, one can verify (by a simple choice of test function) that
in fact the equality γ = λ holds. An equivalent way to state the assumption
HessH(ϕ) � λ id is to say that H can be written as H(ϕ) = 1

2 (ϕ,Aϕ) + V0(ϕ)
with a symmetric matrix A � λ id and V0 convex.

Proof of Theorem 2.8. The entropy (2.29) can be estimated by interpolation
along the semigroup (2.12) of the Langevin dynamics associated with ν. Setting
Ft = Pt(F ), we note that

Entν(F ) = Eν [Φ(F )] − Φ(Eν [F ]) = Eν [Φ(F0) − Φ(F∞)] (2.43)

where we used that the dynamics converges to the invariant measure (2.18)
which implies

Φ(Eν [F ]) = lim
t→∞

Eν [Φ(Ft)]. (2.44)
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Indeed, we may assume that F takes values in a compact interval I ⊂ (0,∞).
By the positivity of the semigroup Ft then takes values in I for all t � 0, and
we can replace Φ by a bounded smooth function g that coincides with Φ on I.
By the de Bruijn identity (2.31) (and using that Eν [Ft] is independent of t),
therefore

Entν(F ) = −
∫ ∞

0
dt

∂

∂t
Eν [Φ(Ft)] =

∫ ∞

0
dt Iν(Ft). (2.45)

Provided that the Fisher information Iν(Ft) introduced in (2.32) satisfies

Iν(Ft) � e−2λtIν(F0), (2.46)

the log-Sobolev inequality follows from (2.43) and (2.45) by integrating in time:

Entν(F ) =
∫ ∞

0
dt Iν(Ft) � 1

2λIν(F0) = 2
λ
Dν(

√
F ). (2.47)

To prove (2.46), differentiate again:

∂

∂t
I(νt|ν) = ∂

∂t
Eν

[
(∇Ft)2

Ft

]
= Eν

[
( ∂
∂t

− ΔH) (∇Ft)2

Ft

]
, (2.48)

where we used that Eν [ΔHG] = 0 for every sufficiently nice function G : X → R.
It is an elementary but somewhat tedious exercise to verify that

( ∂
∂t

− ΔH) (∇Ft)2

Ft
= −2Ft

[
|Hess logFt|22︸ ︷︷ ︸

�0

+(∇ logFt,HessH(ϕ)︸ ︷︷ ︸
�λ id

∇ logFt)
]
.

(2.49)
Hence

∂

∂t
Iν(Ft) � −2λEν [Ft(∇ logFt,∇ logFt)] = −2λEν

[
(∇Ft)2

Ft

]
= −2λIν(Ft)

(2.50)
which implies the claim (2.46).

2.5. Decomposition and properties of the entropy

The Bakry–Émery criterion (Theorem 2.8) implies the validity of the log-Sobolev
inequality for all the Gibbs measures with strictly convex potentials. For more
general measures, the log-Sobolev inequality is often derived by decomposing
the entropy thanks to successive conditionings. We are going to sketch this
procedure below.

Assume that the expectation under ν is of the form

Eν [F ] := Eν [F (ϕ1, ϕ2)] = E2
[
E1

[
F (ϕ1, ϕ2)

∣∣ϕ2
]]

= E2 [E1 [F ]] , (2.51)
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where E1[·] := E1[·|ϕ2] is the conditional measure with respect to the variable
ϕ2. Then the entropy can be split into two parts:

Entν(F ) = Eν [Φ(F )] − Φ(Eν [F ])
= E2

[
E1[Φ(F )] − Φ(E1[F ])︸ ︷︷ ︸

Ent1(F )

]
+ E2 [Φ(E1[F ])] − Φ(E2 [E1[F ]])︸ ︷︷ ︸

Ent2(E1[F ])

. (2.52)

Given ϕ2, the first term involves the relative entropy of a simpler measure
E1(·|ϕ2) as the integration refers only to the coordinate ϕ1:

Ent1(F )(ϕ2) = E1[Φ(F )|ϕ2] − Φ(E1 [F |ϕ2]). (2.53)

The strategy is to estimate this term (uniformly in ϕ2) by the desired Dirichlet
form acting only on ϕ1. The second term E2 [Φ(E1[F ])] is more complicated
because the expectation E1[F (·, ϕ2)|ϕ2] is inside the relative entropy. For a
product measure ν = ν1 ⊗ ν2, this term can be estimated easily (as recalled in
Example 2.9 below). In this way, the log-Sobolev inequality for ν = ν1 ⊗ ν2 is
reduced to establishing log-Sobolev inequalities for the simpler measures ν1 and
ν2.

In general, the conditional expectations are intertwined and the second term
Ent2(E1[F ]) is much more difficult to estimate. There are two general strategies:
either one also bounds this term by the desired Dirichlet form (and thus one
somehow has to move the expectation out of the entropy) or one bounds it by
κEntν(F ) with κ < 1. In the latter case, the estimate reduces to the first term,
at the expense of an overall factor (1 − κ)−1.

For a given measure ν, the entropy decomposition (2.52) can be achieved
with different choices of the measures E1,E2. The optimal choice depends on
the structure of the measure ν. In this survey, we focus on Gibbs measures of the
form (2.1) which arise naturally in statistical mechanics. The renormalisation
group method constitutes a framework to study such Gibbs measures (see [19]
for an introduction and references) and provides strong insight on a good entropy
decomposition. This is the core of the method presented in Section 3, which is
based on the Polchinski equation, a continuous version of the renormalisation
group.

Example 2.9 (Tensorisation). Assume that probability measures ν1 and ν2
satisfy log-Sobolev inequalities with the constants γ1 and γ2. Then the product
measure ν = ν1 ⊗ ν2 also satisfies a log-Sobolev inequality with constant γ =
min{γ1, γ2} (with the natural Dirichlet form on the product space).

Proof. For simplicity, assume that ν1, ν2 are probability measures on R and
denote by E1,E2 their expectations so that Eν [F ] = E2 [E1 [F ]] for functions
F (ϕ1, ϕ2). As discussed in (2.52), the entropy can be decomposed as

Ent(F ) = E2[Ent1(F )] + Ent2(G) with G(ϕ2) = E1[F (·, ϕ2)]. (2.54)

The log-Sobolev inequalities for E1 and E2 imply that for γ = min{γ1, γ2}:

2γ Ent(F ) � E2[D1(
√
F )] + D2(

√
G). (2.55)
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It remains to recover the Dirichlet form associated with the product measure ν:

Dν(
√
F ) = Eν

[
(∂ϕ1

√
F )2 + (∂ϕ2

√
F )2

]
. (2.56)

The first derivative is easily identified:

E2[D1(
√
F )] = E2

[
E1

[
(∂ϕ1

√
F )2

]]
= Eν

[
(∂ϕ1

√
F )2

]
. (2.57)

For the second derivative:

∂ϕ2

√
G(ϕ2) = 1

2
√
G(ϕ2)

E1[∂ϕ2F (·, ϕ2)]

= 1√
G(ϕ2)

E1[
√
F (·, ϕ2) ∂ϕ2

√
F (·, ϕ2)], (2.58)

so that by Cauchy-Schwarz inequality, we deduce that

D2(
√
G) = E2

[(
∂ϕ2

√
G(ϕ2)

)2
]

� E2

[
E1

[(
∂ϕ2

√
F (·, ϕ2)

)2
]]

= Eν

[
(∂ϕ2

√
F )2

]
. (2.59)

This reconstructs the Dirichlet form (2.56) and completes the proof.
A similar argument applies in the discrete case, see e.g. [86, Lemma 2.2.11].

More abstractly, the tensorisation of the log-Sobolev constant also follows from
the equivalence between the log-Sobolev inequality and hypercontractivity (which
tensorises more obviously).

We conclude this section by stating useful variational characterisations of the
entropy.

Proposition 2.10 (Entropy inequality). The entropy of a function F � 0 can
be rewritten as

Entν(F ) = sup
{
Eν [FG] : Borel functions G such that Eν [eG] � 1

}
(2.60)

with equality if G = log( F
Eν [F ] ), or as

Entν(F ) = sup
{
Eν [F logF − F log t− F + t] : t > 0

}
(2.61)

with equality if t = Eν [F ]. Finally, one has (also called the entropy inequality):

Entν(F ) = sup
{
Eν [FG] − Eν [F ] logEν [eG] : Borel functions G

}
(2.62)

with equality if G = logF .
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Proof. Since Entν(F ) = Eν

[
F log F

Eν [F ]

]
, to show (2.60), it is enough to consider

the case Eν [F ] = 1, by homogeneity of both sides. Applying Young’s inequality

∀a � 0, b ∈ R : ab � a log a− a + eb, (2.63)

with Eν [eG] � 1, we get

Eν [FG] � Entν(F ) − 1 + Eν [eG] � Entν(F ). (2.64)

This implies (2.60) as the converse inequality holds with G = logF .
The variational formula (2.61) follows directly from Young’s inequality by

choosing a = Eν [F ] and b = log t:

Entν(F ) = Eν [F logF ] − a log a � Eν [F logF ] − ab− a + eb

= Eν [F logF − F log t− F + t], (2.65)

where again (2.61) follows since equality holds with t = Eν [F ].
To show (2.62), we may again assume Eν [F ] = 1. Then apply Jensen’s in-

equality with respect to the probability measure dνF = F dν:

logEν [eG] = logEνF [F−1eG] � EνF [log(F−1eG)] = −Eν [F logF ] + Eν [FG],
(2.66)

with equality if G = logF .

The Holley–Stroock criterion for the log-Sobolev inequality is a simple con-
sequence of (2.61), see e.g., the presentation in [91].

Exercise 2.11 (Holley–Stroock criterion). Assume a measure ν satisfies the
log-Sobolev inequality with constant γ. Then the measure νF with dνF /dν = F
satisfies a log-Sobolev inequality with constant γF � (inf F/ supF )γ.

2.6. Difficulties arising from statistical physics perspective

To explain the difficulties arising in the derivation of log-Sobolev inequalities and
to motivate our set-up of renormalisation, we are going to consider lattice spin
systems with continuous spins and Hamiltonian of the form (2.4). The strength
of the interaction is tuned by the parameter β � 0 and the Gibbs measure (2.1)
has a density on R

Λ of the form

ν(dϕ) ∝ exp

⎡
⎢⎣−β

4
∑

x,y∈Λ,
x∼y

(ϕx − ϕy)2 −
∑
x∈Λ

V (ϕx)

⎤
⎥⎦ ∏

x∈Λ

dϕx. (2.67)

Further examples will be detailed in Section 6.1.
We are interested in the behaviour of the measure (2.67) in the limit where

the number of sites |Λ| (and thus the dimension of the configuration space) is
large. In this limit, when the potential V is not convex, the measure can have
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one or more phase transitions at critical values of the parameter β. These phase
transitions separate regions of values of β between which the measure ν has a
different correlation structure, different concentration properties, and so on. The
speed of convergence of the associated Glauber dynamics (2.7) is also affected.
See the book [52] or [19, Chapter 1] for background on phase transitions in
statistical mechanics.

To analyse the log-Sobolev inequality for the measure (2.67), note that the
lack of convexity precludes the use of the Bakry–Émery criterion (Theorem 2.8),
and the Holley-Stroock criterion (Exercise 2.11) is not effective due to the large
dimension of the configuration space when β > 0.

On the other hand, when β = 0, the Gibbs measure is a product measure
and the log-Sobolev inequality holds uniformly in Λ, with the same constant as
for the single spin |Λ| = 1 measure (Example 2.9). This tensorisation property
has been generalised for β small enough in terms of mixing conditions and for
some spin systems up to the critical value βc, see [72] for a review. Indeed, for
β small, the interaction between the spins is small, in the sense that one can
show that correlations between spins decay exponentially in their distance. At
distances larger than a correlation length ξβ < ∞ approximate independence
between the spins is then recovered. By splitting the domain Λ into boxes (of size
larger than ξβ), and using appropriate conditionings the system can be analysed
as a renormalised model of weakly interacting spins [95]. In so-called second
order phase transitions, when β approaches the critical βc the correlation length
diverges as a function of βc − β, and so does the inverse log-Sobolev constant,
i.e., the dynamics slows down (as can usually be verified by simple test functions
in the spectral gap or log-Sobolev inequality). Spins are thus more and more
correlated for β close to βc. Nevertheless in some cases [72, 70, 71] the strong
dynamical mixing properties were derived up to the critical value βc by using a
strategy which however can be seen as a (large) perturbation of the product case
with respect to β > 0. For this reason, it seems difficult to extract the precise
divergence of the log-Sobolev constant near βc with this type of approach.

To study the detailed static features of measures of the form (2.67) close to βc,
different types of renormalisation schemes have been devised with an emphasis
on the Gaussian structure of the interaction. In many cases one expects that
the long range structure at the critical point is well described in terms of a
Gaussian free field [94]. Compared with the previously mentioned approaches,
the perturbation theory no longer uses the product measure as a reference, but
the Gaussian free field. In the following, this structure will serve as a guide to
decompose the entropy as alluded to in (2.52). Before describing this procedure
in Section 3, the elementary example of the Gaussian free field, which illustrates
the difficulty of many length scales equilibrating at different rates, is presented
in Example 2.12 below.

2.7. Difficulties arising from continuum perspective

The long-distance problem discussed in the previous subsection is closely related
to the short-distance problem occurring in the study of continuum limits as they
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appear in quantum field theory and weak interaction limits, which also arise as
invariant measure of (singular) SPDEs. In field theory, one is interested in the
physical behaviour of a measure that is defined not on a lattice, but in the
continuum (say on LTd with T

d = [0, 1)d the d-dimensional torus), formally
reading:

νL(dϕ) ∝ e−HL(ϕ)
∏

x∈LTd

dϕx. (2.68)

Now ϕ should be a (generalised) function from LTd to R, and a typical example
for HL would be the continuum ϕ4 model, defined for g > 0 and r ∈ R by:

HL(ϕ) = 1
2

∫
LTd

|∇ϕ|2 dx +
∫
LTd

[g
4ϕ(x)4 + r

2ϕ(x)2
]
dx. (2.69)

Of course, the formal definition (2.68) does not make sense as it stands, and a
standard approach to understand such measures is as a limit of measures defined
on lattices Λε,L = LTd ∩ εZd with a vanishing ε:

νε,L(dϕ) ∝ e−Hε,L(ϕ)
∏

x∈Λε,L

dϕx, (2.70)

for a discrete approximation Hε,L of HL of the form

Hε,L(ϕ) = εd−2

4
∑
y∼x

(
ϕy − ϕx

)2 + εd
∑

x∈Λε,L

V ε(ϕx), (2.71)

where the potential V ε is of the form (2.5). In the example of the ϕ4 model,
it turns out that such a limit can be constructed if d < 4, but in d � 2 the
coefficient μ of the potential must be tuned correctly as a function of ε → 0,
see Section 6.1 for details. This tuning is known as addition of “counterterms”
in quantum field theory. These are the infamous infinities arising there. The
relation to the statistical physics (long-distance) problem is that these limits
correspond to statistical physics models near a phase transition, with scaled
(weak) interaction strength (εdg → 0 as ε → 0). In particular, due to the coun-
terterms, the resulting measures are usually again very non-convex microscop-
ically, precluding the use of the Bakry–Émery theory and the Holley–Stroock
criteria. Nonetheless the regularisation parameter ε is not expected to have any
influence on the physics of the model, in the sense that the existence of a phase
transition, the speed of the Glauber dynamics, concentration properties, and so
on, should all be uniform in the small scale parameter ε and depend only on
the large scale parameter L. Techniques to control the regularisation parameter
ε are often simpler than for the large scale problem near the critical point, but
they are also based on renormalisation arguments relying on comparisons with
the Gaussian free field (corresponding to a quadratic Hε,L).

Finally, the problem of relaxation at different scales is illustrated next in this
simple model.
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Example 2.12 (Free field dynamics). Consider now the Gaussian free field
dynamics corresponding to V ε = 0 in (2.71):

dϕt = −Aϕt dt +
√

2dWt, (2.72)

where A is the Laplace operator on Λε,L as in (2.71) and the white noise is
defined with respect to the inner produce εd

∑
x∈Λε,L

uxvx, i.e., each Wt(x) is a
Brownian motion of variance ε−d. On the torus Λε,L = LTd ∩ εZd of mesh size
ε and side length L, the eigenvalues of the Laplacian are

p ∈ Λ∗
ε,L = (−π

ε
,
π

ε
]d ∩ 2π

L
Z
d λ(p) = ε−2

d∑
i=1

2(cos(εpi) − 1) ≈
|p|�1

−|p|2.

(2.73)
All Fourier modes of ϕ evolve independently according to Ornstein–Uhlenbeck
processes:

p ∈ Λ∗
ε,L : dϕ̂(p) = −λ(p)ϕ̂(p) dt +

√
2dŴt(p), (2.74)

where the Ŵ (p) = (Ŵt(p))t are independent standard Brownian motions for
p ∈ Λ∗. In particular, small scales corresponding to |p| � 1 converge very
quickly to equilibrium, while the large scales |p| � 1 are slowest. Thus the main
contribution to the log-Sobolev constant comes from the large scales and we
expect that a similar structure remains relevant in many interacting systems
close to a critical point.

In both the statistical and continuum perspectives, for measures with an in-
teraction V0(ϕ) =

∑
x∈Λ V (ϕx) �= 0 on top of the free field interaction, the main

difficulties result from the simple fact that the local (in real space) interaction
do not interact well with the above Fourier decomposition. The Polchinski flow
that we will introduce in the next section can be seen as a replacement for the
Fourier decomposition, in which the Fourier variable p takes the role of scale,
by a smoother scale decomposition.

3. Gaussian integration and the Polchinski equation

In this section, we first review abstractly a continuous renormalisation proce-
dure, which goes back to Wilson [94] and Polchinski [83, 27] in physics in the
context of equilibrium phase transitions and quantum field theory (viewed as
an problem of statistical mechanics in the continuum). We then explain how the
entropy of a measure can be decomposed by this method in order to derive a
log-Sobolev inequality via a multiscale Bakry–Émery criterion.

3.1. Gaussian integration

For C a positive semi-definite matrix on R
N , we denote by PC the corresponding

Gaussian measure with covariance C and by EC its expectation. The measure
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PC is supported on the image of C. In particular, if C is strictly positive definite
on R

N ,
EC [F ] ∝

∫
RN

e−
1
2 (ζ,C−1ζ)F (ζ) dζ. (3.1)

A fundamental property of the Gaussian measure is its semigroup property: if
C = C1 + C2 with C1, C2 also positive semi-definite then

EC [F (ζ)] = EC2 [EC1 [F (ζ1 + ζ2)]], (3.2)

corresponding to its probabilistic interpretation that if ζ1 and ζ2 are independent
Gaussian random variables then ζ1 + ζ2 is also Gaussian and the covariance of
ζ1 + ζ2 is the sum of the covariances of ζ1 and ζ2.

As discussed in Section 2.5, recall that our goal is to decompose the entropy
of a measure by splitting this measure into simpler parts as in (2.52). The above
Gaussian decomposition will be a basic step for this. As we have seen in Exam-
ple 2.12, the dynamics of a spin or particle system close to a phase transition
will depend on a very large number of modes and it will be necessary to iter-
ate the decomposition (3.2) many times in order to decouple all the relevant
modes. In fact, it is even convenient to introduce a continuous version of the
decomposition (3.2), as follows.

For a covariance matrix C as above, define an associated Laplace operator
ΔC on R

N :

ΔC =
∑
i,j

Cij
∂2

∂ϕi∂ϕj
, (3.3)

and write (·, ·)C for the inner product associated with the covariance C:

(u, v)C =
∑
i,j

Cijuivj and |u|2C = (u)2C = (u, u)C . (3.4)

The standard scalar product is denoted by (u, v) =
∑

i uivi.
Let t ∈ [0,+∞] �→ Ct be a function of positive semidefinite matrices on

R
N increasing continuously as quadratic forms to a matrix C∞. More precisely,

we assume that Ct =
∫ t

0 Ċs ds for all t, where t �→ Ċt is a bounded cadlag
(right-continuous with left limits) function with values in the space of positive
semidefinite matrices that is the derivative of Ct except at isolated points. We
say that C∞ =

∫∞
0 Ċs ds is a covariance decomposition and write X ⊂ R

N for
the image of C∞. We emphasise that the (closed) interval [0,+∞] parametrising
the covariances has no special significance and that all constructions will be in-
variant under appropriate reparametrisation. For example, one can equivalently
use [0, 1].

Proposition 3.1. For a C2 function F : X → R, let Ft = PCt ∗ F , i.e.,
Ft(ϕ) = ECt [F (ϕ + ζ)]. Then for all t which are not discontinuity points of Ċt,

∂

∂t
Ft = 1

2ΔĊt
Ft, F0 = F. (3.5)
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Thus the Gaussian measures PCt satisfy the heat equation

∂

∂t
PCt = 1

2ΔĊt
PCt , (3.6)

interpreted in a weak sense if Ct is not strictly positive definite.

Proof. In the case that Ct−ε is strictly positive definite for some ε > 0 (and
by monotonicity then also for all larger times), this is a direct computation
from (3.1). For t that are not discontinuity points of Ċt, the image Xs of Cs is
independent of s ∈ [t− ε, t+ ε] and one has the representation (3.1) on Xt.

Alternatively, one can prove the proposition using Itô’s formula. For any
ϕ ∈ R

N , define the process

∀t � 0 : ζt = ϕ +
∫ t

0

√
Ċs dBs ∈ R

N , (3.7)

where (Bs)s is a Brownian motion taking values in R
N . By construction ζt is

a Gaussian variable with mean ϕ and variance Ct =
∫ t

0 Ċs ds. In particular
Ft(ϕ) = E [F (ζt)] and by Itô’s formula,

∀t � 0 : ∂

∂t
Ft(ϕ) = E

[
1
2ΔĊt

F (ζt)
]

= 1
2ΔĊt

ECt [F (ϕ + ζ)] = 1
2ΔĊt

Ft(ϕ),

(3.8)
with the derivative interpreted as the right-derivative at the discontinuity points
of Ċt.

Note that the decomposition (3.7) is the natural extension of the discrete
decomposition ζ = ζ1 + ζ2. Given a covariance matrix C, many decompositions
are possible, such as:

C =
∫ ∞

0
Ċs ds with Ċs = C 1s∈[0,1). (3.9)

For a given model from statistical mechanics, it will be important to adjust the
decomposition according to the specific spatial structure (of Λ) of this model.
In Example 2.12, the Gaussian free field has covariance matrix A−1 with A the
discrete Laplace operator as in (2.3). There are many decompositions of A−1

of the form
∫∞
0 Ċs ds and the best choice will dependent on the application.

Nevertheless a suitable decomposition should capture the mode structure of the
decomposition (2.74) in order to separate the different scales in the dynamics.
Indeed, the key idea of a renormalisation group approach is to integrate the
different scales one after the other in order. This is especially important in
strongly correlated systems, in which the different scales do not decouple, and
integrating some scales has an important effect on the remaining scales: the
interaction potential will get renormalised. We refer to Section 6 for several
applications.
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3.2. Renormalised potential and Polchinski equation

In this section, we define the Polchinski flow and analyse its structure. A simple
explicit example is worked out in Example 3.5 below. We will focus on proba-
bility measures ν0 supported on a linear subspace X ⊂ R

N . By considering the
measure ν0(A−a) for a ∈ R

N , this also includes measures supported on an affine
subspace which is of interest for conservative dynamics. For generalisations to
non-linear spaces, see Section 3.6.

Let C∞ =
∫∞
0 Ċt dt be a covariance decomposition, and consider a probability

measure ν0 on X with expectation given by

Eν0 [F ] ∝ EC∞

[
e−V0(ζ)F (ζ)

]
, (3.10)

with a potential V0 : X → R, where the Gaussian expectation acts on the
variable ζ. To avoid technical problems, we always assume in the following that
V0 is bounded below. We are going to use the Gaussian representation introduced
in the previous subsection in order to decompose the measure ν0. For this, let
us first introduce some notation.

Definition 3.2. For t > s > 0, F : X → R bounded, and ϕ ∈ X, define:

• the renormalised potential Vt:

Vt(ϕ) = − log ECt

[
e−V0(ϕ+ζ)

]
; (3.11)

• the Polchinski semigroup Ps,t:

Ps,tF (ϕ) = eVt(ϕ)ECt−Cs

[
e−Vs(ϕ+ζ)F (ϕ + ζ)

]
; (3.12)

• the renormalised measure νt:

Eνt [F ] = Pt,∞F (0) = eV∞(0)EC∞−Ct

[
e−Vt(ζ)F (ζ)

]
, (3.13)

where all the Gaussian expectations apply to ζ.

We stress that the renormalised measure νt evolving according to the Polchin-
ski semigroup is different from the measure mt in (2.12) evolving along the flow
of the Langevin dynamics (which we will not discuss directly in this section).

Note that in (3.13), e+V∞(0) is the normalisation factor of the probability
measure νt. More generally, the function V∞ is equivalent to the moment gen-
erating function of the measure ν0: changing variables from ζ to ζ + C∞h,

V∞(C∞h) = − log EC∞ [e−V0(C∞h+ζ)] = 1
2(h,C∞h) − log EC∞ [e−V0(ζ)e(h,ζ)]

= 1
2(h,C∞h) − logEν0 [e(h,ζ)] + V∞(0).

(3.14)

The renormalised measure νt is related to ν0 by the following identity.



Stochastic dynamics and the Polchinski equation: An introduction 221

Proposition 3.3. For t � 0 and any F : X �→ R such that the following
quantities make sense,

Eν0 [F ] = Eνt [P0,tF ] . (3.15)

Proof. Starting from (3.10), from the Gaussian decomposition (3.2) we get

EC∞

[
e−V0(ζ)F (ζ)

]
= EC∞−Ct

[
ECt

[
e−V0(ϕ+ζ)F (ϕ + ζ)

]]
= EC∞−Ct

[
e−Vt(ϕ) e+Vt(ϕ)ECt

[
e−V0(ϕ+ζ)F (ϕ + ζ)

]]
∝ Eνt [P0,tF ] , (3.16)

where ζ is integrated with respect to ECt and ϕ with respect to EC∞−Ct . We
used the definitions (3.12) and (3.13) in the last line, and recall that ∝ is an
equality up to a normalising factor so that νt is a probability measure. This
completes the proof of the identity (3.15).

Using the definition (3.11) of Vt, the action of the Polchinski semigroup (3.12)
can be interpreted as a conditional expectation with respect to ϕ:

P0,tF (ϕ) =
ECt

[
e−V0(ϕ+ζ)F (ϕ + ζ)

]
ECt

[
e−V0(ϕ+ζ)

] =: Eμϕ
t
[F (ζ)]. (3.17)

This defines a probability measure μϕ
t called the fluctuation measure. Assuming

Ct is invertible and changing variables from ϕ+ ζ to ζ, the fluctuation measure
can be written equivalently as

μϕ
t (dζ) = e+Vt(ϕ)e−

1
2 (ϕ−ζ,C−1

t (ϕ−ζ))−V0(ζ) dζ ∝ e−
1
2 (ζ,C−1

t ζ)+(ζ,C−1
t ϕ)−V0(ζ) dζ.

(3.18)
Besides the addition of an external field C−1

t ϕ, the structure of this new measure
is similar to the one of the original measure ν0 introduced in (3.10), but the
covariance of the Gaussian integration is now Ct. By construction Ct � C∞,
so that the Hamiltonian of the conditional measure (3.17) is more convex and
will hopefully be easier to handle. The fluctuation measure is central in the
stochastic localisation framework which will be presented in Section 4.5.

For all bounded function F : X → R and all t > 0, the identity (3.15) reads

Eν0 [F ] = Eνt [P0,tF (ϕ)] = Eνt [Eμϕ
t
[F (ζ)]], (3.19)

where ϕ denotes the variable of νt and ζ the variable of μϕ
t . This is therefore

an instance of the measure decomposition (2.51) by successive conditionings.
The splitting of the covariance C∞ = C∞ − Ct + Ct will be chosen so that the
field ζ encodes the local interactions, which correspond to the fast scales of the
dynamics, and ϕ the long range part of the interaction, associated with the slow
dynamical modes. Integrating out the short scales boils down to considering
a new test function P0,tF (ϕ) and a measure νt (3.13) which is expected to
have better properties than the original measure ν0. This is illustrated in a
one-dimensional case in Example 3.5.
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Models from statistical mechanics often involve a multiscale structure when
approaching the phase transition. For this reason, it is not enough to split the
measure into two parts as in (3.15). The renormalisation procedure is based on
a recursive procedure with successive integrations of the fast scales in order to
simplify the measure step by step. As an example, let us describe a two step
procedure: for s < t, splitting the covariance into Cs, Ct − Cs, C∞ − Ct, can be
achieved by applying twice (3.15)

Eν0 [F ] = Eνs [P0,sF ] = Eνt

[
Ps,t

(
P0,sF

)]
= Eνt [P0,tF ] . (3.20)

Thus Ps,t inherits a semigroup property from the nested integrations. For in-
finitesimal renormalisation steps, we are going to show in Proposition 3.5 that
the Polchinski semigroup is in fact a Markov semigroup with a structure rem-
iniscent of the Langevin semigroup (2.13). To implement this renormalisation
procedure, one has also to control the renormalised measure νt. For infinites-
imal renormalisation steps, its potential Vt evolves according to the following
Hamilton–Jacobi–Bellman equation, known as Polchinski equation.

Proposition 3.4. Let (Ct) be as above, and let V0 ∈ C2. Then for every t such
that Ct is differentiable the renormalised potential Vt defined in (3.11) satisfies
the Polchinski equation

∂

∂t
Vt = 1

2ΔĊt
Vt −

1
2(∇Vt)2Ċt

(3.21)

where ΔĊt
was defined in (3.3) and the scalar product in (3.4).

Proof. Let Zt(ϕ) = ECt [e−V0(ϕ+ζ)]. By Proposition 3.1, it follows that the Gaus-
sian convolution acts as the heat semigroup with time-dependent generator
1
2ΔĊt

, i.e., if Z0 is C2 in ϕ so is Zt for any t > 0, that Zt(ϕ) > 0 for any
t and ϕ, and that for any t > 0 such that Ct is differentiable,

∂

∂t
Zt = 1

2ΔĊt
Zt, Z0 = e−V0 . (3.22)

Since Zt(ϕ) > 0 for all ϕ, its logarithm Vt = − logZt is well-defined and satisfies
the Polchinski equation

∂

∂t
Vt = −

∂
∂tZt

Zt
= −

ΔĊt
Zt

2Zt
= −1

2e
VtΔĊt

e−Vt = 1
2ΔĊt

Vt −
1
2(∇Vt)2Ċt

.

(3.23)

The semigroup structure is analysed in the following proposition. As men-
tioned above, we assume V0 to be bounded below to avoid technical problems.

Proposition 3.5. The operators (Ps,t)s�t form a time-dependent Markov semi-
group with generators (Lt), in the sense that

s � r � t : Pt,t = id and Pr,tPs,r = Ps,t, (3.24)
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and Ps,tF � 0 if F � 0 with Ps,t1 = 1.
Furthermore for all t at which Ct is differentiable (respectively s at which Cs

is differentiable),

s � t : ∂

∂t
Ps,tF = LtPs,tF, − ∂

∂s
Ps,tF = Ps,tLsF, (3.25)

for all smooth functions F , where Lt acts on a smooth function F by

LtF = 1
2ΔĊt

F − (∇Vt,∇F )Ċt
. (3.26)

The measures νt evolve dual to (Ps,t) in the sense that

Eνt [Ps,tF ] = Eνs [F ] (s � t), − ∂

∂t
Eνt [F ] = Eνt [LtF ] . (3.27)

The operator Lt in (3.26) is obtained by linearising the Polchinski equa-
tion (3.21) and has a structure similar to the generator ΔH defined in (2.10). Ac-
cording to (3.27), the renormalised measure evolves according to −∂tνt = L∗

t νt
where L∗

t is the formal adjoint of Lt (with respect to the Lebesgue measure).
This is another way to rephrase the Polchinski equation (3.21).

Proof. By assumption, V0 is bounded below. The weak convergence of the
Gaussian measure PCt−Cs to the Dirac measure at 0 when t ↓ s thus implies
Pt,t = id. The semi-group property, i.e. Pr,tPs,r = Ps,t for any s � r � t,
then follows from (3.20). The definition (3.12) also implies continuity since
‖Ps,tF‖∞ � ‖F‖∞ for each bounded F . Equation (3.12) also implies that
Ps,tF � 0 if F � 0.

To verify that the generator Lt of the Polchinski semigroup is given by (3.26),
set for s < t:

Fs,t(ϕ) = Ps,tF (ϕ) = eVt(ϕ)ECt−Cs [e−Vs(ϕ+ζ)F (ϕ + ζ)]. (3.28)

Computing the time derivatives using Propositions 3.1 and 3.4, this leads to

∂

∂t
Fs,t = ( ∂

∂t
Vt)Fs,t + eVt

1
2ΔĊt

ECt−Cs [e−Vs(·+ζ)F (· + ζ)]

= ( ∂
∂t

Vt)Fs,t + eVt
1
2ΔĊt

(e−VtFs,t)

= ( ∂
∂t

Vt)Fs,t − (1
2ΔĊt

Vt)Fs,t + 1
2(∇Vt)2Ċt

Fs,t + 1
2ΔĊt

Fs,t − (∇Vt,∇Fs,t)Ċt

= 1
2ΔĊt

Fs,t − (∇Vt,∇Fs,t)Ċt

= LtFs,t, (3.29)

which is the first equality in (3.25). The second equality in (3.25) follows anal-
ogously.
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The first equality in (3.27) holds as in Proposition 3.3. The second identity
follows by taking derivatives in s in the first identity and then using (3.25) so
that

∂

∂s
Eνs [F ] = ∂

∂s
Eνt [Ps,tF ] = Eνt

[
∂

∂s
Ps,tF

]
= −Eνt [Ps,tLsF ] . (3.30)

For t = s then Ps,sLsF = LsF and the second identity in (3.27) is recovered.

3.3. Log-Sobolev inequality via a multiscale Bakry–Émery method

In this section, the Polchinski renormalisation is used to derive a log-Sobolev
inequality under a criterion on the renormalised potentials, which can be inter-
preted as a multiscale condition generalising the strict convexity of the Hamil-
tonian in the Bakry–Émery criterion (Theorem 2.8).

We impose the following technical continuity assumption analogous to (2.18):
for all bounded smooth functions F : X → R and g : R → R,

lim
t→∞

Eνt [g(P0,tF )] = g
(
Eν0 [F ]

)
. (3.31)

This can be easily checked in all examples of practical interest.

Theorem 3.6. Consider a measure ν0 of the form (3.10) associated with a
covariance decomposition Ċt differentiable for all t (see Section 3.2), and assume
also (3.31).

Suppose there are real numbers λ̇t (allowed to be negative) such that

∀ϕ ∈ X, t > 0 : Ċt HessVt(ϕ)Ċt −
1
2 C̈t � λ̇tĊt, (3.32)

and define

λt =
∫ t

0
λ̇s ds,

1
γ

=
∫ ∞

0
e−2λt dt. (3.33)

Then ν0 satisfies the log-Sobolev inequality

Entν0 [F ] � 2
γ
Eν0

[
(∇

√
F )2

Ċ0

]
. (3.34)

Contrary to the Bakry–Émery criterion (Theorem 2.8), the initial potential
V0 is not required to be convex. The relevant parameter is an integrated esti-
mate (3.33) on the Hessian of the renormalised potentials Vt. Thus if one can
prove that the renormalisation flow improves the non-convexity of the original
potential so that the integral in (3.33) is finite, then the log-Sobolev inequal-
ity holds. In the case of convex potential V0, the convexity is preserved by the
Polchinski equation (see Proposition 3.13) and the Bakry–Émery criterion can
be recovered. In general, the analysis of the renormalised potential Vt is model
dependent.
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The covariances Ċt play the role of an inverse metric on X. In our examples
of interest, this metric becomes increasingly coarse approximately implementing
the “block spin renormalisation picture”. See Section 3.6 for further discussion
of this.

Remark 3.7. With the same proof, the log-Sobolev inequality (3.34) can be
generalised to one for each of the renormalised measures νs:

Entνs(F ) � 2
γs

Eνs

[
(∇

√
F )2

Ċs

]
,

1
γs

=
∫ ∞

s

e−2(λu−λs) du. (3.35)

Remark 3.8. The condition (3.32)–(3.34) is invariant under reparametrisation
in t. For example, if a : [0,+∞] → [0,+∞] is a smooth reparametrisation, set

Ca
t = Ca(t), V a

t = Va(t). (3.36)

Then Ċa
t = ȧ(t)Ċa(t) and C̈a

t = ä(t)Ċa(t) + ȧ(t)2C̈a(t) and therefore (3.32) is
equivalent to

Ċa
t HessV a

t Ċ
a
t − 1

2 C̈
a
t = ȧ(t)2

[
Ċa(t) HessVa(t)Ċa(t) −

1
2 C̈a(t)

]
− 1

2 ä(t)Ċa(t)

� λ̇a
t Ċ

a
t (3.37)

with
λ̇a
t = ȧ(t)λ̇a(t) −

1
2
ä(t)
ȧ(t) = ȧ(t)λ̇a(t) −

1
2
∂

∂t
log ȧ(t). (3.38)

Thus (3.33) becomes

λa
t =

∫ t

0
λ̇a
s ds =

∫ t

0
ȧ(s)λ̇a(s) ds−

1
2 log ȧ(t)

ȧ(0) , (3.39)

and hence

Ċa
0

∫ ∞

0
e−2λa

t dt = Ċa
0

ȧ(0)

∫ ∞

0
e−2

∫ t
0 λ̇a(s)ȧ(s) ds ȧ(t) dt

= Ċ0

∫ ∞

0
e−2

∫ u
0 λ̇u du du = Ċ0

∫ ∞

0
e−2λu du. (3.40)

Analogously, one can parametrise by [0, T ] instead of [0,+∞], i.e., use a
covariance decomposition C =

∫ T

0 Ċt dt, and then obtain the same conclusion
with T instead of ∞ in the estimates.

Remark 3.9. For a covariance decomposition such that Ċt is not differentiable
for all t, an alternative criterion that does not involve C̈t can be formulated,
see [15, Theorem 2.6].

Proof of Theorem 3.6. The proof follows the strategy of the Bakry–Émery the-
orem (Theorem 2.8), replacing the Langevin dynamics by the Polchinski flow.
We consider a curve of probability measures (νt)t�0 and a corresponding dual
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time-dependent Markov semigroup (Ps,t) with generators (Lt) as in Proposi-
tion 3.5.

For F : X → R a function with values in a compact subset I of (0,∞), we
write Ft = P0,tF ∈ I. Since the function Φ is smooth on I, it can be extended
to a bounded smooth function on R and we deduce from (3.31) that

lim
t→∞

Eνt [Φ(P0,tF )] = Φ
(
Eν0 [F ]

)
. (3.41)

Thus

Entν0(F ) = Eν0 [Φ(F )] − Φ(Eν0 [F ]) = −
∫ ∞

0
dt

∂

∂t
Eνt [Φ(Ft)]. (3.42)

It remains to prove the counterpart of the de Bruijn Formula (2.31). Denoting
Ḟt = ∂

∂tFt, using first (3.27) and then (3.26), it follows that

− ∂

∂t
Eνt [Φ(Ft)] = Eνt

[
Lt(Φ(Ft)) − Φ′(Ft)Ḟt

]

= Eνt

[
Φ′(Ft)LtFt + Φ′′(Ft)

1
2(∇Ft)2Ċt

− Φ′(Ft)Ḟt

]

= 1
2Eνt

[
Φ′′(Ft)(∇Ft)2Ċt

]
= 2Eνt

[
(∇

√
Ft)2Ċt

]
. (3.43)

Integrating this relation using (3.42) gives

Entν0(F ) = 2
∫ ∞

0
Eνt

[
(∇

√
P0,tF )2

Ċt

]
dt. (3.44)

The above entropy production formula (3.43) is analogous to the de Bruijn iden-
tity (2.31) and the entropy decomposition to (2.45), but an important difference
is that the reference measure νt here changes as well. In Section 2, we used that
Eν [ΔHF ] = 0 for any F in the derivation of the de Bruijn identity, but more
conceptually what we used is that the measure ν satisfies

− ∂

∂t
Eν [·] = Eν [ΔH(·)], (3.45)

since both sides are 0 (because the stationary measure ν does not depend on t).
In the computation above, both νt and Ft vary with t, but in a dual way, and
the analogue of (3.45) is (3.15).

It remains to derive the counterpart of (2.46) and show that

∀t � 0 : (∇
√

P0,tF )2
Ċt

� e−2λtP0,t

[
(∇

√
F )2

Ċ0

]
. (3.46)

Plugging this relation in (3.44) and recalling that

Eνt

[
P0,t

[
(∇

√
F )2

Ċ0

]]
= Eν0

[
(∇

√
F )2

Ċ0

]
,
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the log-Sobolev inequality (3.34) is recovered.

We turn now to the proof of (3.46). The following lemma is essentially the
Bakry–Émery argument adapted to the Polchinski flow.

Lemma 3.10. Let Lt, P0,t, Ċt, Vt be as in Section 3.2. Then the following
identity holds for any t-independent positive definite matrix Q:

(Lt − ∂t)(∇
√

P0,tF )2Q =2(∇
√

P0,tF ,HessVtĊt∇
√
P0,tF )Q (3.47)

+ 1
4(P0,tF )|Ċ1/2

t (Hess logP0,tF )Q1/2|22,

where |M |22 =
∑

p,q |Mpq|2 denotes the squared Frobenius norm of a matrix
M = (Mpq).

The derivation of the lemma is postponed. Applying it with Q = Ċt implies

(Ls−∂s)(∇
√

P0,sF )2
Ċs

=2(∇
√

P0,sF,HessVsĊs∇
√

P0,sF )Ċs
−(∇

√
P0,sF )2

C̈s

+ 1
4(P0,sF )|Ċ1/2

s (Hess logP0,sF )Ċ1/2
s |22. (3.48)

By the assumption (3.32) and since the last term is positive, it follows that

(Ls − ∂s)(∇
√

P0,sF )2
Ċs

� 2λ̇s(∇
√

P0,sF )2
Ċs

. (3.49)

Equivalently, ψ(s) := e−2λt+2λsPs,t

[
(∇

√
P0,sF )2

Ċs

]
satisfies ψ′(s) � 0 for s <

t. This implies ψ(t) � ψ(0) so that (3.46) holds.

At first sight, the proof of Theorem 3.6 may seem mysterious, but the idea
is simply to iterate the entropy decomposition (2.52) by using the Polchinski
flow to decompose the measure into its scales. To illustrate this, let us consider
a discrete decomposition of the entropy using the Polchinski flow. Given δ > 0
and the sequence (ti = iδ)i�0, one has

Entν0(F ) = Eν0 [Φ(F )] − Φ(Eν0 [F ])

=
∑
i

Eνti
[Φ(P0,ti(F ))] − Eνti+1

[Φ(P0,ti+1(F ))]

=
∑
i

Eνti+1
[Pti,ti+1Φ(P0,ti(F )) − Φ(P0,ti+1(F ))]

=
∑
i

Eνti+1
[EntPti,ti+1

(P0,ti(F ))]. (3.50)

The measure Pti,ti+1 associated with a small increment satisfies a log-Sobolev
inequality as the associated Gaussian covariance Cti+1 − Cti is tiny for δ small
(so that the Hamiltonian corresponding to the measure Pti,ti+1 is extremely con-
vex). This suggests that for each interval [ti, ti+1], one can reduce to estimating
Eνti+1

[(∇
√
P0,ti(F ))2

δĊti

] and the delicate issue is then to interchange ∇ and
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P0,ti (note that a similar step already occurred even in the product case (2.59)).
Such a discrete decomposition was implemented in [14] to derive a spectral gap
for certain models. The proof of Theorem 3.6 relies on the limit where δ tends to
0 which greatly simplifies the argument as the analytic structure of the Polchin-
ski flow kicks in.

Proof of Lemma 3.10. For a more detailed proof, see [15, Lemma 2.8]. One can
first verify the so-called ‘Bochner formula’:

(Lt − ∂t)(∇P0,tF )2Q = 2(∇P0,tF,HessVtĊt∇P0,tF )Q + |Ċ1/2
t HessP0,tFQ1/2|22.

(3.51)
The claim (3.47) then follows: writing F instead of P0,tF for short, dropping
other t-subscripts,

(Lt − ∂t)(∇
√
F )2Q =

(Lt − ∂t)(∇F )2Q
4F −

(∇F )2Q(Lt − ∂t)F
4F 2

−
(∇(∇F )2Q,∇F )Ċ

4F 2 +
(∇F )2Q(∇F )2

Ċ

4F 3 . (3.52)

Using (Lt − ∂t)F = 0 and (3.51) the right-hand side equals that in (3.47) since

F |Ċ1/2 Hess logFQ1/2|22 = |Ċ1/2 HessFQ1/2|22
F

−
(∇(∇F )2Q,∇F )Ċ

F 2

+
(∇F )2Q(∇F )2

Ċ

F 3 . (3.53)

To see this, observe that the left-hand side is (with summation convention)

FĊijQkl(Hess logF )ik(Hess logF )jl = FĊijQkl(
Fik

F
− FiFk

F 2 )(Fjl

F
− FjFl

F 2 ),
(3.54)

and the right-hand side is

ĊijQkl

[
FikFjl

F
− (FkFl)iFj

F 2 + FiFjFkFl

F 3

]
. (3.55)

So both are indeed equal.

3.4. Derivatives of the renormalised potential

Checking the multiscale assumption in Theorem 3.6 boils down to controlling
the Hessian of the renormalised potential Vt. For a well chosen covariance de-
composition, the structure of the potential Vt is often expected to improve along
the flow of the Polchinski equation (3.21). In particular, one may hope that Vt

becomes more convex. This is illustrated in the Example 3.5 below which con-
siders the case of a single variable. However, for a given microscopic model the
convexification can be extremely difficult to check. Some examples where it is
possible are discussed in Section 6.
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Even though the analysis of the derivatives of Vt is model dependent, we state
a few general identities for these derivatives which will be used later.

Lemma 3.11. Let Ut = ∇Vt and Ht = HessVt. Then

∂tUt = LtUt, ∂tHt = LtHt −HtĊtHt. (3.56)

Moreover, for all f ∈ X and t � s � 0,

(f,∇Vt) = Ps,t(f,∇Vs), (3.57)

(f,HessVtf) = Ps,t(f,HessVsf) −
[
Ps,t((f,∇Vs)2) − (Ps,t(f,∇Vs))2

]
. (3.58)

Proof. (3.56) follows by differentiating (3.21).
To recover (3.57), we recall from (3.11) that Vt(ϕ) = − log ECt−Cs

[
e−Vs(ϕ+ζ)].

Identity (3.57) follows by differentiating and then identifying Ps,t by (3.12)

∇Vt(ϕ) =
ECt−Cs

[
e−Vs(ϕ+ζ)∇Vs(ϕ + ζ)

]
ECt−Cs

[
e−Vs(ϕ+ζ)

] = Ps,t(∇Vs)(ϕ). (3.59)

Identity (3.58) can then be obtained by taking an additional derivative in the
previous expression.

Alternatively, one can rewrite the derivatives of the renormalised potential
in terms of the fluctuation measure μϕ

t introduced in (3.18).

Lemma 3.12. The first derivative of the renormalised potential is related to an
expectation

∇Vt(ϕ) = Eμϕ
t
[∇V0(ζ)] = Eμϕ

t
[C−1

t (ϕ− ζ)]. (3.60)

The second derivative is encoded by a variance under the fluctuation measure

∀f ∈ X : (f,HessVt(ϕ)f) = Eμϕ
t
[(f,HessV0(ζ)f)] − Varμϕ

t

(
(f,∇V0(ζ))

)
(3.61)

= (f, C−1
t f) − Varμϕ

t

(
(C−1

t f, ζ)
)
,

where the second equalities hold if Ct is invertible.

Proof. The first part of (3.60) follows from the identity ∇Vt = P0,t(∇V0) ob-
tained in (3.57) and the identification of the fluctuation measure μϕ

t with the
semigroup P0,t in (3.17). The second equality is obtained by an integration by
parts using the form (3.18) of the fluctuation measure.

In the same way the first equality in (3.61) is deduced from (3.58) by identify-
ing P0,t and μϕ

t . The second equality follows by differentiating ϕ �→ Eμϕ
t
[C−1

t (ϕ−
ζ)] and using (3.18).

We consider the case of convex potentials and show that they remain convex
along the Polchinski flow.



230 R. Bauerschmidt et al.

Proposition 3.13. Assume that V0 is convex. Then Vt is convex for all t � 0.

Thus the standard Bakry–Émery criterion can be recovered from Theorem 3.6:
if HessH � λ id one can choose A = λ id and HessV0 � 0 and Theorem 3.6 guar-
antees the log-Sobolev inequality with constant

1
γ

�
∫ ∞

0
e−λt dt = 1

λ
. (3.62)

This follows from criterion (3.32) applied with Ċt = e−λt id so that C̈t =
−λe−λt id and λ̇t = λ/2. Note that the decomposition Ċt = id on [0, T ] with
T = 1

λ (see Remark 3.8) could have been used instead.

Proof 1. If V0 is convex, then e−Vt(ϕ) is the marginal of the probability measure
∝ e−V0(ϕ+ζ) PCt(dζ), with density log-concave in (ζ, ϕ). A theorem of Prékopa
then implies that Vt is convex. It is also possible to directly compute the Hessian:
the Brascamp–Lieb inequality [26, Theorem 4.1] states that if a probability
measure ∝ e−H has strictly convex potential H then

Var(F ) � E[(∇F, (HessH)−1∇F )]. (3.63)

Thus by the first identity in (3.61) and then applying the Brascamp–Lieb in-
equality to estimate the variance, we get

HessVt(ϕ) = Eμϕ
t
[HessV0(ζ)] − Varμϕ

t
(∇V0(ζ))

� Eμϕ
t

[
HessV0(ζ) − HessV0(ζ)(C−1

t + HessV0(ζ))−1 HessV0(ζ))
]

= Eμϕ
t

[
HessV0(ζ)(C−1

t + HessV0(ζ))−1C−1
t

]
= Eμϕ

t

[
C

−1/2
t C

1/2
t HessV0(ζ)C1/2

t ( id + C
1/2
t HessV0(ζ)C1/2

t )−1C
−1/2
t

]
.

(3.64)

Therefore, with Ĥt = C
1/2
t HessV0C

1/2
t � 0,

C
1/2
t HessVt(ϕ)C1/2

t � Eμϕ
t

[
Ĥt(ζ)

id + Ĥt(ζ)

]
� 0. (3.65)

Proof 2 from [59, Theorem 9.1], [33, Theorem 3.3]. This alternative approach
puts the emphasis on the PDE structure associated with the renormalised po-
tential by application of the maximum princple. We give the gist of the proof and
refer to [33, Theorem 3.3, page 129] for a complete argument. Let Ht = HessVt

with H0 > 0, and recall (3.56):

∂Ht

∂t
= LtHt −HtĊtHt. (3.66)

Now assume there is a first time t0 > 0 and ϕ0 ∈ X such that Ht0(ϕ0) has a 0
eigenvalue with eigenvector v0, i.e., Ht0(ϕ0)v0 = 0. Define ft(ϕ) = (v0, Ht(ϕ)v0).
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Therefore
∂ft0(ϕ0)

∂t
= Lt0ft0(ϕ0) − (v0, Ht0(ϕ0)Ċt0Ht0(ϕ0)v0) � 0, (3.67)

where we used that ft0(ϕ) is minimum at ϕ0 so that by the maximum principle
Lt0ft0(ϕ) = 1

2ΔĊt0
ft0(ϕ) � 0 and that by construction

(v0, Ht0(ϕ0)Ċt0Ht0(ϕ0)v0) = 0.

This shows that ft(ϕ0) cannot cross 0 after t0. A more careful argument involves
regularisation, see [33, Theorem 3.3].

We end this section with a rescaling property of the Polchinski equation.

Example 3.14. Similarly to (3.14), write the renormalised potential as

Vt(ϕ) = 1
2(ϕ,C−1

t ϕ) + Ft(C−1
t ϕ), (3.68)

where Ft(h) = Vt(0)− log ECt [e−V0(ζ)+(h,ζ)] is the normalised log partition func-
tion of the fluctuation measure at external field h. Then the Polchinski equation
for V is equivalent to a different Polchinski equation for F :

∂

∂t
Ft = 1

2ΔΣ̇t
Ft−

1
2(∇Ft)2Σ̇t

+Tr(C−1
t Ċt), where Σ̇t = C−1

t ĊtC
−1
t . (3.69)

Note that Tr(C−1
t Ċt) is only a constant. Indeed, Ft(h) = Vt(Cth) − 1

2 (h,Cth)
and thus

∇Ft = Ct∇Vt − Cth, ΔΣ̇t
Ft = ΔĊt

Vt − Tr(C−1
t Ċt), (3.70)

and
∂

∂t
Ft = 1

2ΔĊt
Vt −

1
2(∇Vt)2Ċt

+ (∇Vt, Ċth) − 1
2(h, Ċth)

= 1
2ΔĊt

Vt −
1
2(h−∇Vt)2Ċt

= 1
2ΔΣ̇t

Ft −
1
2(∇Ft)2Σ̇t

+ Tr(C−1
t Ċt). (3.71)

3.5. Example: convexification along the Polchinski flow for one
variable

The aim of this section is to illustrate the claims that the renormalised measure
becomes progressively simpler and convex along the Polchinski flow using a
simple one variable example. Let H : R → R be a C2 potential that is strictly
convex outside of a segment: inf |x|�M H ′′(x) � c > 1 for some c,M > 0, but
assume that infR H ′′ < 0, and consider the measure:

ν0(dϕ) ∝ e−H(ϕ) dϕ ∝ exp
[
−ϕ2

2 −V0(ϕ)
]
dϕ, V0(ϕ) := H(ϕ)−ϕ2

2 . (3.72)
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In (3.72), the Gaussian part 1
2ϕ

2 is singled out to define the Polchinski flow, but
this is just a convention up to redefining V0.

By assumption, ν0 is not log-concave, and the Bakry–Émery criterion (The-
orem 2.8) does not apply. Let us stress that there are many ways to obtain a
log-Sobolev inequality for the above measure. Our goal, however, is to exemplify
that, using the Polchinski flow, how one can still use a convexity-based argu-
ment, the multiscale Bakry–Émery criterion of Theorem 3.6, by relying on the
convexity of the renormalised measures νt that will be more log-concave than
ν0.

The Polchinski flow is defined in terms of a covariance decomposition, which is
supposed to decompose the Gaussian part of ν0 into contributions from different
scales. In the statistical mechanics examples discussed in Sections 2.6–2.7, the
notion of scale was linked with the geometry of the underlying lattice (e.g.,
small scales corresponding to information pertaining to spins at small lattice
distance). In the single variable case, there is no geometry, thus the Gaussian
part does not have any structure. The only meaningful decomposition, written
here on [0, 1] instead of [0,∞) for convenience, is therefore:

∀t ∈ [0, 1] : Ct := t id, Ċt = id. (3.73)

The corresponding renormalised potential reads:

e−Vt(ϕ) = 1√
2πt

∫
R

exp
[
− ζ2

2t − V0(ζ + ϕ)
]
dζ, (3.74)

and the renormalised measure νt defined in (3.13) and fluctuation measure μϕ
t

defined in (3.18) are respectively given by:

νt(dϕ) ∝ exp
[
− ϕ2

2(1 − t) −Vt(ϕ)
]
dϕ, μϕ

t (dζ) ∝ exp
[
− ζ2

2t + ζϕ

t
−V0(ζ)

]
dζ.

(3.75)
Note that in terms of the original Hamiltonian H(ζ) = V0(ζ)+ ζ2

2 , the fluctuation
measure μϕ

t is more convex than the initial one:

μϕ
t (dζ) ∝ exp

[
− ζ2

2
(1
t
− 1

)
+ ζϕ

t
−H(ζ)

]
dζ. (3.76)

In other words, e−Vt is the convolution of e−V0 with the heat kernel on R at
time t, and the Polchinski equation becomes the following well-known Hamilton–
Jacobi–Bellman equation:

∂tVt = 1
2∂

2
ϕVt −

1
2(∂ϕVt)2. (3.77)

The motivation for the Polchinski decomposition was that one progressively in-
tegrates “small scales” to recover a measure νt acting on “large scales” that one
hopes to be better behaved. In the present case, the only notion of scale refers
to the size of fluctuations of the field:
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• Even though V0 may vary a lot on small values of the field, the convo-
lution with the heat kernel at time t means Vt is roughly constant on values
much smaller than

√
t. Thus small details of V0 are blurred, and Vt varies more

slowly than V0. This is the translation to the present case of the general idea
that “small scales” (i.e., values below

√
t) have been removed from Vt and the

renormalised potential only sees the “large scales” (values above
√
t).

• Convolution also improves convexity, in the sense that the renormalised
measure νt is more log-concave that ν0. Since x �→ 1

2(1−t)ζ
2 becomes increasingly

convex as t approaches 1, proving this statement boils down to proving a lower
bound on ∂2

ϕVt uniformly on t ∈ [0, 1]. Semi-convexity estimates for solutions
of the Polchinski equation (3.77) are an active subject of research, connected
with optimal transport with entropic regularisation, see, e.g., [48, 32, 35, 36]
and references therein and Section 5.1 below. Informally, the convexity of Vt is
given by that of V0, plus an “entropic” contribution due to the 1

2tζ
2 term. In

the present simple case, one can directly compute:

∂2
ϕVt(ϕ) = 1

t
− 1

t2
Varμϕ

t
(ζ). (3.78)

This is an instance of the formula of Lemma 3.12 valid for a general covari-
ance decomposition. It is an example of a general feature of the multiscale
Bakry-Émery criterion: the log-Sobolev constant, which is not a priori related
to spectral properties of the model, can be estimated by lower bounds on ∂2

ϕVt

which are related to variance bounds, i.e., spectral information.

Exercise 3.15. Using the Brascamp-Lieb inequality (3.63) for t < t0 with
t−1
0 := − infR V ′′

0 , and the fact that μϕ
t satisfies a spectral gap inequality with

constant C uniformly in ϕ ∈ R and t > 0, we deduce:

∂2
ϕVt � λ̇t := 1[0,t0/2](t)

( −1
t0 − t

)
+ 1[t0/2,1](t)

(1
t
− C

t2

)
. (3.79)

The uniform lower bound (3.79) confirms that νt gets more log-concave as
t approaches 1. Injecting the bound (3.79) into the multiscale Bakry–Émery
criterion of Theorem 3.6 provides a bound on the log-Sobolev constant γ of ν0
in terms on parameter t0.

Let us reiterate that one could have obtained a bound on the log-Sobolev con-
stant by standard combination of the usual Bakry–Émery and Holley–Stroock
criteria, and here just illustrated that the semi-convexity condition of Theo-
rem 3.6 remains effective in non-convex cases. Theorem 3.6 becomes especially
useful in situations with a large state space, where the combination of the
Bakry-Émery and Holley-Stroock criteria do not yield dimension-independent
bounds on the log-Sobolev constant while effective methods to control the semi-
convexity may still exist, see Section 6.
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3.6. Aside: geometric perspective on the Polchinski flow

There is a structural resemblance of the renormalisation group flow with geo-
metric flows like the Ricci flow. The matrices Ċt take the role of the inverse of
a metric gt (depending on the flow parameter t). We sketch the interpretation
of the Ċt as a scale-dependent metric on the space of fields, and the natural
extension of the above construction in the presence of a non-flat metric.

Suppose (X, g) is a Riemannian manifold. The metric and its components in
coordinates are denoted

g = (gij), gij = (g−1)ij , |g| = |det g|, (3.80)

the volume form is
mg(dϕ) =

√
|g| dϕ, (3.81)

and the covariant derivative and Laplace-Beltrami operator are (with summa-
tion convention)

∇g = gij∂j , divgU = 1√
|g|

∂i(
√
|g|U i), ΔgF = 1√

|g|
∂i(

√
|g|gij∂jF ).

(3.82)
In particular,

Hessg f = ∇g∇gf = gik∂k(gjl∂lf), (3.83)
and

(∇gF )2g = g(∇gF,∇gF ) = gij(∂iF )(∂jF ). (3.84)
For a t-dependent metric gt, the volume form changes according to

∂

∂t
dmgt = ( ∂

∂t
log

√
|gt|) dmgt = 1

2 Tr(g−1
t ġt) dmgt . (3.85)

The Ricci curvature tensor associated with the metric g is denoted Ricg.

Remark 3.16. The notation Δgt for the Laplace-Beltrami operator is differ-
ent from our previous notation for the covariance-dependent Laplacian ΔĊt

from (3.3). Indeed, the notation differs by an inverse in the index: The Gaus-
sian Laplacian ΔĊt

corresponds to a Laplace-Beltrami operator if g−1
t = Ċt.

Thus the infinitesimal covariance Ċt plays the role of the inverse of a metric.

Example 3.17. In the above notation, we can reformulate the previous con-
struction as follows: The covariance decomposition is written as

A−1 =
∫ ∞

0
g−1
t dt. (3.86)

Then the Polchinski equation reads
∂

∂t
Vt = 1

2ΔgtVt −
1
2(∇gtVt)2gt , (3.87)

and the condition (3.32) for the log-Sobolev inequality becomes:

Hessgt Vt + 1
2 ġt � λ̇tgt. (3.88)
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Example 3.18. Suppose that A is a Laplace operator on Λ ⊂ Z
d and that

Ċt = e−tA is its heat kernel. Thus the metric gt = e+tA is the inverse heat
kernel. This means that

|f |gt � 1 ⇔ |etAf | � 1, (3.89)

i.e., f = e−tAg for some |g| � 1 where | · | denotes the standard Euclidean
norm. Therefore the unit ball in the metric gt corresponds to elements f that
are obtained by smoothing out elements of the standard unit ball by the heat
kernel up to time t. In this sense, the geometry associated with gt implements
an approximate block spin picture (in which block averaging has been replaced
by convolution with a heat kernel).

We now consider the natural extension to a non-flat metrics. The Laplacian
in the presence of a potential H and metric g is

ΔH
g = eHdivg(e−H∇gF ). (3.90)

The analogue of Lemma 3.10 (with Q = Ċt) is as follows.

Lemma 3.19.

(Lt − ∂t)(∇g

√
F )2g = (ġ + 2 Hessg Vt + Ricg)(∇g

√
F ,∇g

√
F ) + 1

4 |Hessg logF |2g.
(3.91)

Proof. The Bochner formula with a background metric [9, Theorem C.3.3] im-
plies:

(Lt − ∂t)(∇gF )2g = (ġ + 2 Hessg Vt + Ricg)(∇gF,∇gF ) + |Hessg F |2g. (3.92)

The Bakry–Émery version (with
√
F instead of F ) then follows as in the proof

of Lemma 3.10.

For t ∈ [0, T ) with T ∈ (0,+∞], assume that gt is a given t-dependent metric
and that Zt dmgt evolves according to the associated backward heat equation:

∂

∂t
Zt dmgt = (−1

2ΔgtZt) dmgt . (3.93)

The measure Zt dmgt takes the role of the Gaussian measure with covariance
C∞ − Ct. Assume:

∂

∂t
Vt = 1

2ΔgtVt −
1
2(∇gtVt)2gt (3.94)

∂

∂t
Ft = 1

2ΔgtFt − (∇gtVt,∇gtFt) = LtFt. (3.95)

The last equation defines the semigroup Ps,tF with generators Lt. The renor-
malised measure νt is defined by

Eνt [F ] ∝
∫

Fe−VtZt dmgt . (3.96)



236 R. Bauerschmidt et al.

One can check that
∂

∂t
Eνt [P0,tF ] = 0, (3.97)

and that the renormalised measure νt again evolves in a dual way to Ps,t: for
t < T ,

∂

∂t
Eνt [F ] = −Eνt [LtF ]. (3.98)

The analogue of the continuity assumption (3.31) is

Eνt [g(P0,tF )] → g(Eν0 [F ]), (t → T ). (3.99)

Since the evolution of Zt is in general not explicit in the nonflat case, differently
from before, this is now an assumption that seems difficult to verify. The same
proof as that of Theorem 3.6 using Lemma 3.19 instead of Lemma 3.10 gives
the following condition for the log-Sobolev inequality.

Theorem 3.20. Assume that the continuity assumption (3.99) holds. Suppose
there are λ̇t (allowed to be negative) such that

∀ϕ ∈ X, t > 0 : Hessgt(ϕ) Vt(ϕ) + 1
2 Ricgt(ϕ) +1

2 ġt(ϕ) � λ̇tgt(ϕ), (3.100)

and define

λt =
∫ t

0
λ̇s ds,

1
γ

=
∫ T

0
e−2λt dt. (3.101)

Then ν0 satisfies the log-Sobolev inequality

Entν0(F ) � 2
γ
Eν0

[
(∇

√
F )2g0

]
. (3.102)

We currently do not know of any interesting applications of the generalised
set-up of Theorem 3.20 over that of Theorem 3.6, but it would be very interesting
to find some.

Some references with related constructions (though different motivation) in
the context of the Ricci flow appeared in [82] and then [74, 69] and more recently
[92, 63, 64, 60].

3.7. Aside: entropic stability estimate

An approach different from the Bakry–Émery method to prove (modified) log-
Sobolev inequalities, using the same Polchinski flow, is the entropic stability
estimate which underlies [31] and has its origins in the spectral and entropic in-
dependence conditions introduced in [6] and [4]. In [31], this method is applied
from the stochastic localisation perspective whose equivalence with the Polchin-
ski flow is discussed in Section 4.5. In this section, we rephrase the entropic
stability strategy of [31] with the notations of the Polchinski flow to explain the
connection with the Bakry–Émery method.
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Let us first introduce some notation. For a probability measure μ on X (with
all exponential moments) and h ∈ X write Thμ for the tilted probability mea-
sure:

dThμ

dμ
(ζ) = e(h,ζ)

Eμ[e(h,ζ)]
, (3.103)

and Cov(μ) for the covariance matrix of μ. The key estimate is a proof of the
entropic stability from a covariance assumption.

Lemma 3.21 (Entropic stability estimate [31, Lemmas 31 and 40]). Let μ be a
probability measure on X, let Σ̇ be a positive semi-definite matrix, and assume
there is α > 0 such that

∀h ∈ X : Σ̇ Cov(Thμ)Σ̇ � αΣ̇. (3.104)

Then for all nonnegative F with Eμ[F ] = 1,

1
2(Eμ[Fζ] − Eμ[ζ])2Σ̇ � αEntμ(F ). (3.105)

In [31, Definition 29], this inequality is called α-entropic stability of the measure
μ with respect to the function ψ(x, y) = 1

2 (x− y)2Σ̇.

The proof of Lemma 3.21 is postponed to the end of this section and we
first show how the entropic stability estimate implies a (possibly modified) log-
Sobolev inequality, see [31, Proposition 39].

Corollary 3.22. Assume there are αt > 0 such that

∀ϕ ∈ X : Ċt HessVt(ϕ)Ċt − ĊtC
−1
t Ċt � −αtĊt, (3.106)

or equivalently, with Σ̇t = C−1
t Ċt C

−1
t ,

∀ϕ ∈ X : Σ̇t Cov(μϕ
t )Σ̇t � αtΣ̇t. (3.107)

Then the measure μϕ
t , i.e., P0,t(·)(ϕ), satisfies the following αt-entropic stability:

for all ϕ ∈ X,

2(∇
√

P0,tF )2
Ċt

(ϕ) = 2(∇
√

Eμϕ
t
[F ])2

Ċt
� αt Entμϕ

t
(F )

= αt

[
P0,tΦ(F )(ϕ) − Φ

(
P0,tF (ϕ)

)]
. (3.108)

This implies the following entropy contraction: for any s > 0,

Entν0(F ) � e
∫∞
s

αu du
Eνs

[
Entμϕ

s
(F )

]
. (3.109)

The condition (3.106) on αt is very similar to the multiscale Bakry–Émery
condition (3.32) on λ̇t, but not identical. We recall that (3.32) reads

Ċt HessVt(ϕ)Ċt −
1
2 C̈t � λ̇tĊt. (3.110)
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The log-Sobolev constant and the closely related entropy contraction are esti-
mated by the time integrals of αt and λ̇t, respectively. In terms of the two strate-
gies for proving log-Sobolev inequalities discussed in Section 2.5, the Bakry–
Émery method corresponds more to the first strategy (but also see Remark 3.23
for a rephrasing in terms of the second strategy) while the entropic stability
estimate applies the second strategy of entropy contraction.

The multiscale Bakry–Émery condition (3.110) is less singular for t close to
0 as Ct typically vanishes as t → 0 while Ċt does not. To see this, consider
the simple one-variable case with the covariance function ct =

∫ t

0 ċu du ∈ R

(with ċu > 0) and assume that HessVt(ϕ) � 0. Then the optimal choices are
−2λ̇t = c̈t ċ

−1
t and αt = ċt c

−1
t so that

−2
∫ t

s

λ̇u du = log ċt − log ċs and
∫ t

s

αu du = log ct − log cs. (3.111)

In particular, one cannot take the limit s → 0 in (3.109) in which the measure
μϕ
s degenerates, and the Entμϕ

s
(F ) term in (3.109) must be treated differently

for s small to recover a log-Sobolev inequality. This last step is called annealing
via a localization scheme in [31]. For example, one can use that since covariance
Cs vanishes as s → 0 the measure μϕ

s becomes uniformly log-concave so that
by the standard Bakry–Émery criterion (Theorem 2.8), the measure satisfies a
log-Sobolev inequality which can then be plugged into (3.109) to complete the
log-Sobolev inequality for ν0.

As a last remark before proving Corollary 3.22, we emphasise that (3.108) is
a contraction estimate for the expected entropy of the fluctuation measure μϕ

t .
More precisely, as in the proof of the multiscale Bakry–Émery criterion in (3.43),
the expectation of the left-hand side of (3.108) is

∂

∂t
Eνt

[
Entμϕ

t
(F )

]
= − ∂

∂t
Entνt(P0,tF ) = 2Eνt

[
(∇

√
P0,tF )2

Ċt
(ϕ)

]
, (3.112)

where the first equality follows from the independence of t of the following
entropy decomposition:

Entν0(F ) = Entνt(P0,tF ) + Eνt

[
Entμϕ

t
(F )

]
, P0,tF (ϕ) = Eμϕ

t
[F ]. (3.113)

Thus the entropic stability estimate (3.108) leads to a differential inequality
for Eνt

[
Entμϕ

t
(F )

]
. The multiscale Bakry-Émery criterion also gives an entropy

contraction but for νt instead of μϕ
t , i.e., it leads to a differential inequality for

Entνt(P0,tF ) as follows.
Remark 3.23. Assume there are λ̇t ∈ R such that

∀ϕ ∈ X : Ċt HessVt(ϕ)Ċt −
1
2 C̈t � λ̇tĊt. (3.114)

Then the measure νt satisfies the following entropy contraction: for any t > 0,
with λt =

∫ t

0 λ̇s ds,

2Eνt

[
(∇

√
P0,tF )2

Ċt
(ϕ)

]
�

[
∂

∂t
log

∫ t

0
e−2λs ds

]
Entνt(P0,tF ). (3.115)
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In particular, one again has an entropy contraction estimate:

Entν0(F ) �
∫∞
0 e−2λs ds∫ t

0 e−2λs ds
Eνt

[
Entμϕ

t
(F )

]
. (3.116)

Note that while the left-hand sides of (3.108) and (3.115) are identical (after
taking expectation over νt), the right-hand side of (3.108) is expressed in terms
of the second term on the right-hand side of (3.113) while (3.115) is expressed
in terms of the first term.

Proof. The entropy of a test function F decomposes at each scale t � 0 according
to (3.113). Under (3.114), the log-Sobolev inequalities for each renormalised
measure νt provided by Remark 3.7 give, with the same computation as the
proof (3.43) of the multiscale Bakry-Émery criterion:

∂

∂t
Entνt(Ft) = −2Eνt

[(
∇
√

Ft

)2
Ċt

]
� −γt Entνt(Ft), (3.117)

where Ft(ϕ) = P0,tF (ϕ) = Eμϕ
t
[F ] and

γt =
(∫ ∞

t

e−2(λs−λt) ds

)−1

= − ∂

∂t
log

∫ ∞

t

e−2λs ds. (3.118)

This implies for each t � 0:

Entνt(Ft) � exp
[
−
∫ t

0
γs ds

]
Entν0(F0) =

∫∞
t

e−2λs ds∫∞
0 e−2λs ds

Entν0(F0), (3.119)

and hence the entropy contraction (3.116) when substituted into (3.113).

Proof of Corollary 3.22. From (3.17), recall that the Polchinski semigroup P0,t
coincides with the fluctuation measure μϕ

t . Thus for smooth F > 0 and ϕ ∈ X,
one has

∇ logP0,tF (ϕ) = ∇ logEμϕ
t
[F ] =

Eμϕ
t
[F C−1

t ζ]
Eμϕ

t
[F ] − Eμϕ

t
[C−1

t ζ]

= C−1
t

(
Eμϕ,F

t
[ζ] − Eμϕ

t
[ζ]

)
, (3.120)

where the measure modified by F is defined by

dμϕ,F
t

dμϕ
t

(ζ) = F (ζ)
Eμϕ

t
[F ] . (3.121)

Thus, the estimate (3.108) we are looking for boils down to proving an entropic
stability result (3.105) for the measure μϕ

t . Indeed, setting Σ̇t = C−1
t Ċt C

−1
t ,

then

2(∇
√

P0,tF )2
Ċt

(ϕ) = 1
2(∇ logP0,tF )2

Ċt
(P0,tF )(ϕ)

= 1
2(Eμϕ,F

t
[ζ] − Eμϕ

t
[ζ])2Σ̇t

(ϕ)Eμϕ
t
[F ], (3.122)
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and the relative entropy is given by

Entμϕ
t
(F ) = H(μϕ,F

t |μϕ
t ) Eμϕ

t
[F ]. (3.123)

Assumption (3.107) implies the assumption (3.104) on the covariance of μϕ
t ,

Σ̇1/2
t Cov(Thμ

ϕ
t )Σ̇1/2

t = Σ̇1/2
t Cov(μϕ+Cth

t )Σ̇1/2
t � αt id for all h ∈ X,

(3.124)
so that Lemma 3.21 gives the claim (3.108), i.e.,

2(∇
√

P0,tF (ϕ))2
Ċt

� αt Entμϕ
t
(F ). (3.125)

Thus it is enough to show that assumption (3.106) is equivalent to the co-
variance assumption (3.107). From (3.61), we know that for any ϕ ∈ X,

HessVt(ϕ) = C−1
t − C−1

t Cov(μϕ
t )C−1

t , (3.126)

so that

−Ċt

(
HessVt(ϕ) − C−1

t

)
Ċt = ĊtC

−1
t Cov(μϕ

t )C−1
t Ċt

= CtΣ̇t Cov(μϕ
t )Σ̇tCt � αtCtΣ̇tCt = αtĊt,

(3.127)

where the inequality holds if and only if Σ̇ Cov(μϕ
t )Σ̇t � αt Σ̇t.

We turn now to the second part of the claim and show how the entropic
stability estimate (3.108) implies the entropy contraction estimate (3.109). The
starting point is the time derivative of the entropy (3.43):

∂

∂t
Eνt

[
P0,tΦ(F ) − Φ(P0,tF )

]
= 2Eνt

[
(∇

√
P0,tF )2

Ċt

]
(3.128)

which is the counterpart of eq. (27) in [31]. This is bounded thanks to (3.108):

∂

∂t
Eνt

[
P0,tΦ(F ) − Φ(P0,tF )

]
� αtEνt

[
P0,tΦ(F ) − Φ(P0,tF )

]
, (3.129)

and thus for any s < t, Grönwall’s lemma implies

Eνt

[
P0,tΦ(F ) − Φ(P0,tF )

]
� e

∫ t
s
αu du

Eνs

[
P0,sΦ(F ) − Φ(P0,sF )

]
. (3.130)

Taking t → ∞, the entropy is recovered from the left-hand side, as in (3.41),
and therefore (3.109) holds for any s > 0.

We finally prove Lemma 3.21 following [31].
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Proof of Lemma 3.21. It suffices to show that, for any h ∈ X,
1
2(EThμ[ζ] − Eμ[ζ])2Σ̇ � αH(Thμ|μ) = αEntμ

(
e(h,ζ)

Eμ[e(h,ζ)]

)
. (3.131)

Indeed, for any density F with Eμ[F ] = 1 and Eμ[Fζ] = EThμ[ζ], the entropy
inequality (2.62) applied with the test function G : ζ �→ (h, ζ) implies

Entμ(F ) = sup
G

{
Eμ[FG] − logEμ[eG]

}
� EThμ[(h, ζ)] − logEμ[e(h,ζ)] = H(Thμ|μ), (3.132)

i.e., the relative entropy over probability measures with given mean is minimised
by exponential tilts Thμ. Moreover, if there is no h such that Eμ[Fζ] = EThμ[ζ]
the relative entropy is infinite.

From now on, we may assume that Cov(Thμ) is strictly positive definite on X
for all h ∈ X. Indeed, otherwise consider the largest linear subspace X ′ such that
Cov(Thμ) acts and is strictly positive definite on X ′, and note that this subspace
is independent of h. Indeed, let f ∈ R

N be such that Varμ((f, ζ)) = 0, and
assume without loss of generality that Eμ[(f, ζ)] = 0. Then under the assumption
of exponential moments also Eμ[(f, ζ)4] = 0 and:

VarThμ((f, ζ)) ∝ 1
2Eμ⊗μ[(f, ζ − ζ ′)2e(h,ζ+ζ′)]

� 1
2Eμ⊗μ[(f, ζ − ζ ′)4]1/2Eμ⊗μ[e2(h,ζ+ζ′)]1/2 = 0. (3.133)

This implies that μ (and thus Thμ) is supported in an affine subspace of X
which is a translation of X ′, and by recentering one can replace X by X ′ in the
following.

For θ = EThμ[ζ], the relative entropy of Thμ can be written as:

H(Thμ|μ) = EThμ [(h, ζ)] − log(Eμ[e(h,ζ)]) = (h, θ) − log(Eμ[e(h,ζ)]). (3.134)
The positive definiteness of Cov(Thμ) on X implies that X � h �→ logEμ[e(h,ζ)]
is strictly convex, and hence h �→ θ(h) = EThμ[ζ] is strictly increasing in any
direction of X. Let K be the image of θ(h), and for θ ∈ K, let h(θ) be the
inverse function, and then let

Γ(θ) = H(Th(θ)μ|μ) = (θ, h(θ)) − logEμ[e(ζ,h(θ))]. (3.135)
Thus Γ be the Legendre transform of the cumulant generating function of μ,
and

H(Thμ|μ) = Γ(EThμ[ζ]). (3.136)
In particular, h(Eμ[ζ]) = 0 and properties of Legendre transform imply that, in
directions of X,

∇Γ(θ) = (h �→ EThμ[ζ])−1|h=h(θ) (3.137)

Hess Γ(θ) =
[
Hess logEμ[e(h,ζ)]

∣∣∣∣
h=h(θ)

]−1

= Cov(Th(θ)μ)−1 (3.138)
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so that

∇Γ(Eμ[ζ]) = 0, Hess Γ(EThμ[ζ]) = Cov(Thμ)−1. (3.139)

The assumption Σ̇ Cov(Thμ)Σ̇ � αΣ̇ implies, for θ ∈ K,

αHess Γ(θ) � Σ̇. (3.140)

Since f(θ) = 1
2 (θ − Eμ[ζ]))2Σ̇ satisfies ∇f(Eμ[ζ]) = 0 and Hess f = Σ̇, therefore

for all h ∈ R
N :

αH(Thμ|μ) = αΓ(EThμ[ζ]) � 1
2(EThμ[ζ] − Eμ[ζ])2Σ̇. (3.141)

4. Pathwise Polchinski flow and stochastic localisation perspective

4.1. Pathwise realisation of the Polchinski semigroup

From Proposition 3.5, we recall that the Polchinski semigroup operates from the
right:

s � r � t, Ps,t = Pr,tPs,r. (4.1)

Thus it acts on probability densities relative to the measure νt: if dμ0 = F dν0
is a probability measure then dμt = P0,tF dνt is again a probability measure.

This should be compared with the standard situation of a time-independent
semigroup Ts,t = Tt−s that is reversible with respect to a measure ν such as
the original Glauber–Langevin semigroup introduced in (2.12). In this case, one
has the dual point of view that T describes the evolution of an observable:
if dμ0 = F dν is some initial distribution and dμt = (TtF ) dν denotes the
distribution at time t then, by reversibility,

Eμt [G] =
∫

G(TtF ) dν =
∫

(TtG)F dν = Eμ0 [TtG]. (4.2)

The dual semigroup can be realised in terms of a Markov process (ϕt) as
TtG(ϕ) = Eϕ0=ϕ[G(ϕt)].

Since the Polchinski semigroup is not reversible and time-dependent, this in-
terpretation does not apply to the Polchinski semigroup. Instead, the Polchinski
semigroup Ps,t can be realised in terms of an SDE that starts at time t and runs
time in the negative direction from t to s < t: Given t > 0, a standard Brownian
motion (Bu)u�0 and ϕt, consider the solution to

s � t, ϕs = ϕt −
∫ t

s

Ċu∇Vu(ϕu) du +
∫ t

s

√
Ċu dBu. (4.3)

This is the equation for the (stochastic) characteristics of the Polchinski equa-
tion, see Appendix A for the classical analogue of a Hamilton–Jacobi equation
without viscosity term. By reversing time direction, this backward in time SDE
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becomes a standard SDE. Indeed, to be concrete, we will interpret (4.3) as
ϕr = ϕ̃t−r where ϕ̃ is the solution to the following standard SDE with ϕ̃0 = ϕt

given and B̃r = Bt −Bt−r:

0 � r � t, dϕ̃r = −Ċt−r ∇Vt−r(ϕ̃r)dr +
√

Ċt−rdB̃r. (4.4)

Denoting by Eϕt=ϕ[·] the expectation with respect to the solution (ϕs)s�t to (4.3)
with ϕt = ϕ given, the Polchinski semigroup can be represented as follows.

Proposition 4.1. For s � t and any bounded F : X → R,

Ps,tF (ϕ) = Eϕt=ϕ[F (ϕs)]. (4.5)

Thus if ϕt is distributed according to the renormalised measure νt the backward
in time evolution (4.3) ensures that ϕs is distributed according to νs for s < t.

Our interpretation of this proposition is that, while the renormalised mea-
sures νt are supported on increasing smooth configurations as t grows, the back-
ward evolution restores the small scale fluctuations of ν0. Note that for s = 0,
the identity (4.5) states that the fluctuation measure μϕ

t introduced in (3.17) is
the distribution of the backward process ϕ0 conditioned on ϕ.

To verify Proposition 4.1, we change time direction so that (4.3) becomes a
standard (forward) SDE as follows. Indeed, as discussed above, set ϕ̃r = ϕt−r

and B̃r = Bt −Bt−r. Then (4.3) becomes

ϕ̃r = ϕ̃0 −
∫ t

t−r

Ċu∇Vu(ϕ̃t−u) du +
∫ t

t−r

√
Ċu dBu

= ϕ̃0 −
∫ r

0
Ċt−u∇Vt−u(ϕ̃u) du +

∫ r

0

√
Ċt−u dB̃u, (4.6)

i.e., ϕ̃ solves the standard SDE (4.4). Itô’s formula stated for the forward SDE
for ϕ̃ is

df̃(r, ϕ̃r) = ∂f̃

∂r
(r, ϕ̃r) + Lt−rf̃(r, ϕ̃r) + (∇f̃(r, ϕ̃r),

√
Ċt−r dB̃r). (4.7)

In terms of ϕ rather than ϕ̃ we will state this as

df(s, ϕs) = ∂f

∂s
(s, ϕs) −Lsf(s, ϕs) + (∇f(s, ϕs),

√
ĊsdBs), (4.8)

where the left-hand side is interpreted as follows: with s = t− r,

−dsf(s, ϕs) = drf(t− r, ϕ̃r)

= −∂f

∂s
(t− r, ϕ̃r) + Lt−rf(t− r, ϕ̃r) + (∇f(t− r, ϕ̃r),

√
Ċt−r dB̃r)

= −∂f

∂s
(s, ϕs) + Lsf(s, ϕs) − (∇f(s, ϕs),

√
Ċs dBs). (4.9)

In particular, if f is smooth and bounded and satisfies (∂s −Ls)f = 0 then

Eϕt=ϕ[f(s, ϕs)] = f(t, ϕ). (4.10)
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Proof of Proposition 4.1. It is enough to prove the claim for bounded smooth
F and then extend it by density. The claim follows from (4.10) with f(t, ϕ) =
Ps,tF (ϕ) which gives

Eϕt=ϕ[F (ϕs)] = Eϕt=ϕ[Ps,sF (ϕs)] = Eϕt=ϕ[f(s, ϕs)] = f(t, ϕ) = Ps,tF (ϕ).
(4.11)

This proves (4.5). For the last statement, recall from (3.27) that Eνs [F ] =
Eνt [Ps,tF ] = Eνt [F (ϕs)]. This characterises the distribution at time s of the
process (4.3).

Finally, we will consider below an analogue of the backward in time SDE (4.3)
started at time t = +∞, see (4.20). Equation (4.20) can analogously be inter-
preted by reversing time as follows. Fix any smooth time-reversing reparametri-
sation a : [0,+∞] → [0,+∞]. For simplicity, one can choose a(t) = 1/t with
a(0) = +∞ and a(+∞) = 0. As in Remark 3.8, set

C̃t = Ca(t), Ṽt = Va(t), (4.12)

and also
ϕ̃t = ϕa(t), B̃t = Ba(t). (4.13)

Analogously to (4.4), the solution (4.20) can then be interpreted as ϕt = ϕ̃a(t)
where ϕ̃ is the solution to the standard SDE:

dϕ̃t = Ċa(t)ȧ(t)∇Va(t)(ϕ̃t) dt +
√

Ċa(t) dB̃t, ϕ̃0 = 0. (4.14)

More generally, as in Remark 3.8, the SDEs (4.3)–(4.20) are invariant under
reparametrisation, thus [0,+∞] has no special significance and we could have
used [0, 1] from the beginning instead.

We prefer to consider the backward in time evolution corresponding to ϕ
(rather than the forward SDE for ϕ̃) to comply with the convention that the
renormalised potential Vt evolves forward in time according to the Polchinski
equation. From the stochastic analysis point of view, on the other hand, this
convention of a stochastic process running backwards in time is less standard
and related literature which focuses on the SDE rather than the renormalised
potential, as we do, thus uses the opposite convention (see Sections 4.5 and 5.1).

4.2. Example: log-Sobolev inequality by coupling

Using the representation (4.3)-(4.5) of the semigroup Ps,t in terms of the above
stochastic process, one can alternatively prove Theorem 3.6 using synchronous
coupling by adapting the proof from [30] for the Bakry–Émery theorem.

Proof of Theorem 3.6. Given t > 0, define (ϕs)s�t and (ϕ′
s)s�t as in (4.3) cou-

pled using the same Brownian motions. Then for s < t,
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e−2λt(ϕt − ϕ′
t)2Ċ−1

t
− e−2λs(ϕs − ϕ′

s)2Ċ−1
s

(4.15)

=
∫ t

s

[
e−2λu

(
− 2λ̇u(ϕu − ϕ′

u)2
Ċ−1

u
− (ϕu − ϕ′

u)2
Ċ−1

u C̈uĊ
−1
u

+ 2(Ċu(∇Vu −∇V ′
u), Ċ−1

u (ϕu − ϕ′
u)
)]

du � 0,

where the inequality follows from the assumption (3.32) and the mean value
theorem. Thus

(ϕ0 − ϕ′
0)2Ċ−1

0
= e−2λ0(ϕ0 − ϕ′

0)2Ċ−1
0

� e−2λt(ϕt − ϕ′
t)2Ċ−1

t
(4.16)

with ϕt = ϕ and ϕ′
t = ϕ′ (the dynamics runs backwards) and the mean value

theorem gives

|P0,tF (ϕ) − P0,tF (ϕ′)| =
∣∣E[(∇F (ψ0), ϕ0 − ϕ′

0)
]∣∣

= 2
∣∣E[(∇√

F (ψ0),
√

F (ψ0)(ϕ0 − ϕ′
0)
)]∣∣

� 2E
[
(∇

√
F (ψ0))2Ċ0

]1/2
E

[
F (ψ0)(ϕ0 − ϕ′

0)2Ċ−1
0

]1/2

� 2e−λtE

[
(∇

√
F (ψ0))2Ċ0

]1/2
E
[
F (ψ0)

]1/2 √
(ϕ− ϕ′)2

Ċ−1
t

(4.17)

for some ψ0 between ϕ and ϕ′. Taking ϕ− ϕ′ =
√
Ċtf with |f |2 → 0 gives

(∇
√

P0,tF )2
Ċt

� e−2λtP0,t(∇
√
F )2

Ċ0
. (4.18)

This is (3.46).

4.3. Example: coupling with the Gaussian reference measure

Since, by (3.13),
Eνt [F ] = Pt,∞F (0), (4.19)

one can obtain the following coupling of the field distributed under the mea-
sure νt with that of the associated driving Gaussian field from the stochastic
realisation of Pt,∞.

Corollary 4.2. The distribution of νt is realised by the solution to the SDE
(which we recall can be interpreted as discussed around (4.14)):

ϕt = −
∫ ∞

t

Ċu∇Vu(ϕu) du +
∫ ∞

t

√
Ċu dBu

= −
∫ ∞

t

Ċu∇Vu(ϕu) du + Γt. (4.20)

In particular, at t = 0, this provides a coupling of the full interacting field ϕ0
with the Gaussian reference field Γ0.
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As an application of the above coupling, one can relate properties of the
Gaussian measure to the interacting one, see for example [22, 12].

4.4. Renormalised potential and martingales

The stochastic process (4.3) can also be used to obtain a representation of the
renormalised potential as follows. These are stochastic interpretations of the
formulas in Lemma 3.11.

Proposition 4.3.

Vt(ϕ) = Eϕt=ϕ

[
V0(ϕ0) + 1

2

∫ t

0
(∇Vs(ϕs))2Ċs

ds

]

= Eϕt=ϕ

[
V0

(
ϕ−

∫ t

0
Ċs∇Vs(ϕs) ds +

∫ t

0

√
Ċs dBs

)
+1

2

∫ t

0
(∇Vs(ϕs))2Ċs

ds

]
(4.21)

and Ms = Vs(ϕs) + 1
2
∫ t

s
(∇Vu(ϕu))2

Ċu
du is a martingale (with respect to the

backward filtration).

Proof. It suffices to show that Ms is a martingale. By Itô’s formula interpreted
as in (4.8),

dMs = (∂Vs

∂s
)(ϕs) ds−LsVs(ϕs) ds−

1
2(∇Vs)2Ċs

ds + martingale

= (∂Vs

∂s
)(ϕs) ds−

1
2ΔĊs

Vs(ϕs) ds + 1
2(∇Vs)2Ċs

ds + martingale. (4.22)

By Polchinski’s equation for Vs, the right-hand side is a martingale.

The gradient and Hessian of the renormalised potential have similar repre-
sentations.

Proposition 4.4.

∇Vt(ϕ) = P0,t[∇V0](ϕ) = Eϕt=ϕ[∇V0(ϕ0)] (4.23)

and Ms = ∇Vs(ϕs) is a martingale (always with respect to the backwards filtra-
tion). Moreover,

HessVt(ϕ) = Eϕt=ϕ

[
HessV0(ϕ0) −

∫ t

0
HessVs(ϕs)Ċs HessVs(ϕs) ds

]
(4.24)

and Ms = HessVs(ϕs) −
∫ t

s
HessVu(ϕu)Ċu HessVu(ϕu) du is a martingale.
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Fig 1. In the renormalisation group approach, the small scales ζ are averaged out and one
considers the projection of the measure to the variables ϕ encoding the large scales; in the
figure above, the Polchinski flow goes from 0 to +∞. In fact, ζ and ϕ play symmetric roles:
in particular for t = 0 the original measure is coded by ϕ, while instead for t = +∞ the
original measure is coded by ζ. Stochastic localisation puts the emphasis on the variable ζ
and therefore flows in the opposite direction (depicted by the thick arrow).

Proof. Again, by Itô’s formula (4.8) and since Us = ∇Vs satisfies ∂sUs = LsUs

by (3.56),

dUs(ϕs) = ∂Us

∂t
(ϕs) ds−LsUs(ϕs) ds + (∇Us,

√
Ċs dBs) = (∇Us,

√
Ċs dBs).

(4.25)
Thus Ut is a martingale, and the expression for its expectation also follows. Sim-
ilarly, Hs = HessVs satisfies ∂sHs = LsHs −HsĊsHs by (3.56), and therefore

dHs(ϕs) = −Hs(ϕs)ĊsHs(ϕs) ds + (∇Hs,

√
Ċs dBs) (4.26)

so that Hs(ϕs) −
∫ t

s
HessVu(ϕu)Ċu HessVu(ϕu) du is a martingale.

4.5. Stochastic localisation perspective

The stochastic evolution (4.3) has so far been interpreted as the characteristics
associated with the Polchinski equation (3.21). In this section, we are going to
see that this stochastic process is also, after a suitable change of parametrisation,
the flow of the stochastic localisation, introduced by Eldan. We refer to [45] for a
survey on this method and its numerous applications in general, and to [31] for
more specific developments on modified log-Sobolev inequalities. The relation
between stochastic localisation and a semigroup approach was already pointed
out in [62].

From Lemma 3.12, we recall that the gradient and Hessian of the renormalised
potential Vt can be interpreted as a mean and covariance of the fluctuation
measure μϕ

t defined in (3.17) by

P0,tF (ϕ) = Eμϕ
t
[F ]. (4.27)

The measure μϕ
t is related to μ0

t by the exponential tilt e(C−1
t ϕ,ζ), i.e., by the

external field C−1
t ϕ. In particular, by Lemma 3.12, the gradient of Vt can be

written as
∇Vt(ϕ) = Eμϕ

t
[C−1

t (ϕ− ζ)] = C−1
t (ϕ− Eμϕ

t
[ζ]) (4.28)
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where Eμϕ
t
[ζ] ∈ X is the mean of μϕ

t . The stochastic representation (4.3) can
therefore be written in terms of the fluctuation measure instead of the renor-
malised potential. Indeed, let

ht = C−1
t ϕt, μt = μϕt

t = μCtht
t , Σ̇t = − ∂

∂t
C−1

t = C−1
t ĊtC

−1
t . (4.29)

Since
Ċt∇Vt(ϕt) = ĊtC

−1
t (ϕ− Eμϕ

t
[ζ]) = CtΣ̇t(ϕ− Eμϕ

t
[ζ]), (4.30)

the external field ht = C−1
t ϕt satisfies the following SDE equivalent to (4.20):

By the Itô formula (4.8) with f(t, ϕt) = C−1
t ϕt,

ht = −
∫ ∞

t

df(u, ϕu)

=
∫ ∞

t

Σ̇uϕu du−
∫ ∞

t

C−1
u Ċu∇Vu(ϕu) du +

∫ ∞

t

C−1
u Ċ1/2

u dBu

=
∫ ∞

t

Σ̇uEμu [ζ] du +
∫ ∞

t

C−1
u Ċ1/2

u dBu

=
∫ ∞

t

Σ̇uEμu [ζ] du +
∫ ∞

t

Σ̇1/2
u dBu, (4.31)

where the last equality holds in distribution in the case that Ċu and C−1
u do

not commute.
What is known as stochastic localisation is the process (ht) with the direc-

tion of time reversed. Thus in the stochastic localisation perspective, the renor-
malised potential and measure only play implicit roles, and the main object of
study is the stochastic process (4.31) and the fluctuation measure (4.27). For
this perspective, it is more convenient to assume that time is parameterised by
[0, T ] (rather than our previous standard choice [0,+∞] — but again everything
is reparametrisation invariant, so this is only for notational purposes). The fluc-
tuation measure μt = μϕt

t then “starts” at the final time t = T as the full
measure of interest, and as t decreases (time runs backwards) its fluctuations
get absorbed into the renormalised measure νt until the fluctuation measure
μt “localises” to a random Dirac measure μ0 = δϕ0 at time t = 0, with ϕ0
distributed according to the full measure ν0 = μT . See also Figure 1.

Although time runs backwards from T to 0 in the stochastic localisation
perspective written with our time convention, let us change time direction to
obtain a forward SDE and connect with the literature on stochastic localisation.
Recalling (4.29), the initial measure ν0 = μT coincides with the fluctuation
measure at time T as hT = 0. As done previously, we will always use tildes to
denote change of time:

ϕ̃t = ϕT−t, C̃t = CT−t, Ṽt = VT−t,

μ̃t = μT−t, h̃t = hT−t,
˜̇Σt = Σ̇T−t.

(4.32)
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Using the notation b(μ) = Eμ[ζ] for the mean of μ, the SDE (4.31) for h̃ can
then be written as:

dh̃t = ˜̇Σtb(μ̃t) dt + ˜̇Σ1/2
t dB̃t. (4.33)

This equation is the same as the stochastic localisation as it appears for exam-
ple in [31, Fact 14] (after dropping tildes from the notation and with yt there
corresponding to h̃t).

The stochastic localisation perspective is different from our renormalisation
group perspective in that the object of interest is (again) the fluctuation mea-
sure. For example, in the one-variable case |Λ| = 1, starting from a measure
μ̃0(dx) = ν0(dx) ∝ e−H(x) (possibly log-concave), the strategy is to make it
more convex by considering

μ̃t(dζ) ∝ e−H(ζ)− t
2 ζ

2+h̃tζ dζ (4.34)

with the choice of the process h̃t such that for any test function

∀t � 0 : Eν0 [F ] = E

[
Eμ̃t(F )

]
. (4.35)

In this one variable example, the fluctuation measure above is the counterpart
of (3.76) for the choice Ct = 1/(1 + t) with t decreasing from +∞ to 0 instead
of Ct = t with t ∈ [0, 1]. With this reparametrisation, one gets from (4.29) that
Σ̇t = 1 so that

t � 0 : dh̃t = b(μ̃t) dt + dB̃t, with h̃0 = 0. (4.36)

Starting from a general measure μ̃0, the primary concern in the stochastic
localisation perspective is the measure μ̃t which is now uniformly convex with
Hessian at least t (if say H is log-concave), thus general concentration inequali-
ties hold for the twisted measure and can be transferred to μ̃0 thanks to (4.35).
For example, this is a key tool in current progress on the KLS conjecture, see
[45] for a review. The larger t is, the better in this respect. However, as t grows
the twisted measure μ̃t(dζ) loses the features of the original μ̃0 so there is a
trade-off in the choice of t. Contrary to our renormalisation point of view, in
the stochastic localisation point of view, the distribution of ht = C−1

t ϕt (which
is given in terms of μ̃t in (4.33) but can also be written in terms of our renor-
malised measure) does not play an important role (see Figure 1). The process
h̃t is there to twist the measure and sometimes if one adds the correct Ċt there
are preferred directions to add the convexity.

5. Variational and transport perspectives on the Polchinski flow

In this section, we discuss variational and transport-related perspectives on the
Polchinski flow. We refer to [37] for additional perspectives such as an interpre-
tation in terms of the Otto calculus that we do not discuss here.
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5.1. Föllmer’s problem

By (4.20), the distribution ν0 can be realised as the final time distribution ϕ0
of the SDE:

ϕt = −
∫ ∞

t

Ċu∇Vu(ϕu) du +
∫ ∞

t

√
Ċu dBu, (5.1)

where we recall that the backwards SDE can be interpreted by reversing time
as in (4.14); as pointed out in Remark 3.8, one could have also considered a
parametrisation on a bounded time interval. One can ask whether the distribu-
tion ν0 can be obtained more efficiently if ∇Vu(ϕu) is replaced by another drift
Uu(ϕu), i.e., as the distribution of ϕU

0 when ϕU is a strong solution of the SDE
(again written backward in time):

ϕU
t = −

∫ ∞

t

ĊuUu(ϕU
u ) du +

∫ ∞

t

√
Ċu dBu, (5.2)

where the parameter t takes values in [0,+∞] and ϕU
∞ = 0. More generally, one

could consider non-Markovian adapted processes U and the following remains
valid, see e.g. [67].

Denote by γ0 = PC∞ the distribution of the Gaussian reference measure, i.e.,
of

∫∞
0

√
Ċu dBu.

Theorem 5.1. The gradient of the renormalised potential Vt of the Polchinski
flow (3.11) can be interpreted as the optimal drift in (5.2) in the following sense:

H(ν0|γ0) = 1
2E

[∫ ∞

0
|∇Vt(ϕt)|2Ċt

dt

]
� 1

2E
[∫ ∞

0
|Ut(ϕU

t )|2
Ċt

dt

]
, (5.3)

for any drift U such that (5.2) has a strong solution with ϕ0 ∼ ν0. Recall that
(ϕt) follows (5.1).

Proof. Let U be a such that there is a strong solution (ϕU
t ) of (5.2) with

E
[ ∫∞

0 |Ut(ϕU
t )|2

Ċt
dt
]
< ∞. By construction ϕU

0 has law ν0 so that the rela-
tive entropy is given by

H(ν0|γ0) = V∞(0) − E[V0(ϕU
0 )] =

∫ ∞

0
dt

∂

∂t
E[Vt(ϕU

t )], (5.4)

with ϕU evolving according to (5.2), and where we used that

ν0(dϕ) = e+V∞(0)e−V0(ϕ)γ0(dϕ)

with normalisation factor given by e−V∞(0) = EC∞ [e−V0(ζ)] as in (3.13). The
renormalised potential follows the Polchinski equation (3.21):

t ∈ (0,∞), ∂

∂t
Vt = 1

2ΔĊt
Vt −

1
2(∇Vt)2Ċt

. (5.5)
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Therefore, by Itô’s formula,

∂

∂t
E[Vt(ϕU

t )] = E

[
∂

∂t
Vt(ϕU

t ) +
(
∇Vt(ϕU

t ), Ut(ϕU
t )

)
Ċt

− 1
2ΔĊt

Vt(ϕU
t )

]

= E

[
−1

2(∇Vt(ϕU
t ))2

Ċt
+

(
∇Vt(ϕU

t ), Ut(ϕU
t )

)
Ċt

]

= 1
2E

[
−
(
∇Vt(ϕU

t ) − Ut(ϕU
t )

)2
Ċt

]
+ 1

2E
[
(Ut(ϕU

t ))2
Ċt

]
, (5.6)

where we used the Polchinski equation (5.5) on the second line. Thus

1
2E

[∫ ∞

0
(Ut)2Ċt

dt

]
= H(ν0|γ0) + 1

2E
[∫ ∞

0

(
∇Vt − Ut

)2
Ċt

dt

]
, (5.7)

and the gradient of the renormalised potential Vt provides the optimal drift.
This completes the proof of Theorem 5.1.

It turns out that the right-hand of (5.3) is, in fact, the relative entropy
H(Q|P) of the path measure Q associated with (5.2) with respect to that of the
Gaussian reference process P.

Proposition 5.2. The relative entropy of the path measure Q associated with
a strong solution of (5.9) with respect to the path measure P of the Gaussian
reference measure is given by

H(Q|P) = 1
2 E

[∫ ∞

0
|Ut(ϕU

t )|2
Ċt

dt

]
. (5.8)

Proof. This is essentially a consequence of Girsanov’s theorem, see [67] for de-
tails.

Since H(Q|P) � H(ν0|γ0) always holds, by the entropy decomposition (2.52)
and the fact that the laws of ν0 and γ0 are marginals of the path measures Q
and P respectively, the above shows that the optimal drift Ut = ∇Vt in fact
achieves equality: H(Q|P) = H(ν0|γ0).

The above question was already studied by Föllmer [39], and we refer to
[67] for an exposition of this and connections with Gaussian functional inequal-
ities. Föllmer’s objective was to find the optimal drift bt such that the process
(Xt)t∈[0,1] defined by the following SDE and distributed at time t = 1 according
to a given target measure ν:

X0 = 0, dXt = bt(Xt) dt + dBt and X1 ∼ ν, (5.9)

minimises the dynamical cost

1
2E

[∫ 1

0
|bt(Xt)|2 dt

]
(5.10)
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over all possible drifts b. Up to time reversal, parametrisation by [0,+∞] instead
of [0, 1], and introduction of the covariances Ċt, this is exactly the set-up of (5.2).
For us the introduction of the covariances Ċt is an important point, though, with
the interpretation that the integral is now an integral over scales measured by
the infinitesimal covariances Ċt which can also be interpreted as metrics as in
Section 3.6.

More generally, one can look for the optimal drift to built a target probability
measure of the form F (ϕ) ν0(dϕ) using now the optimal stochastic flow as a
reference process, i.e., we want to determine the drift U such that for the process
(ψt)t∈[0,+∞] given for t � 0 by

ψt = −
∫ ∞

t

ĊsUs(ψs) ds−
∫ ∞

t

Ċs∇Vs(ψs) ds +
∫ ∞

t

√
Ċs dBs, (5.11)

the cost 1
2E

[ ∫ 1
0 |Ut(ψt)|2Ċt

dt
]

is minimised and ψ0 is distributed according to
F dν0. Proceeding as in the proof of Theorem 5.1, the optimal drift is given in
terms of the Polchinski semigroup (3.12) as the gradient of

Wt(ϕ) = − logP0,tF (ϕ) = −Vt(ϕ) − log ECt

[
F (ϕ + ζ)e−V0(ϕ+ζ)

]
. (5.12)

Thus one can check that

H(Fν0|ν0) = Entν0(F ) = 1
2E

[∫ ∞

0
|∇Wt(ϕt)|2Ċt

dt

]
. (5.13)

In this way, we recover from (5.13) the entropy decomposition (3.44):

2
∫ ∞

0
Eνt

[
|∇

√
P0,tF |2

Ċt

]
dt = 1

2

∫ ∞

0
Eνt

[
|∇ logP0,tF |2

Ċt
P0,tF

]
dt

= 1
2E

[∫ ∞

0
|∇Wt(ϕt)|2Ċt

dt

]
, (5.14)

where we used that the process (5.11) is distributed at time t with density
proportional to

e−Wt(ϕ)−Vt(ϕ)PC∞−Ct(dϕ) ∝ P0,tF (ϕ) νt(dϕ). (5.15)

The above is an instance of the more general version of the Schrödinger
problem which is to find the optimal drift so that the stochastic evolution (5.2)
interpolates between two probability measures μ and ν. Here, we discussed only
the special case where the process starts from a Dirac measure μ = δ0, and refer
the reader to the survey [68] for a general overview and to [34] for a discussion
on the role of the convexity of the potential.

In Section 5.3, we address a related issue, namely that in some cases, the
previous flow can be modified in order to achieve an interpolation between the
measure of interest and some Gaussian measure.



Stochastic dynamics and the Polchinski equation: An introduction 253

5.2. Variational representation of the renormalised potential

Let ∇Vt = ∇Vt(ϕt) and recall that Proposition 4.3 states:

Vt(ϕ) = Eϕt=ϕ

[
V0

(
ϕ−

∫ t

0
Ċs∇Vs ds +

∫ t

0

√
Ċs dBs

)
+ 1

2

∫ t

0
|∇Vs|2Ċs

ds

]
.

(5.16)
In particular,

Vt(ϕ) � inf
U

E

[
V0

(
ϕ−

∫ t

0
ĊsUs ds +

∫ t

0

√
Ċs dBs

)
+ 1

2

∫ t

0
|Us|2Ċs

ds

]
, (5.17)

where the above infimum is over all adapted processes U : [0, t] → X (where
adapted means backwards in time in our convention) called drifts. For our cur-
rent purposes, it suffices to consider Us = Us(ϕs) associated with a strong
solution to the (backward in time) SDE

s � t : ϕs = ϕ−
∫ t

s

ĊuUu(ϕu) du +
∫ t

s

√
Ċu dBu. (5.18)

The following proposition is a special case of the Boué-Dupuis or Borell formula,
see [67], which gives equality in the infimum and is the starting point for the
Barashkov–Gubinelli method [10]. An in-depth treatment of stochastic control
problems of which this is a special case is given in [51].
Proposition 5.3.

Vt(ϕ) = inf
U

E

[
V0

(
ϕ−

∫ t

0
ĊsUs ds +

∫ t

0

√
Ċs dBs

)
+ 1

2

∫ t

0
|Us|2Ċs

ds

]
. (5.19)

Sketch. The entropy inequality (2.62) with G(ζ) = −V0(ϕ + ζ) applied to the
Gaussian measure PCt implies that for any density F with ECt [F ] = 1:

Vt(ϕ) = − log ECt [e−V0(ϕ+ζ)] � EntPCt
(F ) + ECt [F (ζ)V0(ϕ + ζ)] . (5.20)

Given any drift Us, let F dPCt denote the law of ϕ0 − ϕ solving (5.18):

ϕ0 − ϕ = −
∫ t

0
ĊsUs ds +

∫ t

0

√
Ċs dBs. (5.21)

Then

Vt(ϕ) � E

[
1
2

∫ t

0
|Us(ϕs)|2Ċs

ds + V0

(
ϕ−

∫ t

0
ĊsUs ds +

∫ t

0

√
Ċs dBs

)]
,

(5.22)
where we used that the entropy is bounded by the first term, exactly as in
Theorem 5.1. As already discussed, the converse direction follows from Propo-
sition 4.3.

The point of view is now that by estimating the expectation on the right-
hand side above, for a general drift U , one can obtain estimates on Vt(ϕ), and
in particular on V∞(ϕ) which we recall from (3.14) is equivalent to the loga-
rithmic moment generating function of the measure ν0. For further details and
application to construction of the ϕ4

d measures, we refer to [10, 11].
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5.3. Lipschitz transport

Instead of a stochastic process, one could also define a map Ŝt : X �→ X trans-
porting some measure ν̂t to the desired target measure ν0:

Eν0 [F (ϕ)] = Eν̂t

[
F
(
Ŝt(ϕ)

)]
. (5.23)

Under an assumption on its gradient, such a transport map allows to recover
functional inequalities for ν0 from ν̂t as follows. For example, assume that ν̂t
satisfies a log-Sobolev inequality (with quadratic form (·, ·)Q and denoting the
corresponding norm |f |2Q = (f, f)Q on X):

Entν̂t [F ] � 2Eν̂t

[
|∇

√
F |2Q

]
, (5.24)

and that the transport map Ŝt from ν̂t to ν0 has Jacobian ∇Ŝt(ϕ) satisfying the
uniform bound:

∀ϕ ∈ X, f ∈ X : |t∇Ŝt(ϕ)f |2Q � C2|f |2. (5.25)

Then ν0 satisfies also a log-Sobolev inequality:

Entν0 [F (ϕ)] = Eν̂t [Φ(F ◦ Ŝt)] − Φ(Eν̂t [F ◦ Ŝt])

� 2Eν̂t

[∣∣∇√
F ◦ Ŝt

∣∣2
Q

]
= 2Eν̂t

[∣∣t∇Ŝt (∇
√
F ◦ Ŝt)

∣∣2
Q

]
� 2C2

Eν̂t

[∣∣(∇√
F ◦ Ŝt)

∣∣2]
= 2C2

Eν0

[
|∇

√
F |2

]
. (5.26)

An analogous argument can be applied to more general functional inequalities.
This line of research was first investigated in [28] where it was understood that

a convex perturbation of a Gaussian measure leads to a 1-Lipschitz transport
map Ŝt to this Gaussian measure, i.e., (5.27) holds with Q = id and C = 1.
We refer to [61, 79, 76, 75, 62, 87, 49] for more recent developments as well as
other applications of the Lipschitz properties of transport maps to functional
inequalities. In this section, we follow the work [88] which derived a Lipschitz
estimate of the form (5.25) from the multiscale Bakry–Émery criterion (3.32)
for the covariance decomposition Ċt = e−tA, and then we generalise the result
also to other decompositions relevant for applications (see Section 6.3). For this
generalisation, it is important that Q in the condition (5.25) is not necessarily
equal to the identity. Using the identity ‖M‖ = ‖tM‖ (‖·‖ denotes the operator
norm), this condition can also be equivalently stated in terms of ∇Ŝt instead of
t∇Ŝt as

|∇Ŝt(ϕ)f |2 � C2|f |Q−1 . (5.27)
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Recall that the measure ν0 gets renormalised to νt by the Polchinski flow.
By construction Eνt [·] ∝ EC∞−Ct [e−Vt ·] and νt converges to a Dirac mass. As
the measure νt degenerates, it is more convenient to consider the measure ν̂t
obtained by rescaling νt by some matrix Dt so that the measures ν0 and ν̂t are
comparable:

Eν̂t [F (ϕ)] = Eνt [F (Dtϕ)] . (5.28)

If V0 = 0, a natural choice for Dt is to preserve the Gaussian measure, i.e.,

D−1
t (C∞ − Ct)−1D−1

t = A ⇒ DtADt = (C∞ − Ct)−1, (5.29)

where all inverses are understood to be taken on the range of A. This is implicitly
assumed in the rest of the section, with id also denoting the identity matrix
on the range of A. Assuming that all the matrices depend smoothly on t and
commute, the choice (5.29) implies the following useful relation:

2D−1
t Ḋt = Ċt(C∞ − Ct)−1 = ĊtDtADt. (5.30)

Using again (5.29) we get (recall C0 = 0 and notice D0 = id):

∂

∂t
(D−2

t ) = −AĊt ⇒ Dt = (id −ACt)−1/2. (5.31)

By construction limt→∞ D−1
t ϕ = 0 and the renormalised potential satisfies

limt→∞ Vt(D−1
t ϕ) = V∞(0). This follows from the representation (3.11) of Vt

and the standing assumption that V0 is bounded below. In the same way, we can
also show that the following convergence in distribution to a Gaussian measure
holds:

lim
t→∞

Eν̂t [F (ϕ)] = EC∞ [F (ϕ)] = EA−1 [F (ϕ)] . (5.32)

We are now going to study the transport map Ŝt between νt and ν̂0 defined
in (5.23).

The properties of Ŝt are sensitive to the covariance decomposition Ċt. It was
realised in [88] that for the choice Ċt = e−tA (often used in applications, see
Section 6) the Lipschitz structure associated with Ŝt is directly related to (a
variant of) the multiscale Bakry–Émery criterion (3.32).

Theorem 5.4 ([88]). Let Ċt = e−tA for t � 0. Under the assumption

∀ϕ ∈ X : Ċ
1/2
t HessVt(ϕ)Ċ1/2

t � μ̇t id, with μt :=
∫ t

0
ds μ̇s, (5.33)

the transport map Ŝt : X �→ X introduced in (5.23) is exp(−1
2μt)-Lipschitz,

i.e., (5.27) holds with Q = id and C = exp(−1
2μt).

From the convergence (5.32) to the Gaussian measure and if μ∞ :=
∫∞
0 ds μ̇s <

∞, then from the previous theorem, one can extract a exp(−1
2μ∞)-Lipschitz

map from the Gaussian measure PC∞ = PA−1 to ν0 (see [79, Lemma 2.1]).
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Another useful covariance decomposition (see Theorem 6.2) is of the form
Ċt = (tA + id)−2. The proof of Theorem 5.4 can be extended to that case as
follows.

Theorem 5.5. Let Ċt = (tA + id)−2 for t � 0. Under the multiscale Bakry-
Émery criterion

∀ϕ ∈ X : Ċt HessVt(ϕ)Ċt −
1
2 C̈t � λ̇tĊt, with λt :=

∫ t

0
ds λ̇s, (5.34)

the inverse map Ŝt = S−1
t : X �→ X satisfies

∀ϕ ∈ X, f ∈ X : |∇Ŝt(ϕ)f |2 � e−λt |
√

1 + tA f |2 = e−λt |f |21+tA. (5.35)

Remark 5.6. Contrary to the Lipschitz transport map of Theorem 5.4, the
gradient of the map of Theorem 5.5 is bounded with respect to a different input
norm that increases with t. In particular, if A = −Δ + 1, then | · |1+tA is a
(discrete) Sobolev norm. In our examples (see Section 6.3), the constants λt

diverge like log(1 + t) (while the constants μt in Theorem 5.4 remain bounded)
and therefore the combination of e−λt(1+ tA) remains bounded by A uniformly
in t. Thus ∇Ŝt(ϕ) is uniformly bounded from | · |A to | · | and thus t∇Ŝt(ϕ) from
| · | to | · |A−1 . As seen in (5.26), when using transport maps to prove log-Sobolev
inequalities, one can use that the Gaussian measure ν̂∞ satisfies a log-Sobolev
inequality with quadratic form (·, ·)A−1 to compensate the loss of regularity in
the transport map and recover a log-Sobolev inequality with standard quadratic
form.

Proof of Theorem 5.4. Consider St a transport map between ν0 and ν̂t, so that

Eν0

[
F
(
St(ϕ)

)]
= Eν̂t [F (ϕ)] = Eνt [F (Dtϕ)] . (5.36)

Note that ultimately we are interested in Ŝt which is the inverse of St, see (5.23).
We are going to determine an evolution for St : X → X for general general
covariance decompositions Ċt and use the precise form only to conclude the
proof. On the one hand,

∂

∂t
Eν0

[
F
(
St(ϕ)

)]
= Eν0

[(
∇F

(
St(ϕ)

)
, ∂tSt(ϕ)

)]
, (5.37)

and on the other hand from (3.27):

∂

∂t
Eνt [F (Dtϕ)] = Eνt

[
−LtF (Dtϕ) + (Ḋtϕ,∇F (Dtϕ))

]
, (5.38)

with LtF = 1
2ΔĊt

F − (∇Vt,∇F )Ċt
. Integrating the Laplacian by parts, this

gives
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∂

∂t
Eνt [F (Dtϕ)]

= Eνt

[
1
2(Ċt∇Vt(ϕ) − 1

2 Ċt (C∞ − Ct)−1ϕ + D−1
t Ḋtϕ,Dt∇F (Dtϕ))

]

= Eνt

[
1
2(∇Vt(ϕ), Dt∇F (Dtϕ))Ċt

]

= Eν0

[
1
2(∇Vt(D−1

t ·), Dt∇F )Ċt
(St(ϕ))

]
, (5.39)

where we used (5.30). Thus the evolution of St is given by

∂

∂t
St(ϕ) = 1

2Dt Ċt∇Vt(D−1
t St(ϕ)). (5.40)

For Ċt = e−tA, the definition (5.31) implies Dt = e
1
2 tA = Ċ

−1/2
t and the

evolution (5.40) becomes particularly simple:

∂

∂t
St(ϕ) = 1

2 Ċ
1/2
t ∇Vt

(
Ċ

1/2
t St(ϕ)

)
. (5.41)

The Jacobian evolves according to
∂

∂t
∇St(ϕ) = 1

2 Ċ
1/2
t HessVt

(
Ċ

1/2
t St(ϕ)

)
Ċ

1/2
t ∇St(ϕ). (5.42)

As a consequence of (5.33), the Grönwall inequality implies

∀f ∈ X : ∂

∂t
|∇St(ϕ)f |2 � μ̇t(∇St(ϕ)f)2 ⇒ |∇St(ϕ)f |2 � exp(μt)|f |2.

(5.43)

By the inverse function theorem, we deduce that the operator norm of ∇Ŝt is
less than exp(−1

2μt).

Proof of Theorem 5.5. For each t � 0, we look for a matrix Bt depending only
on Ct and its derivatives, commuting with them, and such that we can set up
a Grönwall estimate for (Bt∇St(ϕ)f)2 for each ϕ, f ∈ X. Using that Ċt =
(tA + id)−2, the definition (5.31) of Dt implies Dt = Ċ

−1/4
t , and in particular

Dt commutes with Bs, Cs, Ċs, C̈s for any s. Equation (5.40) gives:

∂

∂t
∇St(ϕ) = 1

2 ĊtDt HessVt(D−1
t St(ϕ))D−1

t ∇St(ϕ). (5.44)

Therefore:
∂

∂t

∣∣Bt∇St(ϕ)f
∣∣2

=
(
Bt∇St(ϕ)f,

[
BtĊtDt HessVt(D−1

t St(ϕ))D−1
t B−1

t + 2ḂtB
−1
t

]
Bt∇St(ϕ)f

)
.

(5.45)
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In order to use the Hessian bound (5.34), we need to choose Bt in such a way
that, for each t � 0:

BtĊtDt HessVt(D−1
t St(ϕ))D−1

t B−1
t + 2ḂtB

−1
t

� Ċ
1/2
t HessVt(D−1

t St(ϕ))Ċ1/2
t − 1

2 Ċ
−1/2
t C̈tĊ

−1/2
t . (5.46)

With the choice Bt = D−1
t Ċ

−1/2
t = Ċ

−1/4
t = Dt, we have ḂtB

−1
t = −1

4 C̈tĊ
−1
t

and the left- and right-hand sides in (5.46) are in fact equal. As a result,

∀t � 0 : ∂

∂t

∣∣Dt∇St(ϕ)f
∣∣2 � λ̇t

∣∣Dt∇St(ϕ)f
∣∣2. (5.47)

The Grönwall inequality then yields:

∀t � 0 :
∣∣Dt∇St(ϕ)f

∣∣2 � eλt |f |2, (5.48)

and the inverse function theorem yields

∀t � 0 :
∣∣∇Ŝt(ϕ)D−1

t f
∣∣2 � e−λt |f |2, (5.49)

which is equivalent to the claim.

6. Applications

In this section, we present concrete examples to which the multiscale Bakry-
Émery criterion of Theorem 3.6 can be applied. The criterion gives a bound on
the log-Sobolev constant in terms of real numbers λ̇t (t > 0) obtained through
convexity lower bounds on the renormalised potential:

∀ϕ ∈ X, t � 0 : Ċt HessVt(ϕ)Ċt −
1
2 C̈t � λ̇tĊt. (6.1)

These lower bounds depend on the choice of the covariance decomposition (Ct).
While Theorem 3.6 holds for any decomposition, checking (6.1) for concrete
models often requires a specific choice of decomposition. This will be illustrated
in examples in the following sections. We expect that the precise choice of the
covariance decomposition is technical, as long as it takes into account the im-
portant physical features of the model, e.g., the mode structure explained in
Example 2.12.

For now, we discuss the sharpness of the criterion in Theorem 3.6. To fix
ideas, suppose we have a model defined on Λε,L = LTd ∩ εZd for d � 2, where
either ε = 1 is fixed and L → ∞ (statistical mechanics model) or ε → 0
is a small regularisation parameter and L is fixed or L → ∞ (continuum field
theory model in finite or infinite volume). From the discussion in Sections 2.6–2.7
recall that the speed of convergence of an associated dynamics is often related
to the presence of phase transitions in equilibrium. These phase transitions are
phenomena arising in the limit of large volumes, i.e., large L. In this limit,
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one typically expects that the log-Sobolev constant should be bounded from
below independently of Λε,L as long as no phase transition occurs. On the other
hand, the additional regularisation parameter ε > 0 is not expected to affect
the dynamics, i.e., the log-Sobolev constant should also be bounded from below
as ε → 0.

Sharpness of the criterion of Theorem 3.6 is therefore evaluated through the
following questions:

1. In absence of a phase transition, does the criterion provide a lower bound
on the log-Sobolev constant uniform in the volume (i.e., in L)?

2. Does it give a bound on the log-Sobolev constant independent of the reg-
ularisation parameter ε for continuum models?

3. If the first point holds, can one correctly estimate how the log-Sobolev
constant vanishes as a function of the distance to the critical point, or at
the critical point as a function of L?

The third point is considerably more involved than the first two. To provide a
guideline to read the next sections, we collect here the answers to the above
three questions obtained by studying the examples presented below.

• For statistical mechanics models (ε = 1) at high temperature, i.e., far away
from the critical point, the multiscale Bakry-Émery criterion implies point
(i) very generally, see, e.g., Theorem 6.11 for the specific case of the Ising
model (which extends similarly to a much broader class of models). This
regime is also covered by many other criteria (see, e.g., the monographs [85,
55] and [95]), with the notable exception of mean-field spin-glass models,
see the discussion in [13], for which the spectral nature of the criterion is
important.

• The criterion (6.1) can be sharp enough to reach the critical point, see,
e.g., Theorem 6.17 and Example 6.4 below for the Ising and ϕ4 models.
In other words, there are models for which the criterion implies (i) up to
the phase transition. We expect that the criterion should imply (i) up to
the critical point for a large class of models.

• The criterion can provide a bound on the log-Sobolev constant that is
uniform as ε → 0 (see Theorems 6.1 and 6.2 for the ϕ4 and sine-Gordon
models), thus satisfying point (ii).

Point (iii) is in general open and in this generality hopelessly difficult, but some
positive results exist. The simplest models are ones with quadratic mean-field
interaction such as the Curie-Weiss model, in which case one can answer (iii) in
the affirmative. Using this perspective, a detailed analysis above and below the
critical temperature was also carried out for mean-field O(n) models in [24]. For
certain more general continuum particle systems with mean-field interaction,
the behaviour close to the critical point is the subject of ongoing work [16]. For
more models with more complicated spatial structure in which computations
can still be carried out, such as the hierarchical ϕ4

4 model [14], the criterion
provides almost matching upper and lower bounds on how fast the log-Sobolev
constant vanishes at the critical point. For the nearest-neighbour Ising model
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in d � 5, the criterion implies polynomial bounds on the log-Sobolev constant
at and near the critical temperature [20].

6.1. Applications to Euclidean field theory

In this section, Λ = Λε,L will be a discrete torus of mesh size ε and side length
L (assumed to be a multiple of ε), i.e., Λε,L = LTd ∩ εZd, and the discrete
Laplacian on Λε,L is given by

∀ϕ ∈ R
Λε,L : (Δεϕ)x = ε−2

∑
y∼x

(ϕy − ϕx). (6.2)

The (lattice regularised) Euclidean field theory models we consider are of the
form

νε,L(dϕ) ∝ exp
[
− εd

2
∑

x∈Λε,L

ϕx(−Δεϕ)x − εd
∑

x∈Λε,L

V ε(ϕx)
]
dϕ, (6.3)

where dϕ denotes the Lebesgue measure on R
Λε,L and the single-site potential

V ε is a real-valued function chosen in such a way that the ε → 0 limit of
the measure exists (in a suitable space of generalised functions) and is non-
Gaussian. Writing ∇V ε(ϕ) = ((V ε)′(ϕx))x for ϕ ∈ R

Λε,L , the dynamics is the
(lattice regularised) SPDE

dϕt = Δεϕt dt−∇V ε(ϕt) dt +
√

2dBε,L
t (6.4)

where dBε,L is space-time white noise on R+ × Λε,L, i.e., the t �→ Bε,L
t,x are

independent Brownian motions with variance ε−d for x ∈ Λε,L, or equiva-
lently a standard Brownian motion with respect to the continuum inner product
(u, v)ε = εd

∑
x∈Λε,L

uxvx. The ε → 0 limit of (6.4) is a singular SPDE. The
pathwise (short time) limit theory for such SPDEs is the subject of Hairer’s
regularity structure theory [58, 56, 57], the paracontrolled method of Gubinelli
et al. [54, 29, 97], and the pathwise renormalisation group approach [65, 44].
The log-Sobolev inequality for the associated dynamics takes the form:

Entνε,L(F ) � 2
γ
Dνε,L(

√
F ), (6.5)

with the standard Dirichlet form with respect to the gradient ∇ε corresponding
to (·, ·)ε:

Dνε,L(F ) = Eνε,L

[
(∇εF,∇εF )ε

]
= 1

εd

∑
x∈Λε,L

Eνε,L

[∣∣∣∣ ∂F∂ϕx

∣∣∣∣2
]
, (6.6)

i.e., (∇εF )x = (∇ε
ϕF )x = ε−d ∂F

∂ϕx
. (Thus this gradient acts on functionals of

fields F : RΛε,L → R while the Laplacian (6.2) acts on fields ϕ ∈ R
Λε,L .)
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We now discuss two prototypical models.

Continuum sine-Gordon model Let d = 2. For 0 < β < 8π and z ∈ R, the
sine-Gordon model is defined by the single-site potential

∀ϕ ∈ R : V ε(ϕ) = 2zε−β/4π cos(
√

βϕ). (6.7)

One can also add a convex quadratic part to the measure: the massive sine-
Gordon model with mass m > 0 corresponds to the single-site potential V ε(ϕ)+
1
2m

2ϕ2.

Continuum ϕ4 model Let d = 2 or d = 3. For g > 0 and r ∈ R, the ϕ4
d

measure is defined by

∀ϕ ∈ R : V ε(ϕ) = g

4ϕ
4 + r + aε(g)

2 ϕ2, (6.8)

where aε(g) is a divergent counterterm. The notation g, r of the parameters
introduced in (2.5) are also used for the continuum setting. Explicitly, for an
arbitrary fixed m2 > 0, one can take aε(g) = aε(g,m2) with

aε(g,m2) := −3g
(
−Δε+m2)−1(0, 0)+6g2∥∥(−Δε+m2)−1(0, ·)

∥∥3
L3(Λε,L), (6.9)

and the notation ‖f‖pLp(Λε,L) = εd
∑

x∈Λε,L
|f(x)|p for p > 0. The counterterms

defined in terms of different m2 differ by additive constants and thus the choice
of m2 corresponds to a normalisation. In the following we take m2 = 1 for the
definition of the counterterm.

The sine-Gordon and ϕ4
d models are defined on the discretised torus Λε,L =

LTd ∩ εZd. As explained in Section 2.7, these models should be thought of as
discretised versions of limiting models defined on the continuum torus LTd.
Recall that the criterion of Theorem 3.6 asks for a lower bound on the Hessian
of the renormalised potential uniformly in the field: for some λ̇t ∈ R,

∀ϕ ∈ R
Λε,L , t � 0 : Ċt HessVt(ϕ)Ċt −

1
2 C̈t � λ̇tĊt. (6.10)

To obtain information on the dynamics in the ε → 0 limit, one is therefore
interested in estimates of the renormalised potential that are uniform in ε, ϕ.

For the sine-Gordon model, this was carried out in [15] by providing an
explicit description of the renormalised potential at each scale following [27].
By writing the renormalised potential as the Fourier type series

Vt(ϕ) =
∞∑

n=0

1
n!

∫
(Λε,L×{±1})n

Ṽt(ξ1, . . . , ξn)ei
∑n

i=1 σiϕxi dξ1 · · · dξn, (6.11)

where ξi = (xi, σi) ∈ Λε,L × {±1} and we used the notation∫
Λε,L×{±1}

F (ξ)dξ = εd
∑

x∈Λε,L

∑
σ∈{±1}

F (x, σ), (6.12)
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the Polchinski equation for Vt reduces to a triangular system of ODEs for the
Fourier coefficients Ṽt(ξ1, . . . , ξn). For β < 6π one can obtain the following con-
trol on HessVt by estimating these Fourier coefficients. It remains an interesting
problem to extend such estimates to the optimal regime β < 8π. (In this regime
β < 8π, weaker estimates that are sufficient for the construction of the limiting
continuum measure are known [41, 81], see also the discussion in [23]. These
estimates are however insufficient for our purposes.)

Theorem 6.1. For the massive continuum sine-Gordon model with mass m >
0, let A = −Δε + m2 id and Ċt = e−tA (t � 0). Then, if β < 6π, there is a
constant μ∗ = μ∗(β, z,m,L) > 0 that does not depend on ε, t, such that with

V0(ϕ) = ε2
∑

x∈Λε,L

2ε−
β
4π z cos(

√
βϕx) (6.13)

the renormalised potential satisfies

∀ϕ ∈ R
Λε,L , t � 0 : Ċt HessVt(ϕ)Ċt � μ̇tĊt with sup

t�0

∣∣∣ ∫ t

0
μ̇sds

∣∣∣ � μ∗.

(6.14)
Given β, z,m,L, this yields a lower bound, uniform in ε, on the log-Sobolev
constant infε γε,L(β, z,m) > 0.

Moreover, the log-Sobolev constant is uniform in the large-scale parameter L
under the following condition. If L satisfies m � 1/L and the coupling constant z
is such that |z| � δβm

2+β/4π for a small enough δβ > 0, then infε γε,L(β, z,m) >
m2 −Oβ

(
mβ/4π|z|

)
, uniformly in L � 1/m.

For the sine-Gordon model, the multiscale Bakry-Émery criterion of The-
orem 3.6 is thus seen to provide the optimal independence of ε of the log-
Sobolev constant in finite volume, as well as of L under an additional small cou-
pling assumption depending on the external mass. Under the condition (6.14)
derived in Theorem 6.1, Shenfeld [88] also used the multiscale Bakry-Émery
criterion to construct a Lipschitz transport map between the continuum sine-
Gordon model and the free field with the same mass (i.e., the model (6.3) with
V ε(ϕ) = 1

2m
2ϕ2), see Example 6.5.

The log-Sobolev inequality for the ϕ4
d model (where d = 2, 3) was obtained

in [21]. In this case, a sufficiently strong description of the renormalised potential
is difficult to obtain directly. To provide some context, we remark that Polchin-
ski’s original article [83] assumes a representation of Vt as a formal power series
analogous to (6.11),

Vt(ϕ) =
∞∑

m=0

1
(2m)!

∫
(Λε,L)2m

Ṽt(x1, . . . , x2m)ϕx1 · · ·ϕx2m dx1 · · · dx2m. (6.15)

In this representation, the Polchinski equation again formally reduces to a sys-
tem of ODEs for the kernels Ṽt, and this representation is very successful for
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understanding the renormalised potential as a formal power series. However, the
series representation in powers of ϕ is necessarily divergent as it would imply
analyticity of the solution around 0 as a function of the coupling constant g
in front of the ϕ4 term. It therefore seems difficult to use this naive expan-
sion in powers of ϕ to obtain nonperturbative analytic information about Vt,
as is needed for the construction of the measure and even more so to prove the
log-Sobolev inequality.

Nonetheless, the renormalised potential itself is well defined, and it is im-
mediate from the definition (3.11) that its derivatives correspond to correla-
tion functions of the fluctuation measure μϕ

t defined in (3.18). In particular, by
Lemma 3.12,

HessVt(ϕ) = C−1
t − C−1

t Cov(μϕ
t )C−1

t , (6.16)

where Cov(μϕ
t ) is the covariance matrix of μϕ

t . Thus understanding the Hessian
of the renormalised potential is equivalent to understanding the two-point func-
tion of the fluctuation measure. To analyse this two-point function, the follow-
ing choice of covariance decomposition (known as Pauli–Villars regularisation)
is very helpful:

Ct = (A + 1/t)−1. (6.17)

Indeed, with this choice, the fluctuation measure μϕ
t has the same structure as

the original measure, except for an additional mass term 1
2tζ

2 and an external
field term (ζ, C−1

t ϕ). Therefore various correlation inequalities available for the
original ϕ4 measure also apply to the fluctuation measure. These include the
FKG inequality (for all ϕ) which shows that the covariance matrix has positive
entries, the Griffiths inequalities (when ϕ = 0) which shows that the two-point
function is monotone in t and μ, and the recent inequality of Ding–Song–Sun
(DSS) [42] which shows that the covariance matrix is entrywise maximised at
ϕ = 0. In this setting, with Ċt = (tA + 1)−2 and −1

2 C̈t = A(tA + 1)−3, the
left-hand side of the multiscale Bakry–Émery criterion becomes:

Ċt HessVt(ϕ)Ċt −
1
2 C̈t = Ċ

1/2
t

(1
t
− Cov(μϕ

t )
t2

)
Ċ

1/2
t , (6.18)

and the combination of the FKG and DSS inequalities with the Perron–Frobenius
theorem imply that the right-hand side is lower bounded as a quadratic form
by the following term involving only ϕ = 0 (where ‖M‖ denotes the operator
norm of a matrix M): (1

t
− ‖Cov(μϕ=0

t )‖
t2

)
Ċt, (6.19)

see [21] for details.
This representation is the starting point for the proof of the following theo-

rem, proved in [21]. For concreteness, we choose the counterterms (6.9) in the
definition of the ϕ4

d model with m = 1 and denote the 0-field susceptibility of
the ϕ4

d model by
χε,L(g, r) := εd

∑
x∈Λε,L

〈
ϕ0ϕx

〉ε,L
g,r

, (6.20)
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where
〈
·
〉ε,L
g,r

denotes the expectation of the ϕ4
d measure. The second Griffiths

inequality implies that χε,L(g, r) is monotone in r. We then define the critical
point by

rc(g) = inf
{
r ∈ R : χε,L(g, r) is uniformly bounded as ε → 0 and L → ∞

}
.

(6.21)
Choosing a linear test function, the Poincaré constant of the ϕ4

d model (and
thus the log-Sobolev constant) is not uniformly bounded away from 0 when
r < rc(g). The following theorem shows that it is bounded when r > rc(g).

Theorem 6.2. For the continuum ϕ4 model in d = 2, 3, let A = −Δε + id
and Ċt = (tA + id)−2 (t � 0) and take m = 1 in the definition (6.9) of the
counterterm. Then with

V0(ϕ) = εd
∑

x∈Λε,L

(g4ϕ
4
x + r − 1 + aε(g)

2 ϕ2
x), (6.22)

the renormalised potential satisfies

∀ϕ ∈ R
Λε,L , t � 0 : Ċt HessVt(ϕ)Ċt −

1
2 C̈t �

( 1
t
− χ(g, r + 1/t)

t2︸ ︷︷ ︸
λ̇t

)
Ċt,

(6.23)
and λt � log(1 + t) − C(g, r, L) uniformly in ε > 0 for any g > 0, r ∈ R and
any fixed L, and C(g, r, L) is independent of L if r > rc(g). In particular, the
following integral is bounded under the same conditions:

∫ ∞

0
e−2λt dt, λt =

∫ t

0
λ̇s ds. (6.24)

The log-Sobolev constant γε,L(g, r) thus satisfies infε,L γε,L(g, r) > 0 for any
g > 0, r ∈ R for which the measure does not have a phase transition (r > rc(g)),
and infε γε,L(g, r) > 0 for any g > 0, r ∈ R and L fixed.

In the ϕ4
d case, the multiscale criterion gives a log-Sobolev constant bounded

uniformly in the volume and ε in the entire single-phase region. However, the
bound obtained on the log-Sobolev constant has accurate dependence on g, r
only far away from the transition, corresponding to values of g, r such that
r > 0 and g � r. In d > 4 where the ϕ4 model does not have a continuum limit,
one can obtain a polynomial bound near the critical point on the log-Sobolev
constant for the lattice ϕ4

d model. The same applies to the Ising model. The
next sections detail these proofs of the log-Sobolev inequality for the lattice ϕ4

and Ising models.
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6.2. Applications to lattice ϕ4 models

The lattice ϕ4 model corresponds to the case ε = 1 in (6.22), and we denote its
single-site potential for g > 0, r ∈ R by:

V (ϕ) = g

4ϕ
4 + r

2ϕ
2, (6.25)

and choose the coupling matrix as A = −Δ where Δ is the lattice Laplace
operator corresponding to ε = 1 in (6.2). Boundary conditions do not matter
much, but for concreteness we consider periodic boundary conditions, i.e., the
state space is ΛL = Z

d/(LZ)d for any d � 1. The associated expectation is
denoted by

〈
·
〉
g,r

and the finite volume susceptibility is defined by

χL(g, r) =
∑
x∈ΛL

〈
ϕ0ϕx

〉
g,r

. (6.26)

The critical point rc(g) is again defined as the infimum over all r ∈ R such that
χL(g, r) is bounded from above uniformly in L. It is the case that rc(g) < 0.
As a special case, Theorem 6.2 yields a uniform lower bound on the log-Sobolev
constant for all r > rc(g), but the proof of this statement can be simplified
considerably in this case as we now outline.

Example 6.3 ([21, Example 3.1]). For the lattice ϕ4 model on ΛL = Z
d/(LZ)d

in any dimension, let Ċt = (tA + id)−2. Then analogous to (6.23):

∀ϕ ∈ R
Λε,L , t � 0 : Ċt HessVt(ϕ)Ċt −

1
2 C̈t �

( 1
t
− χ(g, r + 1/t)

t2︸ ︷︷ ︸
λ̇t

)
Ċt,

(6.27)
and the following integral (and thus the inverse log-Sobolev constant) is bounded
for all r > rc(g): ∫ ∞

0
e−2λt dt. (6.28)

Example 6.4. Assume that the susceptility satisfies the mean-field bound: for
some D > 1/2, δ ∈ [0, 1]:

χL(g, r + 1/t) � D

δ + 1/t . (6.29)

This bound holds, in particular, for the near-critical ϕ4 model on Z
d when d � 5,

for some D > 1/2 and δ = L−d + r − rc(g) (r � rc(g)), see [2]. Then∫ ∞

0
e−2λt dt � C(g,D)δ−2D+1 (6.30)

is bounded polynomially in 1/δ.
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Sketch of Examples 6.3–6.4. For t0 > 0 small enough such that r+1/t0 > 0, the
measure with coupling constants (g, r+1/t0) is log-concave and the Brascamp–
Lieb inequality (3.63) implies

∀s � t0, χL(g, r + 1/s) � 1
r + 1/s (6.31)

and hence

λt0 =
∫ t0

0

(
1
s
− χL(g, r + 1/s)

s2

)
ds �

∫ t0

0

r

1 + rs
ds = log(1 + rt0). (6.32)

On the other hand, for any t > 0, the second Griffiths inequality implies χL(g, r+
1/t) � χL(g, r) and thus

λt − λt0 �
∫ t

t0

(
1
s
− χL(g, r)

s2

)
ds � log( t

t0
) − χL(g, r)

t0
. (6.33)

Combining both bounds with t0 such that r + 1/t0 > 0, it follows that the
integral (6.28) (and thus the log-Sobolev constant) is bounded below whenever
χL(g, r) is bounded above.

Now assume that the susceptibility satisfies the mean-field bound (6.29).
Then

λt − λt0 �
∫ t

t0

(
1
s
− D

δs2 + s

)
ds � C(D, t0) + log t−D log( t

1 + δt
). (6.34)

Combining this bound with λt0 � log(1 + rt0) for t0 � 1/|r| gives∫ ∞

0
e−2λt dt � C(g,D)δ1−2D (6.35)

as claimed.

6.3. Applications to transport maps

Another application of the bounds on the Hessian of renormalised potential are
to the transport maps of Theorems 5.4– 5.5, which can be used to recover the
log-Sobolev inequalities.

Example 6.5. For the continuum sine-Gordon model (under the same assump-
tions as in Theorem 6.1), the transport map of Theorem 5.4 has Lipschitz con-
stant bounded uniformly in t:

∀ϕ ∈ X, f ∈ X : |∇Ŝt(ϕ)f | � C(β, z, L)|f |. (6.36)

The constant C(β, z, L) is independent of L under the same assumptions as in
Theorem 6.1.
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Sketch. Using bounds on the Hessian of the renormalised potential from Theo-
rem 6.1, this is a direct consequence of Theorem 5.4.

Example 6.6. For the continuum ϕ4 model (under the same assumptions as
in Theorem 6.2) where A = −Δε + id, the gradient of the transport map of
Theorem 5.5 is uniformly bounded from H1 to L2 in the following sense:

∀ϕ ∈ X, f ∈ X : |∇Ŝt(ϕ)f | � C(g, r, L)|f |A (6.37)

where |f |A = |
√
Af | is the (discrete) Sobolev norm and C(g, r, L) is independent

of L if r > rc(g).

In particular, in the application (5.26), the reference Gaussian measure ν̂∞
satisfies the log-Sobolev inequality with quadratic form Q = A−1 and the bound
on the transport map (6.37) is exactly the required assumption (5.27) to recover
the log-Sobolev inequality for the continuum ϕ4 measure.

Sketch. Theorem 5.5 gives the following bound on the gradient of the transport
map:

|∇Ŝt(ϕ)f |2 � e−λt |f |21+tA. (6.38)

By Theorem 6.2), λt � log(1 + t) − C(g, r) and therefore

|∇Ŝt(ϕ)f |2 � C(g, r)
1 + t

|f |21+tA � C(g, r)|f |2A (6.39)

where we used that (1 + tA)/(1 + t) � A if A � id.

Example 6.7. For the lattice ϕ4 model, for any r > rc(g), the transport map
of Theorem 5.5 has Lipschitz constant bounded uniformly in L and t. Moreover,
if the mean-field bound (6.29) holds then the Lipschitz constant of the transport
map is of order δ−D/2:

∀ϕ ∈ X, f ∈ X : |∇Ŝt(ϕ)f | � C(g,D)δ−D/2|f |. (6.40)

Sketch. Using that the operator norm ‖A‖ is bounded, Theorem 5.5 gives the
following bound on the Lipschitz constant of the transport map:√

t‖A‖ + 1 e− 1
2λt � C

√
1 + t e−

1
2λt . (6.41)

On the other hand, by (6.32) and (6.33), for r > rc(g), we have

e−
1
2λt � C(g, r) 1√

1 + t
. (6.42)

Combining both bounds gives the uniform bound on the Lipschitz constant for
any r > rc(g).

Substituting the bound on the Hessian obtained from the mean-field bound
on the susceptibility (6.29) into the above bound on the Lipschitz constant of
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the transport map again yields a polynomial bound in δ. Indeed, by (6.34), the
bound obtained is of order

√
t‖A‖ + 1 e− 1

2λt � C
√

1 + t e−
1
2λt � C(g,D)

(
t

1 + δt

)D/2
� C(g,D)δ−D/2

(6.43)
which is the claimed bound.

6.4. Applications to Ising models

In this section, we explain how to apply the ideas developed in Section 3 to Ising
models with discrete spins. Using the Bakry–Émery criterion and its multiscale
version, these ideas were developed in [13, 20], while closely related results were
obtained using spectral and entropic independence and stability estimates in
[46, 4, 31]. Similar ideas apply to O(n) models (see [13]) for which it is however
not known in general that the critical point can be reached due to the lack of
appropriate correlation inequalities. For concreteness and because the results
are most complete in this case, we focus on the situation of Ising models.

6.4.1. Renormalised potential

The Ising model with coupling matrix A at inverse temperature β > 0 and
(site-dependent) external field h on a finite set Λ is defined by:

Eμ[F ] = Eμβ,h
[F ] ∝

∑
σ∈{±1}Λ

e−
1
2 (σ,βAσ)+(h,σ)F (σ). (6.44)

Since σ2
x = 1 for each x, the measure is invariant under the change A → A+α id,

α ∈ R. Therefore, without loss of generality, we can assume that the coupling
matrix A is positive definite. We also assume that it has spectral radius bounded
by 1; this just amounts to a choice of normalisation for β. It is helpful to think
of the Ising model as a denerate case of the ϕ4 measure in which the Gaussian
part has covariance (βA)−1 and the potential is singular to enforce the values
{±1}, i.e.,

∫
RΛ(·)e−V0(ϕ) dϕ is replaced by

∑
σ∈{±1}Λ(·). It turns out that the

Polchinski equation still makes sense and that the renormalised potential indeed
becomes smooth immediately. A natural covariance decomposition of (βA)−1 is

∀0 � t � β : Ct = (tA + (α− t) id)−1, (6.45)

for a parameter α > β which will be unimportant. For t < α the matrix Ct is
positive definite and for β < α, as explained above, the Ising model at inverse
temperature β can be written as

Eμ[F ] ∝
∑

σ∈{±1}Λ

e−
1
2 (σ,C−1

β σ)+(h,σ)F (σ). (6.46)
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Strictly speaking, Ct is not a covariance decomposition since C0 = α−1 id �=
0, different from the assumption in Section 3. However, all results from that
section can be applied to the covariance decomposition Ct − C0, and we will
do this without further emphasis. The renormalised potential can be defined
analogously to the continuous setting as:

Vt(ϕ) = − log
∑

σ∈{±1}Λ

e−
1
2 (σ−ϕ,C−1

t (σ−ϕ))+(h,σ). (6.47)

This leads to a decomposition of the Ising measure (6.44) as:

∀0 � t < β : Eμ[F ] = Eνt,β

[
Eμϕ

t
[F ]

]
. (6.48)

By analogy with (3.18), the fluctuation measure μϕ
t used above is the Ising

measure with coupling matrix C−1
t and external field C−1

t ϕ + h:

μϕ
t (σ) = μt,C−1

t ϕ+h ∝ e−
1
2 (σ,C−1

t σ)+(C−1
t ϕ+h,σ), (6.49)

and the renormalised measure νt = νt,β is supported on the image of Cβ − Ct

in R
Λ:

νt,β(dϕ) ∝ e−Vt(ϕ) PCβ−Ct(dϕ) ∝ exp
[
−1

2(ϕ, (Cβ − Ct)−1ϕ) − Vt(ϕ)
]
dϕ.

(6.50)
Even though σ : Λ → {±1} is discrete, the renormalised field ϕ : Λ → R is con-
tinuous as soon as t > 0. Convexity-based criterions, such as the Bakry-Émery
or multiscale Bakry-Émery criterions of Theorems 2.8 and 3.6, can therefore be
used to derive log-Sobolev inequalities for νt,β .

Before discussing these, we summarise results about the infinite temperature
(product) Ising model, which serve as input to these arguments.

6.4.2. Preliminaries: single-spin inequalities

At infinite temperature β = 0 the spin models we consider become product
measures. By tensorisation, it thus suffices to know the log-Sobolev constant
of a single spin (see Example 2.9). The following summarises known results for
these.

Ising model, standard Dirichlet form Let μ be the probability measure
on {±1} with μ(+1) = p = 1 − q. The standard Dirichlet form is

Dμ(F ) = 1
2Eμ(F (σx) − F (σ))2 = 1

2(F (+1) − F (−1))2. (6.51)

Proposition 6.8. Let μ be the probability measure on {±1} with μ(+1) = p =
1 − q. Then

Entμ(F ) � pq(log p− log q)
p− q

(
√

F (+1) −
√

F (−1))2. (6.52)
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Thus the log-Sobolev constant with respect to the standard Dirichlet form on
{±1} is at least 2:

Entμ(F ) � D(
√
F ) = 2

γ0
D(

√
F ), γ0 = 2. (6.53)

Proof. The proof can be found in [86] or [7].

Ising model, heat bath Dirichlet form With μ as above, the heat-bath
Dirichlet form is

DHB(F ) = 1
2
∑
σ

μ(σ)μ(σx)
μ(σ) + μ(σx) (F (σx)−F (σ))2 = pq(F (+1)−F (−1))2. (6.54)

Proposition 6.9. Let μ be the probability measure on {±1} with μ(+1) = p =
1 − q. Then

Entμ(F ) � pq(logF (+1) − logF (−1))(F (+1) − F (−1)). (6.55)

Thus the modified log-Sobolev constant with respect to the heat-bath Dirichlet
form is at least 1/2:

Entμ F � DHB(logF, F ) = 1
2γ0

DHB(logF, F ), γ0 = 1
2 . (6.56)

Proof. See [25, Example 3.8].

Similar single-spin inequalities are available for O(n) models [96, 89] and
allow to extend for example Theorem 6.11 below for the Ising model to these
models with little change [13].

6.4.3. Entropy decomposition

To prove a log-Sobolev inequality (or modified log-Sobolev inequality) for the
Ising measure, we start from the decomposition (6.48) with t = 0, decomposing
μ = μ0

β into two parts: an infinite temperature Ising measure μϕ
0 with external

field C−1
0 ϕ + h and the renormalised measure ν0,β . The corresponding entropy

decomposition (2.52) is:

Entμ(F ) = Eν0,β [Entμϕ
0
(F )] + Entν0,β

(
Eμϕ

0
[F ]

)
. (6.57)

To prove the log-Sobolev inequality (or modified log-Sobolev inequality) with
respect to a Dirichlet form Dμ, we want to bound both terms by a multiple
of Dμ(

√
F ) (or Dμ(F, logF )). In this discussion, we focus on the log-Sobolev

inequality with respect to the standard Dirichlet form:

Dμ(F ) = 1
2
∑
x∈Λ

Eμ

[
(F (σ) − F (σx))2

]
. (6.58)
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However, the same strategy applies with different jump rates and a modified
log-Sobolev inequality or a spectral inequality as input (and output), see Sec-
tions 6.4.2 and 6.4.5.

Under the assumption that μϕ
0 satisfies a log-Sobolev inequality with constant

γ0 uniformly in ϕ, the first term on the right-hand side of (6.57) is bounded by

2
γ0

Eν0,β [Dμϕ
0
(
√
F )] = 2

γ0
Dμ(

√
F ). (6.59)

Since μϕ
0 is a product measure, this assumption is well understood and one

can take γ0 = 2 for the standard Dirichlet form, as discussed in Section 6.4.2.
The last equality relies on the specific jump rates in the standard Dirichlet
form (6.58). For other Dirichlet forms, one can also get an inequality, see Sec-
tion 6.4.5.

Bounding the second term on the right-hand side of (6.57) essentially amounts
to estimating the log-Sobolev constant of the renormalised measure ν0,β . Indeed,
if ν0,β satisfies a log-Sobolev inequality with constant γ0,β (and standard Dirich-
let form) then this term is bounded by

2
γ0,β

Eν0,β

[∣∣(∇ϕEμϕ
0
[F ]1/2

)∣∣2] � 4α2

γ0γ0,β
Dμ(

√
F ), (6.60)

where the second inequality is elementary and follows from the next exercise
(which is similar to the argument in the tensorisation proof of Example 2.9)
and the Cauchy–Schwarz inequality.

Exercise 6.10. For each x ∈ Λ, let μϕ,x
0 denote the law of σx under the product

measure μϕ
0 . Then:

∇ϕx

(
Eμϕ

0
[F ]1/2

)
= α

2
√
Eμϕ

0
[F ]

Covμϕ
0
(F, σx) = α

2
√
Eμϕ

0
[F ]

Eμϕ
0

[
Covμϕ,x

0
(F, σx)

]
(6.61)

(recall C0 = α−1 id) and:

Covμϕ,x
0

(F, σx)2 � 8Eμϕ,x
0

[F ] Varμϕ,x
0

(
√
F ) � 8

γ0
Eμϕ,x

0
[F ]Dμϕ,x

0
(
√
F ). (6.62)

Sketch. The first equation is a simple computation. The first inequality in (6.62)
follows from Cauchy-Schwarz inequality using the following general expression
for the covariance of functions G1, G2 under a measure m:

Covm(G1, G2) = 1
2

∫ (
G1(x) −G1(y)

)(
G2(x) −G2(y)

)
dm(x) dm(y). (6.63)

The second inequality is the general fact that the spectral gap is always larger
than the log-Sobolev constant, see Proposition 2.5. Details can be found in [13].
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In summary, if μϕ
0 satisfies a log-Sobolev inequality with constant γ0 and ν0,β

satisfies a log-Sobolev inequality with constant γ0,β then the inverse log-Sobolev
constant γ−1 of μ satisfies

1
γ

� 1
γ0

[
1 + 2α2

γ0,β

]
. (6.64)

At this point the objective is to bound the log-Sobolev constant γ0,β of the
renormalised measure ν0,β . Results are stated next under different conditions,
with the corresponding verifications postponed to Section 6.4.4.

Recall that the renormalised measure is ν0,β(dϕ) ∝ e−V0(ϕ)PCβ−C0(dϕ) with
the renormalised potential V0 defined in (6.47). If the temperature is sufficiently
high, namely if β < α < 1, then it turns out that V0 is strictly convex so that the
standard Bakry–Émery criterion is applicable [13] and gives (see Exercise 6.14):

γ0,β � α− α2. (6.65)

Taking α ↓ β, this leads to the following theorem. We recall the convention fixed
below (6.44) that the coupling matrix A has spectrum in [0, 1]. This spectral
condition appeared in [13] (and unlike previously existing conditions applies to
the Sherrington–Kirkpatrik spin glass). See also [46, 4, 1, 5] for recent results
on spin glasses.

Theorem 6.11 (Spectral high temperature condition [13]). For β < 1 (under
the conventions stated below (6.44)), the Ising model μ satisfies the log-Sobolev
inequality: for each F : {−1, 1}Λ → R+,

Entμ(F ) �
(
1 + 2β

1 − β

)
Dμ(

√
F ). (6.66)

For β > 1, the renormalised potential V0 is in general not convex and the log-
Sobolev constant γ0,β of the renormalised measure ν0,β cannot be bounded using
the Bakry–Émery criterion. However, the argument above can be generalised by
using the multiscale Bakry–Émery criterion instead. Assuming λ̇t are as in the
multiscale Bakry–Émery condition (6.1), Theorem 3.6 gives:

1
γ0,β

� |Ċ0|
∫ β

0
e−2λt dt = 1

α2

∫ β

0
e−2λt dt, λt =

∫ t

0
λ̇s ds, (6.67)

and substituting this into (6.64) gives the following log-Sobolev inequality:

Entμ(F ) � 2
γ
Dμ(

√
F ), 1

γ
� 1

γ0

[
1 + 2

∫ β

0
e−2λtdt

]
, λt =

∫ t

0
λ̇s ds.

(6.68)
In the same situation, instead of using the multiscale Bakry–Émery criterion

to bound γ0,β in (6.64), one can prove a log-Sobolev inequality for μ by using
the entropic stability estimate discussed in Section 3.7. This was done in [31]
(to prove a modified log-Sobolev inequality, but the argument generalises to a
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log-Sobolev inequality for the standard Dirichlet form, see below). It turns out
that, for the decomposition (6.45), the conditions (3.32) and (3.107) of the mul-
tiscale Bakry–Émery criterion and of the entropic stability estimate are identical
provided λ̇t = −αt, see Exercise 6.15. This is not the case for other covariance
decompositions, and in particular not for those used for continuous models, see
the discussion in Section 3.7. Using the entropic stability estimate (3.109), the
entropy is therefore bounded by:

Entμ(F ) � e−λβEν0,β [Entμϕ
0
(F )], λt =

∫ t

0
λ̇s ds, (6.69)

and with the uniform log-Sobolev inequality for μϕ
0 this gives

Entμ(F ) � 2
γ
Dμ(

√
F ), 1

γ
� 1

γ0
e−λβ , λt =

∫ t

0
λ̇s ds. (6.70)

To be precise, for the Ising model where C0 �= 0, the estimate (3.109) holds with
the left-hand side there replaced by Entμ(F ) instead of Entν0(F ). To see this,
replace P0,t by Pt := Eμϕ

t
[·] = P0,tEμϕ

0
[·] in the argument leading to (3.130).

Then (3.130) continues to hold and gives the claim.
Estimate (6.70) is very similar to the estimate (6.68) obtained using the

multiscale Bakry–Émery criterion, but not exactly identical. Both estimates can
be applied up to the critical point in a very general setting for ferromagnetic
Ising models and yield a polynomial bound on the log-Sobolev constant under
the mean-field bound which holds on Λ ⊂ Z

d in d � 5, see Theorem 6.17 below.
The strategies of the two proofs have different advantages. We summarise the
results as follows.

Theorem 6.12 (Covariance conditions for Ising models [20, 31]). The log-
Sobolev constant of the Ising model at inverse temperature β is bounded by (6.68)
or (6.70).

As discussed previously, we formulated the results for the log-Sobolev in-
equality with respect to the standard Dirichlet form. This is a canonical choice
(as already explained in Section 2.2), but the argument can be adapted easily
to other choices of jump rates with the conclusion of a possibly modified log-
Sobolev inequality, see Section 6.4.5. As pointed out in [46], other choices are
of interest when the jump rates are unbounded.

6.4.4. Hessian of the renormalised potential and covariance

In both strategies, using the multiscale Bakry–Émery criterion or the entropic
stability estimate, the estimate of the log-Sobolev constant reduces to estimating
the constants λ̇t = −αt bounding the Hessian of the renormalised potential from
below. From Lemma 3.12, recall that these estimates follow from bounds on the
covariance of the fluctuation measure, a point of view that is particularly useful
for the Ising model. Indeed, the Hessian of the renormalised potential can be
represented as follows.
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Exercise 6.13. Show that

HessVt(ϕ) = C−1
t − C−1

t Σt(C−1
t ϕ + h)C−1

t , (6.71)

where Σt(g) = (Covμt,g (σx, σy))x,y∈Λ is the covariance matrix of the Ising model
μt,g at inverse temperature t and site-dependent magnetic field g (so that (6.49)
reads μϕ

t = μt,C−1
t ϕ+h).

For β < 1, one can obtain the following convexity directly from this rep-
resentation, which allows to apply the standard Bakry–Émery criterion to de-
rive (6.65) and conclude the proof of Theorem 6.11.

Exercise 6.14. Let 1 � α > β, and set Ct = (tA + (α − t) id)−1. Then Vt is
convex for all t ∈ [0, α].

Proof. Since μ0,g is a product measure and |σx| � 1,

Σ0(g) = diag(Varμ0,g (σx))x∈Λ � id. (6.72)

Using that C0 = α−1 id, we deduce from (6.71) that

HessV0(ϕ) = α id − α2Σ0(αϕ + h) � (α− α2) id. (6.73)

Thus if α � 1, it follows that V0 is convex. By Proposition 3.13, Vt is convex for
all t > 0.

For general β > 0, semi-convexity criteria on the Hessian can equivalently be
formulated as covariance estimates that hold uniformly in an external field.

Exercise 6.15. From Ct = (tA + (α − t) id)−1, one has Ċt = (id − A)C2
t ,

C̈t = 2(id − A)ĊtCt. The multiscale Bakry–Émery criterion (3.32) and the
entropic stability criterion (3.107) thus hold with

−λ̇t = αt = χ̄t (6.74)

where
χ̄t = sup

g∈RΛ
χt(g), χt(g) = ‖Σt(g)‖ (6.75)

is a uniform upper bound on the spectral radius of the covariance matrix Σt(g)
of an Ising model uniformly in an external field g.

Now a significant simplification occurs for Ising models with ferromagnetic
interaction, meaning Axy � 0 for x �= y. This includes the case of the lattice
Laplacian Δ acting on configurations according to (Δσ)x =

∑
y∼x[σy −σx]. For

ferromagnetic interactions, it turns out that the spectral radius of the covariance
matrix is maximal at 0 field:

χ̄t = χt(0). (6.76)
This is a consequence of the FKG inequality (which implies that the covariance
matrix has pointwise nonnegative coefficients), the Perron–Frobenious theorem
(which therefore implies that the largest eigenvector has nonnegative entries),
and the following remarkable correlation inequality due to Ding–Song–Sun [42]
which implies that the covariance between any two spins is maximised at 0 field.
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Proposition 6.16 (Ding–Song–Sun inequality [42, Corollary 1.3]). Let μ =
μβ,h be the Ising measure (6.44) with ferromagnetic interaction A and external
field h ∈ [−∞,∞]Λ, with values ±∞ corresponding to boundary conditions.
Then:

∀(x, y) ∈ Λ2 : Covμβ,h
(σx, σy) � Covμβ,0(σx, σy) = Eμβ,0 [σxσy]. (6.77)

In particular, if the interaction A is ferromagnetic and (for simplicity) in
addition translation invariant, i.e., Ax,y = A0,x−y, then

χ̄t = χt = χt(0) =
∑
x∈Λ

Eμt,0 [σ0σx] (6.78)

is the susceptibility of the Ising model. It characterises the phase transition of
the ferromagnetic Ising model, in the sense that, e.g., for Λ ⊂ Z

d, the critical
value βc of β satisfies:

βc := sup
{
β > 0 : sup

Λ↑Zd

∑
x∈Λ

Eμβ,0 [σ0σx] < ∞
}
. (6.79)

By combining the Ding–Song–Sun correlation bound with the multiscale Bakry–
Émery criterion, and in view of the above characterisation of βc, the following
log-Sobolev inequality up to the critical point for ferromagnetic Ising models on
general geometries was proven in [20].

Theorem 6.17 ([20, Theorem 1.1]). The log-Sobolev constant γβ,h of the Ising
measure (6.44) with ferromagnetic interaction satisfies:

1
γβ,h

� 1
2 +

∫ β

0
e2

∫ t
0 χs ds dt, (6.80)

with χβ = supx

∑
y Eμβ,0 [σxσy] or more generally equal to the largest eigenvalue

of (Eμβ,0 [σxσy])x,y.

The above result implies that γβ,h is bounded below uniformly in the size
of the lattice as long as β < βc. For special geometries, this could already be
argued from [42] (which establishes the strong spatial mixing property).

As seen in Example 6.4 for the lattice ϕ4 models, (6.80) also gives an explicit
bound on the log-Sobolev constant. For Ising models with mean-field interac-
tions, the bound implies that γβ,h is of order βc−β, which is the correct scaling.
More significantly, the bound (6.80) implies a polynomial bound on 1/γβ,h on
Λ ⊂ Z

d in dimension five and higher (and more generally under the so-called
mean-field bound on the susceptibility, i.e., when the susceptibility diverges lin-
early), where polynomial means as a function of βc−β when β < βc, and of the
lattice size when β = βc. The degree of this polynomial is not expected to be
sharp unless the constant D in Example 6.18 is equal to 1.
Example 6.18. If χβ � D/(βc−β) then γβ,h is bounded polynomially in βc−β,
and if χβ � D/(βc−β+L−α) then γβc,h is polynomial in L. These assumptions
hold for the ferromagnetic nearest-neighbour Ising model on Λ ⊂ Z

d when d � 5
[2].
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Similarly, one can recover the main result of [77] from (6.80), which improves
the high temperature condition of (6.66) in the case of ferromagnetic Ising mod-
els on graphs with maximal degree d (for the mixing time and spectral gap). For
the ferromagnetic Ising model, A is the negative adjacency matrix of the graph
which we now (for comparison) do not normalise to have spectrum contained in
[0, 1]. The condition of (6.66) cannot be improved for general non-ferromagnetic
interactions with bounded spectral radius, but for ferromagnetic models the
condition established in [77] is β < artanh(1/(d − 1)), whereas the condition
of (6.66) translates in this case to β < 1/(2d). The value βu = artanh(1/(d−1))
is the uniqueness threshold for the ferromagnetic Ising model on the infinite d-
regular tree and also the critical point for ferromagnetic Ising models on random
d-regular graphs [77]. This application is summarised in the next example.

Example 6.19. Let A be the negative adjacency matrix of a finite graph of
maximal degree d (not normalised to have spectrum in [0, 1]). If (d−1) tanh β < 1
then γβ,h is uniformly bounded below (and diverges polynomially in β ↑ βu =
artanh(1/(d− 1)) and in the size of the graph if β = βu).

Sketch. From [77, Section 5.4, Eq. (39)], we deduce that for any sites x, y in the
graph:

Eμβ,0 [σxσy] �
∑

w∈S(y)

(
tanh β

)dist(x,w)
, (6.81)

where the bound is obtained by comparing the graph with a d-regular tree as in
[93] and S(y) stands for the set of sites associated with y in this tree. Summing
over the sites y in the graph boils down to sum over all the sites in ∪yS(y), i.e.,
in the d-regular tree. Thus we get

χβ = sup
x

∑
y

Eμβ,0 [σxσy] � 1 + Cd

∑
��1

(
(d− 1) tanh β

)� � Cd

1 − (d− 1) tanh β
,

(6.82)
i.e., one finds a divergence of the susceptibility as in Example 6.18 as β ↑ βu =
artanh(1/(d − 1)). Moreover, when β approaches βu, one can use that for a
graph with N sites then trivially χβ � N , so that

χβ � Cd

1 − (d− 1) tanh β + N−1 . (6.83)

By Theorem 6.17, we deduce a polynomial lower bound for the log-Sobolev
constant in the size of the graph at β = βu = artanh(1/(d− 1)).

6.4.5. Choice of Dirichlet form

As in the original references [13, 20], the above discussion is formulated in terms
of the standard Dirichlet form (6.58). There exist general comparison arguments
between Dirichlet forms that ensure that one can transfer the log-Sobolev in-
equality obtained for a certain dynamics to another one, see, e.g., Chapter 4
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in [86]. Namely, if c1, c2 are families of jump rates reversible with respect to
the same measure ν on {−1, 1}Λ and γ1, γ2 denote the associated log-Sobolev
constants, then, for K > 0:

∀σ, σ′ ∈ {−1, 1}Λ : K−1c2(σ, σ′) � c1(σ, σ′) � Kc2(σ, σ′)
⇒ Kγ2 � γ1 � γ2/K. (6.84)

One can for instance check that the heat-bath- and canonical jump rates asso-
ciated with an Ising measure with interaction βA and external field h ∈ R

Λ

satisfy such a bound, with a constant K that depends only on ‖h‖∞ and
β maxi

∑
j |Aij |. The heat-bath Dirichlet form is [72, (3.4)–(3.6)]:

DHB
μ (F ) = 1

2
∑

σ∈{±1}Λ

∑
x∈Λ

Ψ(μ(σ), μ(σx))(F (σ) − F (σx))2, Ψ(a, b) = ab

a + b
.

(6.85)
There are however situations in which the comparison argument (6.84) is

not applicable. This observation was made in [46] in the situation of the SK
model treated in [13], which is an Ising model with random couplings which can
take arbitrarily large values. This makes the constant K in (6.84) arbitrarily
small. In such cases, if one is interested in a dynamics different from the one
induced by the canonical jump rates, it is desirable to directly obtain the log-
Sobolev inequality (or modified log-Sobolev inequality) for this dynamics. This
was done for the heat-bath dynamics, for the modified log-Sobolev inequality,
in [46, 4, 31].

One can however check that the arguments of [13, 20] sketched above are
not specific to the standard Dirichlet form. It is in fact straightforward to apply
them to other dynamics as explained below in the heat-bath case, provided:

• the associated single-spin LSI constant (or modified LSI constant) is uni-
form in the field;

• the associated Dirichlet form is a concave function of the measure (this
can be generalised).

Let us show how this works in the heat-bath case (6.85), for which both points
are satisfied in view of Proposition 6.9 and the concavity of Ψ(a, b) = ab/(a+b).
Instead of using the single-spin log-Sobolev inequality for the standard Dirichlet
form of Proposition 6.8, one can instead apply the single-spin modified LSI with
the heat-bath Dirichlet form of Proposition 6.9 since it also holds uniformly in
the external field. For instance, for Eν0,β [Entμϕ

0
(F )] the bound becomes:

Eν0,β

[
Entμϕ

0
(F (σ))

]
� 1

2
∑
σ

∑
x

Eν0,β

[
Ψ(μϕ

0 (σ), μϕ
0 (σx))

]
(F (σ) − F (σx))(logF (σ) − logF (σx))

� 1
2
∑
σ

∑
x

Ψ(μ(σ), μ(σx))(F (σ) − F (σx))(logF (σ) − logF (σx))

= DHB
μ (F, logF ), (6.86)
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where the first inequality is the single-spin modified log-Sobolev inequality from
Proposition 6.9, and the second inequality is Jensen’s inequality, using μ(σ) =
Eν0,β [μϕ

0 (σ)] and that Ψ is concave. The bound for the other term in (6.57)
works analogously and gives 4DHB

μ (
√
F ) � DHB

μ (F, logF ) instead of Dμ(
√
F )

with the standard Dirichlet form.
The conclusion is that the modified log-Sobolev constant for the heat-bath

Dirichlet form satisfies exactly the same bound (up to an overall factor 4 from
different normalisations):

Entμ(F ) � 1
2γHB

0
DHB

μ (F, logF ), 1
γHB
0

� 2 + 4
∫ β

0
e−2λt dt. (6.87)

This strategy can be further generalised to Dirichlet forms which are not concave
in the measure, see [18].

6.5. Applications to conservative dynamics

The criterion of Theorem 3.6 in principle also applies to dynamics with a con-
servation law. This is for instance the case for spin models with constrained
magnetisation:

μN,m(dϕ) ∝ e−V0(ϕ) dϕ|XN,m
, (6.88)

with XN,m the hyperplane of spins with magnetisation m ∈ R:

XN,m :=
{
ϕ ∈ R

N :
∑
i

ϕi = Nm

}
. (6.89)

The infinite temperature case is V0 =
∑N

i=1 V (ϕi) and V : R → R a C2 poten-
tial, assumed to be strictly convex outside of a segment for definiteness. The
associated conservative dynamics reads:

dϕt = −∇V0(ϕt) dt +
√

2 dBt, (6.90)

where (Bt) is a standard Brownian motion on XN,0.
See [18] and the forthcoming work [17] for results in discrete and continuous

spin settings, and [15] for such results for the continuum sine-Gordon model.

Appendix A: Classical renormalised potential and Hamilton–Jacobi
equation

A.1. Hamilton–Jacobi equation

In classical field theory, fields are typically minimisers of an action functional
S:

ϕ0 ∈ argminϕ S(ϕ), S(ϕ) = 1
2 |ϕ|

2 + V (ϕ). (A.1)
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These can be related to the Hamilton–Jacobi equation

∂Vt

∂t
= −1

2(∇Vt)2, V0(ϕ) = V (ϕ). (A.2)

Indeed, its unique viscosity solution is given by the Hopf–Lax formula [47, Sec-
tion 3.3.2]:

Vt(ϕ) = min
ζ

(
V0(ζ) + t

2 |
ϕ− ζ

t
|2
)
. (A.3)

In particular, the minimum of the action S is given by V1(0). Note the analogy
with the renormalised potential from (3.11). The constructions of Sections 4
and 5 have classical analogues in which the role of the Polchinski equation
is replaced by that of the Hamilton–Jacobi equation, as we will see in this
appendix.

Unlike solutions of the Polchinski equation, which are smooth at least for
Ċt nondegenerate and a finite number of variables (as in our discussion), the
Hamilton–Jacobi equation can develop shocks and the appropriate weak solu-
tions are not necessarily smooth. However, we can assume that V is locally
Lipschitz continuous and that (A.2) holds almost everywhere. We refer to [47,
Chapters 3 and 10] for an introduction. In statistical physics, Hamilton–Jacobi
equations are well-known to arise in mean-field limits of statistical mechanical
models, see [3] and in particular [78, 43] and references for recent work in the con-
text of disordered models, as well as Section A.2 below. Shocks of the Hamilton–
Jacobi equations are related to phase transitions. Note that the Polchinski equa-
tion in a finite number of variables describes finite systems (rather than limits)
and thus has smooth solutions. It therefore provides a complete description of
the models (no information is lost) while the Hamilton–Jacobi equations de-
scribing mean-field systems are effective equations describing macroscopic in-
formation. In the thermodynamic limit, where the number of variables tends to
infinity, shocks can also form in the Polchinski equation and then likewise cor-
respond to phase transitions in the statistical mechanical models. We illustrate
the above in the simple example of the mean-field Ising model in Section A.2
below.

We now discuss the ‘classical’ analogues of the constructions of Sections 4–5
for the Hamilton–Jacobi equation. Our goal is to emphasise the analogy and
to provide a different intuition also for the stochastic constructions. We will
therefore impose convenient regularity assumptions in all statements.

We begin with a classical analogue of Corollary 4.2. Define the classical renor-
malised action by

St(ϕ) = |ϕ|2
2(1 − t) + Vt(ϕ). (A.4)

Minimisers of St will take the role of the renormalised measure introduced
in (3.13).

Proposition A.1. Assume that (ϕt)t∈[0,1] is differentiable in t ∈ (0, 1), that
ϕt → 0 as t → 1, that V is smooth along (ϕt)t∈(0,1), and that ϕt is an isolated
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local minimum of St for each t ∈ [0, 1). Then for t ∈ [0, 1),

ϕt = −
∫ 1

t

∇Vu(ϕu) du. (A.5)

Different from the situation in Corollary 4.2, the choice of ϕ is not necessarily
unique because S may have multiple minimisers and V need not be globally
smooth. Indeed, the equation (A.5) for ϕ is nothing but the equation for the
characteristics of Hamilton–Jacobi equation (A.2), see [47, Section 3.3]. These
are the curves (ϕt) such that 1

2Ut(ϕt)2 is constant in t, where Ut = ∇Vt. Since
by the Hamilton–Jacobi equation (A.2),

∂Ut

∂t
= −(∇Ut, Ut), (A.6)

provided U is smooth at (t, ϕ), then

∂

∂t
Ut(ϕt) = −(∇Ut(ϕt), Ut(ϕt))+(∇Ut(ϕt), ϕ̇t) = −(Ut(ϕt)−ϕ̇t,∇Ut(ϕt)) = 0.

(A.7)

Sketch of Proposition A.1. Since ϕt → 0 as t → 1, the claim is equivalent to
proving that

ϕ̇t = ∇Vt(ϕt). (A.8)

Since ϕt minimises St, it satisfies the Euler–Lagrange equation
ϕt

1 − t
+ ∇Vt(ϕt) = ∇St(ϕt) = 0. (A.9)

Differentiating this equation in t,

ϕ̇t

1 − t
+ ϕt

(1 − t)2 + (∂t∇Vt)(ϕt) + HessVt(ϕt)ϕ̇t = 0. (A.10)

Using the Euler–Lagrange equation ϕt/(1 − t) = −∇Vt(ϕt) again and ∂t∇Vt =
−HessVt∇Vt (which is (A.6)), we obtain

ϕ̇t −∇Vt(ϕt)
1 − t

− HessVt(ϕt)∇Vt(ϕt) + HessVt(ϕt)ϕ̇t = 0. (A.11)

Therefore

HessSt(ϕt)[−∇Vt(ϕt)+ϕ̇t] = ( 1
1 − t

+HessVt(ϕt))[−∇Vt(ϕt)+ϕ̇t] = 0. (A.12)

Since ϕt is an isolated local minimum of St, the Hessian on the left-hand side
is strictly positive definite so that necessarily ∇Vt(ϕt) − ϕ̇t = 0.

The classical version of Föllmer’s problem is the following control problem.
We continue to use the convention that the ODE is backwards in time so that the
Hamilton–Jacobi equation has initial rather than terminal condition. Suppose
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that U = (Uu(·))u∈[0,1] are given smooth functions and that ϕU solves the
classical analogue of (5.2): ϕU

t → 0 as t → 1 and

ϕU
t = −

∫ 1

t

Uu(ϕU
u ) du, (A.13)

with ϕU
0 an absolute minimum of S (which we recall is the classical analogue

of demanding that ϕU
0 is a random sample from a desired target measure ν0 ∝

e−βS). The classical analogues of Theorem 5.1 and Proposition 5.3 are as follows.

Proposition A.2. The optimal drift is given by U = ∇V in the following sense.
For any smooth U and associated trajectory ϕU that satisfies (A.13),

1
2 |ϕ

U
0 |2 � 1

2

∫ 1

0
|Uu(ϕU

u )|2 du, (A.14)

with equality if U = ∇V .

Comparing with Theorem 5.1, the classical analogue of H(ν0|γ0) is simply
1
2 |ϕ0|2 and the classical analogue of the path space entropy H(Q|P) is the cost
1
2
∫ 1
0 |Uu(ϕU

u )|2 du = 1
2
∫ 1
0 |ϕ̇U

u |2 du.

Sketch. The proof is analogous to that of Theorem 5.1. Indeed, by the Hopf–Lax
formula,

V1(0) − V0(ϕU
0 ) � V0(ϕU

0 ) + 1
2 |ϕ

U
0 |2 − V0(ϕU

0 ) = 1
2 |ϕ

U
0 |2, (A.15)

with equality if and only if ϕU
0 is an absolute minimum of S. On the other hand,

assuming V is locally Lipschitz continuous (so that the fundamental theorem of
calculus hold), one has

V1(0) − V0(ϕU
0 ) =

∫ 1

0
dt

∂

∂t
Vt(ϕU

t ), (A.16)

with ϕU evolving according to (A.13), and therefore (whenever the derivative
exists classically)

∂

∂t
Vt(ϕU

t ) = ( ∂
∂t

Vt)(ϕU
t ) +

(
∇Vt(ϕU

t ), Ut(ϕU
t )

)
= −1

2(∇Vt(ϕU
t ))2 +

(
∇Vt(ϕU

t ), Ut(ϕU
t )

)
= −1

2
(
∇Vt(ϕU

t ) − Ut(ϕU
t )

)2 + 1
2(Ut(ϕU

t ))2, (A.17)

where we used the Hamilton–Jacobi equation on the second line. In particular,
if ϕU

0 is an absolute minimum of S,

1
2

∫ 1

0
(∇Ut(ϕU

t ))2 dt = 1
2 |ϕ

U
0 |2 + 1

2

∫ 1

0

(
∇Vt(ϕU

t ) − Ut(ϕU
t )

)2
dt � 1

2 |ϕ
U
0 |2,
(A.18)

and the gradient of the renormalised potential Vt provides the optimal drift.
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As in (4.3), instead of (A.13), one can also consider the equations for the
characteristics in a reduced time interval [0, t] with t � 1 and ϕU

t = ϕ,

ϕU
s = ϕ−

∫ t

s

Uu(ϕU
u ) du, (s � t). (A.19)

Proposition A.3. Under certain regularity conditions on V0, and for t � 1
then

Vt(ϕ) = inf
U

[
V0

(
ϕ−

∫ t

0
Us(ϕU

s ) ds
)

+ 1
2

∫ t

0
|Us(ϕU

s )|2 ds
]
. (A.20)

This is discussed in [51, Section I.9 and I.10]. Namely, with L(t, x, v) = 1
2v

2

and ψ = V0 (and opposite time direction), the statement follows from [51,
Theorem 10.1]. This minimiser does not have to be unique if the Hamilton–
Jacobi equation has a shock, see [51, Theorem 9.1 and 10.2].

Sketch. The Hopf–Lax formula implies that

Vt(ϕ) = min
ζ

(
t

2 |
ϕ− ζ

t
|2 + V0(ζ)

)
� 1

2t |ϕ− ϕU
0 |2 + V0(ϕU

0 ) (A.21)

where given any drift Us, we let ϕU
0 be the final condition of (A.19). The first

term on the right-hand side of (A.21) is bounded as in (A.14):

1
2t |ϕ− ϕU

0 |2 � 1
2

∫ t

0
|Us(ϕU

s )|2 ds. (A.22)

This shows

Vt(ϕ) � 1
2

∫ t

0
|Us(ϕU

s )|2 ds + V0

(
ϕ−

∫ t

0
Us(ϕU

s ) ds
)
. (A.23)

On the other hand, equality if U = ∇V follows from the Hamilton–Jacobi
equation as in Proposition 4.3: if ϕ is a solution to (A.5),

∂

∂s

[
Vs(ϕs) + 1

2

∫ t

s

(∇Vu(ϕu))2 ds
]

= ∂Vs

∂s
(ϕs)+(∇Vs(ϕs))2−

1
2(∇Vs(ϕs))2 = 0,

(A.24)
i.e.,

Vt(ϕ) − V0(ϕ0) = 1
2

∫ t

0
(∇Vu(ϕu))2 du. (A.25)

This solution need not be unique.

A.2. Example: mean-field Ising model

We conclude this section with the example of the mean-field Ising model, which
can be described both in terms of a Polchinski equation and, in the limit, by a
Hamilton–Jacobi equation. The mean-field Ising model is given by the measure

Eν [G] = 1
ZN (β,h)

∑
σ∈{±1}N

e−
β

4N
∑

i,j(σi−σj)2+(σ,h)G(σ), (A.26)
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where the vector h ∈ R
N is a possibly site-dependent external field and ZN (β,h)

is a normalisation factor. It is convenient to rewrite it as

Eν [G] = 1
ZN (β,h)

∑
σ∈{±1}N

e−
β
2 (σ,Pσ)+(σ,h)G(σ), (A.27)

where P = id − Q and Q is the orthogonal projection onto constants: Qf =( 1
N

∑
i fi

)
1 with 1 = (1, . . . , 1) ∈ R

N . For h = h1 with h ∈ R, the free energy
F (β, h) is the limit N → ∞ of FN (β, h) where

FN (β, h) = − 1
N

logZN (β, h1). (A.28)

(Physically more correctly, the right-hand side should have been divided by β,
but it is here more convenient to omit this.) It is well-known and easy to check
that

∂FN

∂β
= 1

2N
∂2FN

∂h2 − 1
2(∂FN

∂h
)2, FN (0, h) = − log cosh(h), (A.29)

and thus that the limiting free energy F is the viscosity solution of the Hamilton–
Jacobi equation

∂F

∂β
= −1

2(∂F
∂h

)2, F (0, h) = − log cosh(h), (A.30)

see in particular [78]. Equivalently, F is given by the Hopf–Lax formula which
coincides with the well-known variational formula for the free energy alterna-
tively obtained from Laplace’s Principle (see for example [19, Chapter 1] or
[90]):

F (β, h) = min
g∈R

[
1
2β (g − h)2 − log cosh(g)

]
= min

ϕ∈R

[
β

2ϕ
2 − log cosh(βϕ + h)

]
.

(A.31)
This Hamilton–Jacobi equation for the free energy can be related, as follows,

to the Polchinski equation studied earlier in Section 6.4.1. Recall that id = P+Q
with Q the orthogonal projection onto constant vectors in R

N and PQ = 0. For
α > β, let

Ct = (tP + (α− t))−1, Ċt = (α− t)−2Q, (A.32)
where we used PQ = 0 to simplify Ċt. For ϕ ∈ R

N , the renormalised poten-
tial (6.47) then is

Vt(ϕ) = − log
∑

σ∈{±1}
e−

1
2 (σ−ϕ,(tP+(α−t))(σ−ϕ)) + (constant) (A.33)

and satisfies the Polchinski equation (for appropriate otherwise irrelevant choice
of the constants):

∂Vt

∂t
= 1

2ΔĊt
Vt −

1
2(∇Vt)2Ċt

= (α− t)−2
[
1
2ΔQVt −

1
2(∇Vt)2Q

]
. (A.34)
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Note that the right-hand side only depends on derivatives of Vt in constant
directions (i.e., in the image of Q). By (A.32), the covariance Cβ − Ct of the
renormalised measure νt = νt,β defined in (6.50) is also proportional to Q and
therefore supported on constant fields. Thus one can restrict the renormalised
potential Vt to constant fields and the restriction satisfies a closed equation. Ex-
plicitly, for ϕ̃ ∈ R, define Ṽ (ϕ̃) = 1

N V (ϕ̃1). In other words, Vt(ϕ) = NṼt(Qϕ) =
NṼt( 1

N

∑
i ϕi) holds for constant fields ϕ = Qϕ and

∂Ṽt

∂t
(ϕ̃) = 1

N

∂Vt

∂t
(ϕ̃1) = (α− t)−2 1

N

[
1
2ΔQVt −

1
2(∇QVt)2

]
(ϕ̃1)

= (α− t)−2
[
1
2
∂Vt

∂ϕ2
1
− 1

2( ∂Vt

∂ϕ1
)2
]

(ϕ̃1)

= (α− t)−2
[

1
2N Ṽ ′′

t − 1
2(Ṽ ′

t )2
]

(ϕ̃). (A.35)

Thus the reduced (one-variable) Polchinski equation that Ṽt satisfies has a pref-
actor 1/N in front of the Laplacian term, and its limit Vt as N → ∞ is the
unique viscosity solution of the following (one-variable) Hamilton–Jacobi equa-
tion (now dropping tilde from the variable ϕ):

∂Vt

∂t
(ϕ) = −1

2(α−t)−2(Vt
′(ϕ))2, V0(ϕ) = α

2ϕ
2− log cosh(αϕ), (ϕ ∈ R).

(A.36)

To conclude this section, we relate the Hamilton–Jacobi equation (A.36) for
the renormalised potential to the one satisfied by the free energy (A.30). We
follow the argument in Example 3.14 and first note that for a constant field ϕ1
with ϕ ∈ R, the renormalised potential can be written as (see (3.68))

Vt(ϕ1) = N

[
α− t

2 ϕ2 + FN (t, (α− t)ϕ)
]
. (A.37)

Thus F (t, h) = −1
2 (α− t)−1h2 +Vt((α− t)−1h) and the Hamilton–Jacobi equa-

tion (A.30) for F follows from the one of V exactly as in Example 3.14. Indeed,
in the setting of that example with the relation (3.68) between Vt and Ft one
has in general that

∂

∂t
Vt = −1

2(∇Vt)2Ċt
⇔ ∂

∂t
Ft = −1

2(∇Ft)2Σ̇t
, (A.38)

and in the present example the choice of Ct corresponds to Σ̇t = Q.
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