
Probability Surveys
Vol. 21 (2024) 171–199
ISSN: 1549-5787
https://doi.org/10.1214/24-PS29

Fundamentals of partial rejection
sampling
Mark Jerrum∗

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road,
London, E1 4NS, e-mail: m.jerrum@qmul.ac.uk

Abstract: Partial Rejection Sampling is an algorithmic approach to ob-
taining a perfect sample from a specified distribution. The objects to be
sampled are assumed to be represented by a number of random variables. In
contrast to classical rejection sampling, in which all variables are resampled
until a feasible solution is found, partial rejection sampling aims at greater
efficiency by resampling only a subset of variables that ‘go wrong’. Par-
tial rejection sampling is closely related to Moser and Tardos’ algorithmic
version of the Lovász Local Lemma, but with the additional requirement
that a specified output distribution should be met. This article provides
a largely self-contained account of the basic form of the algorithm and its
analysis. Working within a unified framework allows a clean expression of
the running time, and clarifies the scope for nondeterminism in its imple-
mentation.

MSC2020 subject classifications: Primary 60C05; secondary 68R07,
68W20.
Keywords and phrases: Perfect sampling, rejection sampling, Lovász
local lemma.

Received June 2023.

Contents

1 The setting . 172
2 Partial rejection sampling in the extremal setting 173
3 Example applications . 182

3.1 Sink-free orientations of a graph 182
3.2 Spanning trees of a graph . 184
3.3 Root-connected subgraphs . 185
3.4 Bases of bicircular matroids . 186
3.5 Notes . 187

4 Non-extremal instances . 188
4.1 Example: independent sets (the hard-core gas model) 190
4.2 Runtime analysis . 191

5 Generalisations . 196
Acknowledgments . 196
References . 196

arXiv: 2106.07744
∗This work was supported by EPSRC grant EP/S016694/1, “Sampling in hereditary

classes”.

171

https://imstat.org/journals-and-publications/probability-surveys/
https://doi.org/10.1214/24-PS29
mailto:m.jerrum@qmul.ac.uk
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://arxiv.org/abs/2106.07744

172 M. Jerrum

1. The setting

The aim of this expository article is to provide a uniform treatment of a particu-
lar approach to sampling combinatorial structures. The method is a development
of classical rejection sampling. Suppose Φ(X) is a predicate (Boolean function)
depending on random variables X = (X1, . . . , Xn) coming from a product distri-
bution. We would like to obtain a sample from the conditional distribution of X
given that Φ(X) holds. Classical rejection sampling repeatedly generates realisa-
tions of X from the product distribution until one that satisfies Φ is found, and
then outputs that. In many situations this approach is very inefficient, as satis-
fying assignments to Φ may occur with exponentially small probability (in n).
The idea in Partial Rejection Sampling (PRS) is to identify small subsets of
the variables that violate Φ (in some sense), and resample just those variables.
Clearly, the choice of which variables to resample has to be done with care if
the output distribution is to remain the correct one.

The phrase ‘partial rejection sampling’ appears to have been coined by Cohn,
Pemantle and Propp [8] to describe their approach to sampling sink-free orienta-
tions. Noting the similarity to Wilson’s approach to sampling spanning trees [34],
they wondered whether one could develop a general theory. PRS as a general
algorithmic technique was explored by Guo, Jerrum and Liu [20], and is our
topic here.

We focus on examples of PRS inspired by algorithmic proofs of the Lovász
Local Lemma (LLL). There is a substantial literature on this topic to assist
us, but it is concerned only with problem of constructing some satisfying as-
signment to Φ. Partial rejection sampling adds the novel requirement that the
output should be uniform (or, more generally, from the desired distribution) on
satisfying assignments. This additional requirement adds a new challenge.

In the study of the LLL, the class of ‘extremal’ instances receives particular
attention. The extremal instances are particularly suited to PRS and we treat
them first. It is unlikely that anything in this section of the article is conceptu-
ally new. However, the treatment of PRS in the extremal regime involves some
particularly beautiful combinatorial ideas, and it is seems a good time to bring
this material together in one place, with a consistent approach and notation.

After that, we investigate to what extent the conditions defining extremal
instances can be relaxed. The viewpoint taken in this section is novel in that
correctness and efficiency are treated in a manner than is more consistent with
that for extremal instances. This has the advantage of clarifying the conditions
under which PRS continues to function in the non-extremal setting, in the hope
that it will help in discovering new applications. Additionally, it allows greater
attention to be paid to the flexibility in the order in which variables can be
resampled.

The scope of this article is limited to versions of partial rejection sampling
that stay close to the spirit of the algorithmic LLL pioneered by Moser and
Tardos [32]. In particular, the number of random variables is finite and all con-
straints on them are ‘hard’. Informally, we restrict attention to a ‘combinato-
rial’ setting, which excludes important applications to spin systems in statistical

Partial rejection sampling 173

physics. We finish with a few pointers to work that goes beyond the framework
presented here.

It should be noted that PRS is not the only approach to perfect sampling.
Perhaps the best known and most extensively studied is ‘Coupling From The
Past’ (CFTP), which was pioneered by Propp and Wilson [34]. Other approaches
include Fill and Huber’s ‘Randomness recycler’ [13] and Anand and Jerrum’s
‘Lazy depth-first sampler’ [1].

2. Partial rejection sampling in the extremal setting

Suppose Φ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕm is formula on variables X = (X1, X2, . . . , Xn).
Each clause ϕk depends on a certain tuple (Xi1 , . . . , Xiak

) of variables, where
ak is the arity of ϕk. We refer to the tuple Scp(ϕk) = (i1, . . . , iak

) of indices as
the scope of the clause ϕk. By assuming i1 < i2 < · · · < iak

we can consider the
scope Scp(ϕk) to be a ak-tuple or a set of cardinality ak, according to context.
For a set S ⊆ {1, . . . , n} of indices we write XS = {Xi : i ∈ S}. Then to
emphasise the dependence on the variables we can write

Φ(X) = ϕ1(XScp(ϕ1)) ∧ · · · ∧ ϕm(XScp(ϕm)).

Definition 2.1. We say that the formula Φ = ϕ1 ∧ · · · ∧ ϕm is extremal if,
for all 1 ≤ k < � ≤ m satisfying Scp(ϕk) ∩ Scp(ϕ�) �= ∅, it is the case that
ϕk(XScp(ϕk))∨ϕ�(XScp(ϕ�)) is a tautology. In other words, any two clauses that
are probabilistically dependent cannot both be false.

In this section we consider only extremal instances, as these can be dealt with
using the basic form of partial rejection sampling.

Now suppose that variable Xi takes values from a set Di. Equip Di with a
probability distribution and call the probability space Di. We are interested in
sampling a realisation of the random variable X from the product distribution
D = D1 × D2 × · · · × Dn conditioned on Φ(X) holding. Denote this desired
distribution by DΦ. Partial Rejection Sampling (PRS) is a simple algorithm for
accomplishing this task in the context of extremal instances. It runs as follows.

Algorithm 1 Partial Rejection Sampling
PRS(Φ,D) // Φ is a formula on variable set X
Sample X from the product distribution D = D1 × · · · × Dn

while ¬Φ(X) do
Choose any clause ϕk with ¬ϕk(XScp(ϕk))
Resample all variables in Scp(ϕk)

end while

In the resampling step, the product distribution
∏

i∈Scp(ϕk) Di is naturally
being used.

The algorithm PRS was first introduced by Moser and Tardos [32] in the
context of an algorithmic proof of the Lovász Local Lemma. Its application to
sampling from naturally specified distributions was studied by Guo, Jerrum and

174 M. Jerrum

...
...

...
...

...
ω1,4 ω2,4 ω3,4 ω4,4 ω5,4
ω1,3 ω2,3 ω3,3 ω4,3 ω5,3
ω1,2 ω2,2 ω3,2 ω4,2 ω5,2
ω1,1 ω2,1 ω3,1 ω4,1 ω5,1
ω1,0 ω2,0 ω3,0 ω4,0 ω5,0
X1 X2 X3 X4 X5

Fig 1. A resampling table

Liu [20], who analysed its correctness and efficiency. Although their investigation
seems to be the first attempt to treat PRS as a general technique, several specific
examples had previously appeared in the literature as we noted above.

Remark. In the combinatorial community, the Moser and Tardos algorithm
would be viewed as gradually eliminating the set of ‘bad events’ until none are
left. In the area of constraint satisfaction, the goal is to simultaneously satisfy a
collection of constraints. It is important to keep in mind that, of these diamet-
rically opposing conventions, we use the latter here.

In classical rejection sampling we would resample the whole of X on each
iteration. In contrast, PRS resamples only a subset of offending variables. We
cannot expect the correctness of the algorithm to survive such extreme corner
cutting. Indeed, for general formulas Φ, the call PRS(Φ,D) does not produce
a sample from the distribution DΦ. Surprisingly, PRS does achieve the desired
distribution for extremal instances.

Theorem 2.2. Suppose Φ is a satisfiable extremal instance. Then PRS(Φ,D)
terminates with probability 1. On termination, X is a realisation of a random
variable from the distribution DΦ.

To analyse the algorithm, we need to introduce time explicitly. A resampling
table is a semi-infinite matrix (ωi,j : 1 ≤ i ≤ n and j ∈ N). Each entry ωi,j

in the table is an independent sample from the distribution Di. Fixing i, the
sequence ωi,0, ωi,1, ωi,2, . . . specifies the sequence of values taken by the random
variable Xi during the execution of the algorithm. Introducing a superscript to
indicate the time t (each iteration of the loop takes one time unit), we write Xt

i =
ωi,j(i,t). If Xi is resampled during iteration t then j(i, t) = j(i, t−1)+1, otherwise
j(i, t) = j(i, t−1). Initially, j(i, 0) = 0 for all 1 ≤ i ≤ n. (By convention, we start
at time 0, and iteration t occupies the interval between time t−1 and time t.) At
any time t, the frontier of the resampling table is F (t) = {(i, j(i, t)) : 1 ≤ i ≤ n}.
See Figure 1.

As time progresses, we record the actions of the algorithm in the form of a
partition of the portion of the resampling table that lies behind the frontier,
namely {(i, j) : 1 ≤ i ≤ n and 0 ≤ j < j(i, t)}. The partition builds as the
frontier advances. In iteration t, the variables in the scope of some clause ϕk

are resampled. The locations {(i, j(i, t − 1)) : i ∈ Scp(ϕk))} that were on the
frontier now lie behind it; this set of locations now forms a new block of the

Partial rejection sampling 175

...
...

0
...

... 1
...

1 1 0 1 1
0 0 0 0 1
0 1 1 1 0
1 0 0 0 1
X1 X2 X3 X4 X5

0 1

1 0 1

0 0

1 1 0

0 0 0 1

1 0 1

t = 7

t = 6

t = 4, 5

t = 3

t = 2

t = 1

t = 0

ϕ2

ϕ1, ϕ4

ϕ3

ϕ1

ϕ2

ϕ4

X1 X2 X3 X4 X5

0 1 0 1 1

Fig 2. A realisation of a resampling table, and the corresponding transcript

partition. We call these blocks the resampling blocks. At time t, the frontier
together with the partition into resampling blocks forms a transcript of the run
of the algorithm up to time t.

By way of example, consider the formula

Φ(X) = (X1∨X2)∧ (¬X1∨X3∨¬X4)∧ (¬X2∨¬X3∨X5)∧ (X4∨¬X5) (2.1)

on variables X = (X1, X2, X3, X4, X5). (The formula Φ encodes sink-free ori-
entations of a certain 4-vertex graph, a point we shall return to later.) Thus
ϕ2 = ¬X1∨X3∨¬X4 and Scp(ϕ2) = {1, 3, 4}, and similarly for the other clauses.
A particular realisation of the resampling table that leads to termination of the
algorithm PRS, together with its associated transcript, are depicted in Figure 2.
In the pictorial representation of the transcript, the values in the resampling ta-
ble are spread out along the columns so that each resampling block of the tran-
script occupies a single row. The rectangle at the top denotes the final frontier,
i.e., the frontier at termination. Initially, X4 = 0 and X5 = 1, which violates
clause ϕ5. Accordingly, variables X4 and X5 are resampled, and {(4, 0), (5, 0)}
becomes the first resampling block of the transcript. The value of X4 switches
from 0 to 1, and this causes clause ϕ2 to be violated, since now X1 = X4 = 1
and X3 = 0. So X1, X3 and X4 are resampled and {(1, 0), (3, 0), (4, 1)} becomes
the next resampling block of the transcript. Eventually, X = (0, 1, 0, 1, 1), which
satisfies Φ, and the algorithm halts.

Suppose we run the algorithm PRS twice, using different non-deterministic
choices (of which clauses to resample), until termination. A priori, it might be
imagined that the two runs would in general have different transcripts, but this
is not the case, as we shall see in Lemma 2.3. Some intuition can be gained
from Figure 2. At time 4, X = (0, 0, 0, 0, 1), and hence clauses ϕ1 and ϕ4 are
both violated. We can resample either {X1, X2} first or {X4, X5}, but either
way we end up with the same transcript. In this context, it is crucial that
Scp(ϕ1)∩Scp(ϕ4) = ∅, but in an extremal instance, this condition is guaranteed.

Lemma 2.3. Let Φ be an extremal formula. Fix a resampling table. Suppose
that for some sequence of non-deterministic choices, PRS(Φ,D) terminates with

176 M. Jerrum

a certain transcript. Then for any other sequence of choices, the algorithm will
terminate with the same transcript.

To prove this lemma, we use a version of Newman’s Lemma that is partic-
ularly convenient in this application. An (abstract) rewriting system is simply
a set T of ‘positions’ together with a binary ‘rewriting’ relation → on T . For
positions t, s ∈ T , the relation t → s indicates that it is possible to go from t
to s in one move. A position t from which no valid move t → s is possible is
said to be terminal. A sequence of moves ending at a terminal state is said to be
terminating. Following Eriksson [10], we say that the rewriting system (T ,→)
has the polygon property if, given any position t ∈ T and two moves t → s and
t → s′, either (a) there are two sequences s = s0 → s1 → · · · → s� = t∗ and
s′ = s′0 → s′1 → · · · → s′� = t∗ of the same length � that end at the same posi-
tion t∗, or (b) there are two infinite sequences of moves starting from s and s′.
A rewriting system is said to have the strong convergence property if, for any
starting position t from which there exists a sequence of moves terminating at
some position t∗, it is the case that every sequence of moves starting from t will
lead to t∗, and in the same number of moves. Eriksson [10, Thm 2.1] showed
the following.

Lemma 2.4. A rewriting system has the strong convergence property iff it has
the polygon property.

Proof of Lemma 2.3. Fix a resampling table. View the collection of all possible
transcripts as an abstract rewriting system by introducing a binary relation →
on transcripts. The meaning of t → s is that s can follow t in one iteration
of PRS. This rewriting system has the diamond property, namely if t → s and
t → s′ then there exists t∗ such that s → t∗ and s′ → t∗. (This diamond property
is clearly stronger than the polygon property.) For suppose t → s is a result of
resampling the variables in scope Scp(ϕk), and t → s′ the result of resampling
Scp(ϕ�). Since the instance Φ is extremal we know that Scp(ϕk) ∩ Scp(ϕ�) = ∅.
Thus, we can resample whichever scope was not resampled in the first step, to
get to a common transcript t∗. The result now follows from Lemma 2.4.

Proof of Theorem 2.2. Fix a particular satisfying assignment X = b = (b1, . . . ,
bn) to Φ. At any point in the execution of the algorithm, the following fortuitous
sequence of events may occur over the next n iterations: each time a variable
Xi is resampled, it is assigned the value bi. On each iteration, X approaches
closer to b in Hamming distance. Thus, the algorithm will terminate in the next
n iterations. Since this fortuitous sequence of events occurs with probability
bounded away from 0, the running time of the algorithm PRS is stochastically
dominated by an exponential random variable with finite mean. So the algorithm
terminates with probability 1.

Fix a resampling table T , and run PRS on T to obtain a transcript. Since
the algorithm has terminated, we know that the frontier contains a satisfying
assignment. Create a new resampling table T ′ by replacing the values in the
frontier by some other satisfying assignment. Now run the algorithm again on
T ′ with the same nondeterministic choices of scopes to resample. Note that this

Partial rejection sampling 177

1

2

3

4

Fig 3. The dependency graph Γ corresponding to formula Φ defined in (2.1).

is always possible: whenever the algorithm running on T resamples Scp(ϕk) at
time t it is because ϕk(ωi,j(i,t) : i ∈ Scp(ϕk)) is false. None of the resampled
variables are in the final frontier, since no variables beyond the final frontier
are ever inspected. So the clause ϕk is also false when the algorithm is run on
table T ′, and it is valid step to resample Scp(ϕk). Finally, on the same iteration
that the algorithm terminates when run on table T , it will also terminate on T ′.
The same transcript (i.e., frontier F (t) together with the partition of the table
behind the frontier) arises from running the algorithm on T ′ as the one that
arose from the run on T .

By Lemma 2.3 any sequence of non-deterministic choices made by the algo-
rithm on table T ′ leads to the same transcript. Summarising, the final tran-
script does not depend on the nondeterministic choices made by the algo-
rithm, and is also unchanged if one satisfying assignment is substituted for
another in the final frontier. Thus, conditioned on the transcript, each satisfy-
ing assignment X = (b1, . . . , bn) of Φ occurs with probability proportional to
D1(b1)D2(b2) · · · Dn(bn). So, at termination, X is distributed as DΦ.

There is a remarkably simple (though not simple to derive) formula for the
expected number of iterations in a run of algorithm PRS, which we now present.
Kolipaka and Szegedy [28] derived this formula as an upper bound, but it is in
fact exact. Given Φ, define Γ = Γ(Φ) to be the dependency graph with vertex
set [m] (where vertex k corresponds to clause ϕk) and edge relation ∼ defined
by k ∼ � iff Scp(ϕk) ∩ Scp(ϕ�) �= ∅. (Refer to Figure 3 for an example.) Let
Σ = {s1, s2, . . . , sm} be an alphabet of m symbols. If k ∼ � then symbols sk and
s� do not commute; otherwise, sk and s� do commute, i.e., sks� = s�sk. Denote
by RΓ the set of commutation relations:

RΓ = {sks� = s�sk : k �∼ �}.

The set Σ∗/RΓ of traces over Σ is the set of all words over the alphabet Σ
quotiented by the commutation relations RΓ. So a trace can be thought of
as word over Σ where we regard two words as indistinguishable if one can be
obtained from the other by transposing adjacent commuting symbols.

There is an elegant expression for the generating function for traces. Introduce

178 M. Jerrum

indeterminates z1, . . . , zm corresponding to the m clauses in Φ, and define

PΓ(z1, . . . , zm) =
∑

I∈I(Γ)

(−1)|I|zI ,

where zI =
∏

k∈I zk and I(Γ) is the set of all independent sets in Γ. Note
that the polynomial PΓ is the generating function of independent sets in Γ, with
terms signed according to parity. The generating function for traces Σ∗/R is the
multivariate polynomial TΓ(z1, . . . , zm) in which the coefficient of ze11 ze22 · · · zemm
is the number of traces in which symbol s1 occurs e1 times, s2 occurs e2 times,
etc. The following expression for the trace generating function is due to Cartier
and Foata [6]. The derivation can also be found, e.g., in Knuth [27, Thm F] and
Viennot [38, Prop. 5.1].

Lemma 2.5. With Γ, PΓ as above, the generating function TΓ for traces Σ∗/R
is given by TΓ(z1, . . . , zm) = PΓ(z1, . . . , zm)−1.

Take, as an example, the dependency graph Γ from Figure 3. The generating
function for signed independent sets in Γ is

PΓ(z,z2, z3, z4) = 1 − z1 − z2 − z3 − z4 + z1z4,

encoding the empty independent set ∅, the four singleton independent sets {1},
{2}, {3}, {4}, and the unique independent set {1, 4} of size two. Then,

PΓ(z,z2, z3, z4)−1 = (1 − (1 − PΓ))−1

= 1 + (1 − PΓ) + (1 − PΓ)2 + (1 − PΓ)3 + · · ·
= 1 + z1 + z2 + z3 + z4 + z2

1 + z2
2 + z2

3 + z2
4

+ 2z1z2 + 2z1z3 + z1z4 + 2z2z3 + 2z2z4 + 2z3z4

+ terms of degree 3 and higher,

(Note that 1−PΓ has no constant term, so the expansion makes sense.) Observe
that the coefficient of z2z3 is 2, reflecting the fact that s2s3 and s3s2 are distinct
traces, while the coefficient of z1z4 is 1, as s1s4 and s4s1 are equivalent as traces.

The motivation for introducing traces is that they are in perfect correspon-
dence with transcripts, where the m symbols correspond to the m possible kinds
of resampling blocks; specifically, symbol sk corresponds to a block arising from
resampling Scp(ϕk). Let w = si1si2 . . . sit be any word in Σ∗. Consider the tran-
script that results if the algorithm PRS performs block resamplings in the order
Scp(ϕi1),Scp(ϕi2), . . . ,Scp(ϕit). Now let w′ = si′1si′2 . . . si′t be any word in Σ∗

that is equivalent to w under the commutation relations R. It is not difficult
to see that the same transcript results from the sequence of block resamplings
Scp(ϕi′1),Scp(ϕi′2), . . . ,Scp(ϕi′t). (Transposing the order of two adjacent com-
muting symbols transposes the order in which two blocks are resampled; how-
ever, those blocks have no variables in common, so there is no change in the
transcript.) Conversely, if words w and w′ lead to the same transcript then they
must be equivalent under commutativity. (Suppose si1 �= si′1 . Let si′h be the

Partial rejection sampling 179

first occurrence of the symbol si1 in w′. The first h − 1 resamplings prompted
by w′ did not disturb the variables in Scp(Φi1). Therefore, si′h commutes with
all earlier symbols in w′ and can be ‘bubbled’ into first place. The remaining
symbols can be brought into alignment inductively.) Transcripts are exactly the
empilements [des pièces] or ‘heaps of pieces’ of Viennot [38], who gives a beauti-
ful pictorial explanation of the correspondence between empilements (and hence
transcripts) and traces. See also Knuth [27, §7.2.2.2].

The correspondence between traces and transcripts can be appreciated pic-
torially in Figure 2. The depiction of the transcript is based on Viennot’s em-
pilements. Knuth invites us to think of each symbol as a piece in Tetris that
appears from above and descends until further progress is obstructed. The word
w = s4s2s1s3s1s4s2 specifies an order for the arriving pieces that leads to the
transcript on the right of the figure. The word w′ = s4s2s1s3s4s1s2 leads to the
same transcript, since s1 and s4 commute. In contrast, the word s4s2s3s1s1s4s2
results in a different transcript, as s1 and s3 do not commute: the pieces cor-
responding to symbols s1 and s3 cannot pass each other. The equivalence class
{w,w′} is a trace, since the only adjacent commuting pair of symbols is s1s4.
Traces, empilements and transcripts are different views of the same concept.

Before analysing the runtime of algorithm PRS, let us observe that it is
remarkably easy to compute the probability of observing a particular transcript
such as the one in Figure 2. Recall that each value in the resampling table is
the result of an independent toss of a fair coin. At time t = 0, we have that
ω4,0 = 0 and ω5,0 = 1, an event that occurs with probability 1

4 . (The only
way for ϕ4(X4, X5) to be false is for X4 to be 0, and X5 to be 1.) At time
t = 1 we know that ω1,0 = 1, ω3,0 = 0 and ω4,1 = 1, an event with probability
1
8 , and so on for times t = 2, 3, 4, 5, 6. All these events are independent, and
the probability that they all occur is 2−17. Finally, the frontier must contain a
satisfying assignment; there are 10 satisfying assignments out of a total of 32,
so the probability of observing the transcript depicted is 10 × 2−22.

For k ∈ [m], let pk = PrD(¬ϕk) denote the probability that ϕk is false in the
product distribution, and extend this notation to a set of clauses S ⊆ [m] by
letting pS =

∏
k∈S pk. Then define

qS =
∑

I∈I(Γ):I⊇S

(−1)|I\S|pI .

Note that qS = 0 if S /∈ I(Γ). Note also that

PΓ(p1, . . . , pm) =
∑

I∈I(Γ)

(−1)|I|pI = q∅ (2.2)

and
pkPΓ−N [k](p1, . . . , pm) = pk

∑
I∈I(Γ−N [k])

(−1)|I|pI

=
∑

I∈I(Γ):I�k

(−1)|I|−1pI

180 M. Jerrum

= q{k}, (2.3)

where Γ−N [k] denotes the graph obtained from the dependency graph Γ by re-
moving the closed neighbourhood of k and incident edges. (The closed neighbour-
hood N [k] of k is the set containing vertex k and all its neighbours.) Although
we have written PΓ−N [k](p1, . . . , pm) above, the polynomial PΓ−N [k] depends
only on those variables from p1, . . . , pm that survive when vertex k is removed,
and is independent of the others.

In the case of extremal instances, the quantity q∅ has a simple probabilistic
interpretation. By the principle of inclusion-exclusion,

PrD(Φ) = PrD
(∧

k∈[m]

ϕk

)

=
∑

S⊆[m]

(−1)|S| PrD
(∧

k∈S

¬ϕk

)

=
∑

I∈I(Γ)

(−1)|I|
∏
k∈I

PrD(¬ϕk) (see below) (2.4)

=
∑

I∈I(Γ)

(−1)|I|pI

= q∅. (2.5)

Equality (2.4) uses two facts: (a) when S is not an independent set the corre-
sponding term is zero, by extremality, and (b) for any independent set I, the
events {¬ϕk : k ∈ I} are probabilistically independent. Note, in particular, that
q∅ > 0 when Φ is satisfiable.

Theorem 2.6. Suppose Φ is a satisfiable extremal instance. Then the expected
number of resamplings of the scope of ϕk during a run of PRS(Φ,D) is q{k}/q∅.

Proof. As noted earlier, the generating function for transcripts is PΓ(z1, . . . ,
zm)−1. We claim that the generating function for transcripts weighted accord-
ing to probability of occurrence is q∅PΓ(p1z1, . . . , pmzm)−1. In other words, the
probability of observing a transcript with ek resamplings of scope Scp(ϕk), for
1 ≤ k ≤ m, is the coefficient of ze11 ze22 · · · zemm in q∅PΓ(p1z1, . . . , pmzm)−1. To
see this, fix a transcript with ek resamplings of scope Scp(ϕk), for 1 ≤ k ≤ m,
and consider the probability that a random resampling table will generate that
transcript. The frontier must contain a satisfying assignment, which happens
with probability q∅, by (2.5). Each block corresponding to a clause ϕk must
contain an assignment making ϕk false, which happens with probability pk. All
these probabilities are independent, so the overall probability of observing the
transcript is q∅

∏
1≤k≤m pekk . The claim follows. Note that we have used that the

fact that if it is possible for a certain transcript to arise from a given resampling
table it will do so.

Note that 1 − PΓ(p1, . . . , pm) = 1 − q∅ ∈ [0, 1), and so the power series

Partial rejection sampling 181

expansion

PΓ(p1z1, . . . , pmzm)−1 =
∞∑
i=0

(
1 − PΓ(p1z1, . . . , pmzm)

)i
converges in an open neighbourhood of the point z1 = · · · = zm = 1. The
expected number of resamplings of the scope of ϕk is given by

q∅
∂

∂zk
PΓ(p1z1, . . . , pmzm)−1

∣∣∣∣
z1=···=zm=1

= −q∅PΓ(p1z1, . . . , pmzm)−2 ∂

∂zk
PΓ(p1z1, . . . , pmzm)

∣∣∣∣
z1=···=zm=1

= q∅PΓ(p1, . . . , pm)−2pkPΓ−N [k](p1, . . . , pm).

We use here the fact that PΓ is multilinear, so differentiating with respect to zk
eliminates terms corresponding to independent sets that do not include k. Using
identities (2.2) and (2.3), we see that the expected number of times Scp(ϕk) is
resampled is q{k}/q∅.

We can recast the above theorem in a simple, easy to use form.

Corollary 2.7. The expected number of iterations of Algorithm PRS on input
(Φ,D) is

E(#iterations) = PrD(Exactly one clause in Φ is false)
PrD(Φ is true) .

Proof. Generalising the inclusion-exclusion argument used earlier, and assuming
S ∈ I(Γ), we have

PrD
(∧

k∈S

¬ϕk ∧
∧

k∈[m]\S
ϕk

)
=

∑
S′⊇S

(−1)|S
′\S| PrD

(∧
k∈S′

¬ϕk

)

=
∑

I∈I(Γ):I⊇S

(−1)|I\S|
∏
k∈I

PrD(¬ϕk)

=
∑

I∈I(Γ):I⊇S

(−1)|I\S|pI = qS .

When S /∈ I(Γ), the above equality continues to hold, as both side are zero. In
particular, the probability that clause ϕk is false, and all others true, is precisely
q{k}. The result now follows from Theorem 2.6.

Thanks to Lemma 2.3, the above results are completely robust against changes
in the implementation of algorithm PRS. Thus, the next scope to be resampled
can be selected by arbitrary means: the choice can be made on the current val-
ues of variables, the past execution of the algorithm, or even externalities such
as random bits or the system clock. It is also valid to resample several blocks

182 M. Jerrum

v1

v2

v3

v4

e1

e2

e3

e4

e5

Fig 4. A sample graph �G incorporating a reference orientation

simultaneously, in case several clauses are violated. If one is interested in the
expected number of individual variables resampled, this can also be accessed
though

E(#variables resampled) =
m∑

k=1

q{k}ak

q∅
, (2.6)

where ak is the arity of ϕk, for 1 ≤ k ≤ m.

3. Example applications

One application, to sink-free orientations, will be done in detail to illustrate the
methods, and the other applications merely sketched. For ease of presentation,
all examples will be unweighted, i.e, the probability distributions Di are all
uniform, as is the output distribution. Incorporating weights does not require
any conceptual changes.

3.1. Sink-free orientations of a graph

This approach to sampling sink-free orientations of a graph was introduced by
Cohn, Pemantle and Propp [8], and placed within the general framework of PRS
by Guo, Jerrum and Liu [20, §4.1].

Suppose G = (V,E) is a graph with vertex set {v1, v2, . . . , vm} and edge set
E = {e1, e2, . . . , en}.1 We wish to sample, uniformly at random, an orientation
of the edges of G that has no sinks, where a sink is a vertex vi at which all
incident edges are oriented towards vi. We assume that G has at least one such
sink-free orientation. It is convenient to choose a reference orientation for the
edges of G that is sink-free; denote by �G the directed graph obtained from G
by giving the edges of G this reference orientation.

To fit the pattern of PRS, we introduce Boolean variables X1, X2, . . . , Xn

and associate variable Xi to edge ei, for 1 ≤ i ≤ n. These variables will be used
to encode orientations of the edges of G. The variable Xi is to be interpreted as

1The roles of n and m are reversed relative to the usual convention in graph theory, but
this is necessary to preserve consistency with the previous section.

Partial rejection sampling 183

follows: if Xi = 0 then the edge ei is oriented against the reference orientation
(of ei in �G) and if Xi = 1 then ei is oriented with the reference orientation.
Next, introduce clauses {ϕk} to encode the event that vertex vk is not a sink.
So the scope of Φk is the set Scp(Φk) = {i : ei is incident at vk}, and the
clause ϕk asserts that at least one edge incident at vertex vk is oriented away
from vk. By way of example, consider the graph G in Figure 4, which has
been assigned a reference orientation to give a sink-free directed graph �G. The
condition that vertex v2, for example, is not a sink is asserted by the clause
ϕ2(X1, X3, X4) = ¬X1 ∨X3 ∨ ¬X4. Then Φ is the formula

Φ(X) = (X1 ∨X2) ∧ (¬X1 ∨X3 ∨ ¬X4) ∧ (¬X2 ∨ ¬X3 ∨X5) ∧ (X4 ∨ ¬X5)

that we encountered already in the previous section.
We observed earlier that Φ is an extremal instance. This is true in gen-

eral for sink-free orientations. If we have indices 1 ≤ k < � ≤ m such that
Scp(ϕk) ∩ Scp(ϕ�) �= ∅ then necessarily vertices vk and v� are adjacent. But
then it is impossible for vk and v� to both be sinks, and hence ϕk ∨ ϕ� must
hold. So Theorem 2.2 immediately assures us that PRS will produce a uniform
random sink-free orientation with probability 1. But is the expected running
time polynomial in n and m? In order to apply Corollary 2.7 we need to bound
the ratio q{k}/q∅. Although we don’t have a handle on q{k} and q∅ — and, in
a sense, q∅ is a quantity we would like to compute — we can bound the ratio
by defining an appropriate mapping from orientations with exactly one sink to
those with none.

Introduce a function f from {1, . . . ,m} to itself that is consistent with the
reference orientation, that is to say, (vk, vf(k)) is a (directed) edge in �G for
all 1 ≤ k ≤ m. This is possible because the reference orientation is sink-free.
To each orientation of G that has a single sink at vk we associate a sink-free
orientation as follows. Let ei be the edge (vk, vf(k)). Reverse the orientation
of ei, i.e., set Xi, which was previously 0, to 1. Vertex vk is no longer a sink, but
vf(k) may have become one. If vf(k) is not a sink than halt. Otherwise reverse the
orientation of the edge (vf(k), vf2(k)), and continue. This process must terminate,
as the Hamming distance to the reference orientation is decreasing. In fact, the
process traces out a simple path. For suppose not. Let t be the first instant at
which we revisit a vertex, i.e., such that f t(k) = fs(k) for some 0 ≤ s < t. The
edge (vfs(k), vfs+1(k)) is directed away from vfs(k), and hence vertex vfs(k) is
not a sink, a contradiction. (It is important to note that we leave and revisit
vertex vs via different edges.)

The edges that were flipped in the above construction form a path vk = vf0(k),
vf1(k), . . . , vf�(k). We may undo the construction provided we know f0(k) = k

and f �(k). It follows that the number of orientations with a single sink exceeds
the number of sink free orientations by a factor at most m2. So by Corollary 2.7
the expected number of iterations in a run of PRS — in this case the number
of sinks that are ‘popped’ — is bounded above by m2 = |V (G)|2. We may
also bound the number times the orientations of individual edges are flipped.
Fix a vertex vk. We saw above how to repair an orientation with a single sink

184 M. Jerrum

at vk. To undo this repair, we just need to specify the index f �(k). Thus the
number of orientations with a single sink at vk exceeds the number of sink-free
orientations by a factor m. Referring to (2.6), we have q{k}/q∅ ≤ m and ak =
deg(vk), the degree of vertex vk. Thus the expected number of edge orientation
reversals is

∑m
k=1 q{k}ak/q∅ ≤

∑m
k=1 mdeg(vk) = 2mn. So the expected number

of orientation reversals is a most 2|V (G)| |E(G)|. All this is in agreement with [8].
Surprisingly, the upper bound on edge-reversals can be tightened further to

|E(G)|+ |V (G)|2: see Guo and He [16]. Note that, the runtime analysis critically
used the assumption that coin tosses are unbiased, so that either orientation of
an edge is equally likely. (A simple counterexample shows that this assumption
is necessary.) In contrast, correctness of the algorithm extends to asymmetric
orientation probabilities.

3.2. Spanning trees of a graph

The Cycle-popping algorithm is an approach to uniformly sampling spanning
trees in a graph, introduced by Propp and Wilson [34]. Suppose G is a connected
graph with vertex set V = {v0, v1, . . . , vn} and edge set E. Instead of sampling
spanning trees in G we will instead sample spanning (in-)arborescences2 rooted
at v0, which is of course equivalent.

For each 1 ≤ i ≤ n, define Di = {j : {vi, vj} ∈ E}, and make Di into a proba-
bility space Di by equipping it with the uniform distribution. Introduce random
variables X1, . . . , Xn distributed as D1, . . . ,Dn. These variables indicate, for
each 1 ≤ i ≤ n, a possible exit from vertex vi. For each simple (oriented) cycle
C = (vi0 , vi1 , . . . , vi�−1 , vi� = vi0) define the predicate ϕC by

ϕC = ¬(Xi0 = i1 ∧Xi1 = i2 ∧ · · · ∧Xi�−1 = i�),

and the formula Φ by Φ =
∧

C ϕC , where the conjunction is over all oriented
cycles in G. (In this context, ‘simple’ is taken to mean ‘containing no repeated
vertices’; thus we regard the 2-cycle (vi0 , vi1 , vi0) as simple.) The intended inter-
pretation of the event Xi = j is that vertex vj is the ancestor of vertex vi in the
arborescence. The formula Φ(X) asserts that the ancestor relation is consistent
(has no cycles) and hence that X encodes a spanning arborescence rooted at v0.

Consider two clauses ϕC and ϕC′ corresponding to distinct cycles C and C ′.
If Scp(ϕC)∩Scp(ϕC′) �= ∅ then C and C ′ must have a vertex in common. Select
a vertex vi that is common to C and C ′ with the additional property that the
successor to vi in cycle C is not equal to the successor to vi in cycle C ′. Let vj
be the successor to vi in C and vj′ be the successor in C ′. It is clear that Xi = j
and Xi = j′ cannot both be true, and hence ϕC and ϕC′ cannot both be false.
Therefore Φ is extremal.

As in the previous example, we need to estimate the ratio between abores-
cences and ‘near-arborescences’ that contain a single cycle. In this context, a
near-arborescence is a unicyclic subgraph of G in which vertex v0 has outdegree

2That is, directed spanning trees with edges directed towards a root vertex.

Partial rejection sampling 185

0, and every other vertex has outdegree 1. Necessarily a near-arborescence has
two (weakly) connected components: the one containing v0 is a arborescence
rooted at v0, and the other is unicyclic. As before, by considering a suitable
mapping from near-arborescences to arborescences, it can be shown that the
number of the former is at most |V (G)| |E(G)| times the number of the lat-
ter. Thus, by Corollary 2.7, the number of iterations made by PRS is at most
|V (G)| |E(G)|. A more refined analysis, due to Guo and He [16, Thm 15], shows
that the total number of variable updates is bounded by essentially the same
expression.

3.3. Root-connected subgraphs

This ‘cluster-popping’ algorithm was proposed by Gorodezky and Pak [15], who
conjectured it to be efficient on a certain class of directed graphs. The conjecture
was resolved affirmatively by Guo and Jerrum [17].

Suppose G = (V,A) is a directed graph with a distinguished root vertex
r ∈ V . A spanning subgraph (V, S) of G is said to be root-connected if, for
every vertex v ∈ V , there is a directed path in (V, S) from v to r. Our task
is to sample, uniformly at random, a root-connected subgraph of G. As usual,
we restrict our attention to the unweighted version. However, as we shall note
later, the weighted version is of interest, owing to its connection to a network
reliability problem.

A subgraph (V, S) may be encoded by variables X = (Xe : e ∈ A) taking
values in {0, 1}. The interpretation of Xe = 1 is that e ∈ S. For an arc e ∈ A,
denote by e− and e+ the start and end vertex of e. A cluster in (V, S) is a
set ∅ ⊂ C ⊆ V \ {r} of vertices with the property that no edge e ∈ S exists
with e− ∈ C and e+ ∈ V \ C. The property ‘C is a cluster’ can be expressed
formally by the predicate ψC =

∧
e∈cut(C) ¬Xe, where cut(C) = {e ∈ A : e− ∈

C and e+ ∈ V \ C}. If the subgraph (V, S) has a cluster C then it is clear that
no vertex in C can reach r, via a directed path in (V, S), and hence (V, S) is not
root-connected. The converse is also true: Suppose (V, S) is not root-connected,
and let v be some vertex from which the root r is not reachable. Let C be the
set of all vertices reachable from v. Then C is a cluster in (V, S).

This observation suggests that we should define

Φ =
∧

∅⊂C⊆V \{r}
ϕC , (3.1)

where ϕC = ¬ψC . The formula Φ denies the existence of a cluster in the sub-
graph encoded by X, and hence correctly expresses the property of being root-
connected. The catch is that Φ is not in general extremal. It is perfectly conceiv-
able that two clusters C,C ′ exist that have nonempty intersection C ∩ C ′ �= ∅.
In that case, we might have Scp(ϕC) ∩ Scp(ϕC′) �= ∅ and yet ϕC and ϕC′ are
both false. The solution is to make the predicates ϕC less demanding, while pre-
serving the semantics of Φ. We say that the cluster C is minimal if it contains

186 M. Jerrum

no cluster C ′ with C ′ ⊂ C. Then we define ϕC to be true if C is not a minimal
cluster. Formally,

ϕC = ¬
[
ψC ∧

∧
∅⊂C′⊂C

¬ψC′

]
= ¬ψC ∨

∨
∅⊂C′⊂C

ψC′ .

Then define Φ as in (3.1). We claim that Φ still expresses the condition that
X encodes a root-connected subgraph (V, S). If (V, S) is root-connected, then
no cluster exists and hence ϕC is satisfied for all ∅ ⊂ C ⊆ V \ {r}. Conversely,
suppose that (V, S) is not root-connected. Then there is at least one cluster,
and hence at least one minimal cluster C. For this cluster, ϕC is contradicted,
and hence Φ is false.

Although the meaning of Φ is unchanged, the formula is now extremal. First
note that, for all subsets C,

Scp(ϕC) = {Xe : e− ∈ C}.
So if ϕC and ϕC′ are any two distinct clauses with Scp(ϕC)∩ Scp(ϕC′) �= ∅, we
must have C ∩ C ′ �= ∅. If C and C ′ are both clusters then C ∩ C ′ must also be
a cluster. Therefore, C and C ′ cannot both be minimal clusters. It follows that
at least one of ϕC or ϕC′ must hold. This deals with correctness of PRS in this
context.

Unfortunately, PRS does not have expected polynomial runtime on general
instances G, as can be appreciated by considering a counterexample presented
by Gorodezky and Pak [15]. However, those same authors conjectured that the
runtime is polynomial when the graph G is ‘bidirected’, i.e., an edge exists from
vertex u to v in G if and only if an edge exists from v to u. This special case is
of interest, since root-connected subgraphs of a bidirected graph G correspond
(via a constantly many-one relation) to spanning connected subgraphs of the
undirected version of G. (The details of this correspondence, which is a little
involved, may be found in [17, §5].) Thus, cluster popping provides a efficient
approach to sampling connected spanning subgraphs of a graph.

The conjecture of Gorodezky and Pak may be verified using Corollary 2.7.
Again the argument involves a mapping from subgraphs with exactly one mini-
mal cluster to root-connected subgraphs. The combinatorial details of this map-
ping and its analysis, which are more involved in this case that the previous ones,
are given by Guo and Jerrum [17]. The resulting upper bound on the expected
number of variable resamplings is |V (G)| |E(G)|2, which can be improved to
|V (G)| |E(G)| by a more refined analysis [16]. For a short while, PRS provided
the only known attack on sampling connected spanning subgraphs of a general
undirected graph, and its weighted version, undirected all-terminal reliability.
However the same problem (in a more general setting) has since been solved by
Markov chain simulation by Anari, Liu, Oveis Gharan and Vinzant [2].

3.4. Bases of bicircular matroids

Another application of PRS is to sampling bases of a bicircular matroid. The al-
gorithm was first presented in a slightly different guise by Kassel and Kenyon [26].

Partial rejection sampling 187

Suppose G = (V,E) is an undirected graph with no tree components. The bi-
circular matroid associated with G has E as its ground set. The bases of the
matroid are all spanning subgraphs of G in which every connected component
is unicyclic; equivalently, every connected component has the same number of
edges as it has vertices. The sampling algorithm may be derived methodically
using PRS. The application has similarities with the cycle-popping algorithm
described above in the context of sampling spanning trees.

As with cycle popping, variables are introduced that encode a function g
from V to itself that respects the edges of G. (This is a slight deviation from the
spanning trees case, where the function was from V \ {r} to V .) The spanning
subgraph (V, S) defined by S = {{v, g(v)} : v ∈ V } is very like a basis of
the bicircular matroid, with two caveats. First, we want to rule out cycles of
length 2 — that is, situations in which g(g(v)) = v for some v ∈ V — as such
functions g do not correspond to valid bases. Second, each basis with c connected
components corresponds to 2c distinct functions, as each cycle may be traced
in either orientation.

To deal with these two objections, we specify a preferred orientation for every
cycle in G. Our formula Φ includes a clause ϕC , for each potential cycle C that
either (a) has length two, or (b) is oriented in the wrong sense. In each case,
ϕC asserts that C does not occur. It is easy to check that Φ is extremal. The
expected number of resamplings (either of clauses or individual variables) is
O(|V (G)|2). Details are given by Guo and Jerrum [18].

3.5. Notes

The examples listed above are not the only known applications of PRS, but they
are the only non-trivial ones for which polynomial-time running time bounds
are known. At least, they are the one ones I am aware of.

One tempting potential application is to sampling strong orientations of an
undirected graph. An orientation of the edges of an undirected graph G is strong
if there is a directed path from every vertex of G to every other. If G is connected,
strong orientations coincide with ‘totally cyclic orientations’. The number of to-
tal cyclic orientations of a graph G is an evaluation of the Tutte polynomial
(at the point (0, 2)). It is known that counting totally cyclic (and hence strong
orientations) is #P-complete [25]. However, the computational complexity of
approximately counting or uniformly sampling totally cyclic orientations is un-
known.

The cluster-popping algorithm for root-connected subgraphs is easily adapted
to strong orientations. For a set ∅ ⊂ S ⊂ V = V (G) of vertices of G, we say that
S is cluster if all edges between S and V \ S are directed into S. (The crucial
difference with the root-connected case is that there is no distinguished root
vertex r that is excluded from all clusters.) We say that a cluster is minimal
if it is minimal with respect to inclusion. As usual, define Φ =

∧
∅⊂S⊂V ϕS ,

where the formula ϕS expresses the condition that S is not a minimal cluster.
It may be verified that Φ is extremal, and hence that PRS produces a uniform

188 M. Jerrum

random strong orientation (assuming that the G has one, which happens exactly
when the graph G is bridgeless). Unfortunately, the expected runtime may be
exponential, as can be appreciated by considering the ladder graph Ln on 2n
vertices. (The ladder graph can be viewed as a n × 2 rectangular piece of the
square lattice, or as the cartesian product Pn × P2 of a path on n vertices and
a path on 2 vertices.) If vk is one of the degree-2 corner vertices then the ratio
q{k}/q∅ from Theorem 2.6 is exponential in n. (By induction on n, the number
of strong orientations is 2 × 3n−2, whereas the number of orientations with a
unique minimal cluster {vk} is at least 3 × 4n−2.) The fact that Theorem 2.6
gives an exact result and not just an upper bound comes in useful here, as it
enables us to deduce a lower bound on the running time of PRS.

4. Non-extremal instances

In an extremal instance, no two clauses that share variables can be simulta-
neously false. We have seen that this leads to uniform outputs from PRS. It
transpires that we can get away with a little less than this.

Definition 4.1. We say that the formula Φ = ϕ1 ∧ · · · ∧ ϕm is quasi-extremal
if the following holds, for all k, � ∈ [m] and assignments X and X′: if ¬ϕk(X)∧
¬ϕ�(X) and it is possible to get from X to X′ by resampling variables in the
scope of ϕ�, then ¬ϕk′(X′) for some k′ with Scp(ϕk′) ⊇ Scp(ϕk).

Note that an extremal instance satisfies the above definition with k′ = k,
so the qualifier ‘quasi-extremal’ is a weakening of ‘extremal’. The additional
flexibility allows PRS to be applied to a significantly wider class of examples.

The algorithm is exactly as before except for one change. Although we have
considerable flexibility in the order in which to resample (the scopes of) clauses,
we no longer have complete freedom.

Algorithm 2 Partial Rejection Sampling with limited nondeterminism
PRS(Φ,D) // Φ is a formula on variable set X
Sample X from the product distribution D1 × · · · × Dn

while ¬Φ(X) do
N := {� : ¬ϕ�(XScp(ϕ�))}
Choose k ∈ N deterministically, based only on the set N itself
Resample all variables in Scp(ϕk)

end while

A referee has pointed out that Definition 4.1 has the following consequence for
the algorithm. If ϕk(X) is false at some point in the execution then (assuming
the algorithm terminates) at some point in the future a resampling step must
occur at which all variables in the scope of ϕk are simultaneously resampled
(possibly together with some others). A weaker version of Definition 4.1 could
be formulated along these lines, which would be adequate for correctness of
the algorithm. It is not clear if any additional interesting examples would be
captured by the weaker notion of quasi-extremality, and we do not pursue this

Partial rejection sampling 189

line here. However, the observation is worth bearing in mind when reading the
following correctness proof.

Theorem 4.2. Suppose Φ is a quasi-extremal satisfiable instance. Then PRS(Φ,
D) terminates with probability 1. On termination, X is a realisation of a random
variable from the distribution DΦ.

Proof. Termination with probability 1 can be argued exactly as in the proof of
Theorem 2.2.

For correctness, we set up the resampling table as in the proof of Theorem 2.2.
As before, fix a resampling table T , and run PRS on T to obtain a transcript.
Since the algorithm has terminated, we know that the frontier contains a satis-
fying assignment. Create a new resampling table T ′ by replacing the values in
the frontier by some other satisfying assignment. Now run the algorithm on the
new resampling table T ′. We claim that this second run correctly outputs the
planted satisfying assignment.

If, in both runs of the algorithm, the same clause ϕk is selected in every
iteration then the output indeed will be correct. So assume that in some iteration
different clauses are selected in the two runs. For this to occur, the set N must
differ between the two runs. Consider the first iteration on which this occurs, and
suppose ϕk is true in one run and false in the other. As before, let S = Scp(ϕk)
and partition S as S = SI∪SF , where variables SI (respectively, SF) take values
from the interior (respectively, final frontier) of the resampling table. Note that
SI �= ∅ (otherwise ϕk would be true in both runs) and SF �= ∅ (otherwise ϕk

would have the same truth value in both runs).
There are two cases, both of which lead to a contradiction. Suppose first

that ϕk is false in the T -run (and incidentally true in the T ′-run, thought this
is not relevant to the argument). Allow the T -run to continue. The algorithm
does not resample Scp(ϕk) itself, since that action would take it past the fi-
nal frontier of the table. If it resamples Scp(ϕ�) for some � �= k then, since Φ
is quasi-extremal, this action would leave behind a clause ϕk′ with ϕk′ false
and Scp(ϕk′) ⊇ Scp(ϕk). Arguing as before, the algorithm does not resample
Scp(ϕk′) so, by induction, at least one clause will always be false for the remain-
der of the run. Thus, we can never make all clauses of Φ true, which contradicts
the fact that the transcript is finite.

The second and final case has ϕk false in the T ′-run (and incidentally true in
the T -run). Up to this point, the two runs have made exactly the same choices
of scopes to resample. Now imagine that all the resampling steps in the T -run
are faithfully mirrored in the T ′ run. We have deviated from the deterministic
choice rule of the algorithm, but all resampling steps are legal, in the sense that
we always resample scopes Scp(ϕ�) for which ϕ� is currently false. The reason
for this is exactly as in the proof of Theorem 2.2: briefly, that we never resample
variables in the frontier and the variables sampled from the interior have the
same values in both runs. The T ′-run finishes with the same transcript as the
T -run, but with a different satisfying assignment in the frontier. In particular
all clauses of Φ are satisfied. On the other hand, we may argue as follows. Since
Scp(ϕk) is never resampled again in the T -run, it is also never resampled in the

190 M. Jerrum

T ′-run. Also, as in the first case, by resampling Scp(ϕ�) for � with � �= k, we must
leave behind a clause ϕk′ with ϕk′ false and Scp(ϕk′) ⊇ Scp(ϕk). Arguing again
by induction, we can never make all clauses of Φ true, which is a contradiction.

Summarising, the final transcript remains unchanged if one satisfying as-
signment is substituted for another in the final frontier. Thus, conditioned on
the transcript, each satisfying assignment X = (b1, . . . , bn) of Φ occurs with
probability proportional to D1(b1)D2(b2) · · · Dn(bn). So, at termination, X is
distributed as DΦ.

It will be seen from the proof that a somewhat more liberal non-determinism
could be allowed in Algorithm 2,. Basing the choice on the set N strikes a
balance between simplicity and generality.

4.1. Example: independent sets (the hard-core gas model)

Suppose wish to sample independent sets in a graph G. Introduce variables
X = (Xv : v ∈ V (G)) taking values in {0, 1} to encode potential independent
sets in G. The interpretation of Xv = 1 (respectively Xv = 0) is that vertex
v is in (respectively not in) the independent set. In our product distribution
we assume Pr(Xv = 1) = λ/(1 + λ) for all vertices of G, for some positive
‘activity’ λ. (It is not essential that the activity is constant over vertices, but
it slightly simplifies the exposition.) We wish to sample from the conditional
(Gibbs) distribution given that X encodes an independent set.

The natural formula expressing that X encodes an independent set is Φ′(X) =∧
{u,v}∈E(G) ϕ{u,v} where ϕ{u,v} = ¬(Xu∧Xv). However Φ′ is not extremal. Fol-

lowing the example provided by cluster popping for root connected subgraphs,
we try to re-express Φ′ as a semantically equivalent extremal formula.

Suppose S ⊆ V is a maximal set of vertices such that (i) the induced subgraph
G[S] is connected and (ii) Xv = 1 for all v ∈ S. If S is not a singleton, we say
that S is a cluster (relative to the assignment X). Denote by

∂S = {v : v /∈ S and ∃u ∈ S such that {u, v} ∈ E(G)}

the boundary of S, containing all vertices outside of S that are adjacent to some
vertex in S. Naturally, Xv = 0 for all v ∈ ∂S. Refer to Figure 5, where solid
(respectively, open) vertices v are ones where Xv = 1 (respectively, Xv = 0).
For each S of the above form, we introduce a clause ϕS that asserts that S is
not a cluster. In Figure 5, there are two clusters, and in each case the extent
of S ∪ ∂S (which is also the scope of ϕS) is indicated. Let Φ =

∧
S ϕS , where

S ranges over all vertex subsets of size at least two that induce a connected
subgraph. It is clear that Φ(X) asserts that X encodes an independent set.

Unfortunately, a moment’s reflection reveals that Φ is also not extremal.
Denote by S the set S = S ∪ ∂S and note that Scp(ϕS) = S. It is possible to
have clusters S and S′ with S ∩ S′ �= ∅, in which case Scp(ϕS) ∩ Scp(ϕS′) �= ∅,
and yet ϕS ∨ ϕS′ is false. Indeed, the two clusters in Figure 5 are of this kind.

Partial rejection sampling 191

Fig 5. A pair of clusters in Z
2 with overlapping boundaries

However, it is straightforward to verify that Φ is quasi-extremal. Suppose ϕS

and ϕS′ are simultaneously false. It is easy to see that

S ∩ S′ = (S ∪ ∂S) ∩ S′ = S ∩ S′ = ∅,

and similarly that S ∩ S′ = ∅. If S ∩ S′ = ∅ then Scp(ϕS) ∩ Scp(ϕS′) = ∅, and
Definition 4.1 is satisfied with k′ = k. Otherwise, we are in the case

S ∩ S′ = (S ∪ ∂S) ∩ (S′ ∪ ∂S′) = ∂S ∩ ∂S′ �= ∅.

Resampling Scp(ϕS′) can make ϕS true, but only at the expense of making some
ϕS′′ with S′′ ⊃ S false, since no variable in S is resampled. Again Definition 4.1
is satisfied, but now with k′ �= k. In Figure 5, resampling the left cluster (with
boundary) may increase the right cluster but cannot decrease it.

Specialising the generic PRS algorithm to this example, we obtain the fol-
lowing algorithm for sampling independent sets, which is a slight variant of one
first described by Guo, Jerrum and Liu [20].

Algorithm 3 Partial Rejection Sampling for independent sets
PRSforIS(G,λ) // G is an undirected graph, and λ a positive real number
Sample X from the product, over all variables, of the distribution Bernoulli(λ/(1 + λ)).
while X does not encode an independent set do

Choose a cluster S using a valid rule
Resample all variables {Xv : v ∈ S}

end while

Lemma 4.3. PRSforIS(G,λ) terminates with probability 1. On termination, X
is a realisation of a random variable from the Gibbs distribution for independent
sets in G with activity λ.

Proof. Follows immediately from Theorem 4.2.

4.2. Runtime analysis

Sampling independent sets is in general an NP-hard problem [30, Thm 4], so we
need to make some assumption about the graph G and activity λ. Our goal is to

192 M. Jerrum

find λΔ > 0 such that PRS terminates rapidly, for all λ < λΔ and all graphs G
of maximum degree Δ.

We take as our starting point the runtime analysis for extremal instances from
Section 2. One problem extending this analysis to the non-extremal situation is
that the proof of Theorem 2.6 fails. The reason for this is that the interpretation
of q∅ as the probability PrD(Φ) that Φ is satisfied is no longer valid. It transpires
that this problem can be avoided by using a different line of proof. Kolipaka
and Szegedy [28, Thm 4] show that the number of resamplings of the scope
of ϕk is bounded above by q{k}/q∅, provided the point (p1, . . . , pm) lies within
a certain region. (Refer to the preamble to Theorem 2.6 for notation.) This
region was identified by Shearer [36] as the theoretical limit of validity of the
Lovász Local Lemma, even in the non-algorithmic setting. Although elegant, it
is difficult to use this result directly: testing membership in the Shearer region
in specific examples is challenging, as is computing q{k} and q∅, which no longer
have simple combinatorial interpretations. Fortunately, there are several weaker
conditions that can be feasibly tested.

Just as we weakened the definition of extremal to quasi-extremal, we can
weaken the concept to dependency graph or relation to a lopsided dependency
(‘lopsidependency’) graph [32, §6].

Definition 4.4. Given a satisfiable instance Φ = ϕ1 ∧ · · · ∧ ϕm, let k, � ∈ [m]
with k �= � be arbitrary. Suppose there is a resampling table relative to which it
is possible to resample Scp(ϕk) and then immediately resample Scp(ϕ�) but it is
not possible to perform these operations in the reverse order (either because ϕ� is
true initially, or because ϕk is true after Scp(ϕ�) has been resampled). Then we
write k ∼ � and say that k and � are lopsidedly dependent. The graph ([m],∼)
is the lopsided dependency graph of Φ. (We regard the pair k, � as unordered,
and the graph as undirected.)

Note also that the lopsided dependency graph is a subgraph, in general strict,
of the usual dependency graph.

In the independent set example it is easy to characterise the lopsided de-
pendency graph: specifically, S �∼ S′ iff S ∩ S′ = ∅ and S ∩ S′ = ∅. (In fact,
the two parts of thie latter condition are logically equivalent, so only one needs
to be tested.) To see this, consider two clauses ϕS and ϕS′ with S ∩ S′ = ∅.
Suppose it is possible to resample Scp(ϕS) followed by Scp(ϕS′). We claim that
the order of the resamplings can be reversed (leading potentially to a locally
different transcript). The case Scp(ϕS)∩Scp(ϕS′) = S∩S′ = ∅ is uninteresting.
So consider a variable Xi with i ∈ S ∩ S′. Necessarily, i ∈ ∂S ∩ ∂S′. It follows
that Xi takes the value 0 before Scp(ϕS) is resampled (since ¬ϕS) and retains
that value after (since ¬ϕS′). Therefore the two scopes could as well have been
resampled in the opposite order, and S �∼ S′. Conversely, if S ∩ S′ �= ∅ then
at most one of ϕS or ϕS′ can be false initially, so the ordering of resampling is
forced, and S ∼ S′. In Figure 5, the two clusters are related in the dependency
graph but not in the lopsided dependency graph: only the boundaries intersect.

Definition 4.4 is sometimes portrayed as as a positive dependency condition,
but in the resampling table view of the world it seems more natural to interpret

Partial rejection sampling 193

it as a commutativity condition. We say that a clause is atomic if it is falsified by
exactly one assignment. Definition 4.4 takes a simpler form when all clauses are
atomic; see Moser and Tardos [32, §6], where ‘elementary’ is used as a synonym
for ‘atomic’.

Observation 4.5. Suppose ϕk is atomic, for every k ∈ [m]. Then k ∼ �, i.e.,
k and � are lopsidedly dependent, iff ϕk ∨ ϕ� is a tautology.

Moser and Tardos [32, Thm 6.1] prove the following runtime bound.

Theorem 4.6. Suppose that Φ is a satisfiable instance (formula) with lopsided
dependency graph ([m],∼). Suppose also that there exists a sequence of reals
(xk ∈ (0, 1) : k ∈ [m]) such that, for all k ∈ [m],

PrD(¬ϕk) ≤ xk

∏
�∈[m]:�∼k

(1 − x�).

Then, in expectation, Algorthm 2 resamples Scp(ϕk) at most xk/(1− xk) times
before halting.

Lemma 4.7. Suppose G is a graph with n vertices and maximum degree Δ.
There exists λΔ > 0 such that the expected number of variable resamplings
made during the execution of PRSforIS(G,λ) is at most 2n whenever λ ≤ λΔ.
Asymptotically, λΔ = Θ(Δ−1).

Proof. Identifying vertices of G with [n], let

C =
{
S ⊆ [n] : |S| ≥ 2 and G[S] is connected

}
be the set of all subsets of V (G) that induce connected subgraphs of G with at
least two vertices. We need to find quantities {xS : S ∈ C} satisfying

PrD,λ(¬ϕS) ≤ xS

∏
S′∈C:S′∼S

(1 − xS′). (4.1)

Note that we have included the activity λ explicitly in the notation here, as
we are about to introduce a second artificial activity μ. We define the required
quantities xS by xS = PrD,μ(¬ϕS) for some suitably chosen μ (one that will
make the right hand side of inequality (4.1) large), and then choose λ < μ
as large as possible while still satisfying the inequality. The thinking here is
that as S varies, xS should shadow PrD,λ(¬ϕS), but with enough slack to allow
inequality (4.1) to be satisfied. For convenience, let q = μ/(1+μ). We start with
a preliminary calculation. For any i ∈ [n],∑

S′∈C:i∈S′

xS′ =
∑

S′∈C:i∈S′

PrD,μ(¬ϕS′)

= PrD,μ

(∨
S′∈C:i∈S′

¬ϕS′

)
(4.2)

= PrD,μ(i is contained in some cluster)

194 M. Jerrum

≤ Δq2. (4.3)

Equality (4.2) follows from disjointness of the events ¬ϕS′ over all S′ ∈ C with
i ∈ S′ (by lopsided dependency). Inequality (4.3) is an upper bound on the
probability that vertex i finds itself in a cluster, obtained as a union bound over
the (at most) Δ events that i and some particular neighbour of i are selected.

Now suppose that S ∈ C and let c = |S| and b = |∂S|. Then

xS

∏
S′∼S

(1 − xS′) ≥ xS

∏
i∈S∪∂S

∏
S′∈C:i∈S′

(1 − xS′) (by over-counting) (4.4)

≥ xS

∏
i∈S∪∂S

(
1 −

∑
S′∈C:i∈S′

xS′

)

≥ qc(1 − q)b(1 − Δq2)b+c (by (4.3)). (4.5)

This deals with the right hand side of (4.1). The left hand side is simply

PrD,λ(¬ϕS) = pc(1 − p)b, (4.6)

where p stands for λ/(1+λ). Recall that we want to ensure that (4.6) is less than
or equal to (4.5). Since q > p, this goal is hardest to achieve, for any given c,
when b is as large as possible. Certainly b ≤ (Δ−1)c, so we assume b = (Δ−1)c
from now on. With this simplification, the inequality we wish to satisfy is

pc(1 − p)(Δ−1)c ≤ qc(1 − q)(Δ−1)c(1 − Δq2)Δc,

or, equivalently,

p(1 − p)(Δ−1) ≤ q(1 − q)(Δ−1)(1 − Δq2)Δ. (4.7)

We are free to choose q as we like. If we let q = Δ−1 then the right hand side
is greater than 1/(8Δ), enabling us to take p at most 1/(8Δ) and λ at most
1/(8Δ − 1).

Having shown that the premise of Theorem 4.6 holds, we can read off an upper
bound on the expected number of resamplings. Repeating an earlier trick,∑

S∈C
xS |S| =

∑
i∈V (G)

∑
S∈C:i∈S

xS

≤ nΔq2 (by (4.3))
= n/Δ.

Noting that |∂S| ≤ (Δ − 1)|S| and xS ≤ 1
2 we have that the expected total

number of variable resamplings is∑
S∈C

xS

1 − xS
|S ∪ ∂S| ≤

∑
S∈C

2ΔxS |S| ≤ 2n,

by Theorem 4.6.

Partial rejection sampling 195

Remark. Of course, Δ−1 was merely a convenient choice for q and not an
optimal one. When Δ = 3, we find numerically that the right hand side of (4.7)
attains a maximum of 0.0892275+ at around q = 0.172016. Thus, we can satisfy
inequality (4.7) by setting p = 0.113551, which is ensured by taking λ3 = 0.128.
When Δ is large, a similar line of argument gives λΔ ∼ C/Δ asymptotically,
where x = C = 0.327+ is the smallest solution to xe−x = 1

2e
−3/4.

Our calculation has some slack at a number of locations. One easy win is to
replace Δq2 in (4.3) by the tighter, in fact exact, q(1 − (1 − q)Δ). Another is
achieved by reducing the degree of overcounting in (4.4). Although we do need
to let i range over the whole of ∂S, it is enough to let it range over a minimum
vertex cover of (the subgraph induced by) S. However, these improvements, and
others that may suggest themselves, seem to yield only marginal improvements in
the achievable lambda, and do not justify the increase in combinatorial complex-
ity. It seems that some significant new ingredient would be required to achieve
an outcome competitive with other approaches to perfectly sampling independent
sets.

To provide some context for the above working, we review the hard-core
model on an infinite regular tree of degree Δ. It is known that this model
exhibits a phase transition at λc = (Δ − 1)Δ−1/(Δ − 2)Δ [5, §4]. For λ < λc

there is a unique Gibbs measure and for λ > λc there are two. A remarkable
discovery is that that λc also marks a computational threshold of the hard-
core model. On the one hand, Sly and Sun [37] and Galanis, Štefankovič and
Vigoda [14] showed that it is NP-hard to sample, even approximately, from the
hard-core distribution in general graphs of maximum degree Δ, when λ > λc.
One the other hand, for the same class of graphs, approximate sampling is
possible in time O(n log n) when λ < λc. This was shown by Chen, Liu and
Vigoda [7], building on the spectral independence approach of Anari, Liu and
Oveis-Gharan [3].

Against this benchmark, the performance of PRS is unimpressive. The asymp-
totic upper bound on λ of 0.327/Δ derived above is beaten by various other ap-
proaches to perfect sampling: 1/Δ using the lazy depth-first sampler of Anand
and Jerrum [1, §3.1], 4

3/Δ using the randomness recycler of Fill and Huber [13],
and 2/Δ using coupling from the past allied to bounding chains by Huber [23].
The last of these is an O(n logn) time (as opposed to linear time) perfect sam-
pler. All of these bounds are below the uniqueness threshold λc, and it would
be interesting to know whether the limit for linear time perfect sampling is λc,
or whether there is a barrier below this.

Extensive research on the algorithmic Lovász Local Lemma has brought to
light a number of alternatives to Theorem 4.2. Examples which may be useful
in analysing PRS algorithms have been given by Bissacot, Fernández, Procacci,
and Scoppola [4], Harris [21], Harvey and Vondrak [22], Iliopoulos [24], Kol-
mogorov [29], and Pegden [33]. A comprehensive treatment of the circle of ideas
surrounding the independent set polynomial and the Lovász Local Lemma has
been given by Scott and Sokal [35].

196 M. Jerrum

5. Generalisations

In this article, we have restricted attention to the simplest version of PRS based
directly on the Moser Tardos algorithmic LLL. Specifically, we resample the
variables of just one clause at each step. This involved recasting the ‘obvious’
encoding of a problem as a CNF formula in a form suitable for application
of the method. For example, in the case of independent sets, we replaced the
natural two-variable clauses by larger clauses based on clusters. Alternatively, it
is possible to stick with the ‘natural’ formula at the expense of complicating the
resampling algorithm. This was the approach originally taken by Guo, Jerrum
and Liu [20].

We dealt here exclusively with hard constraints which either permit or deny
a particular assignment to the variables. Soft constraints can be incorporated by
introducing an auxiliary variable taking values in the real interval [0, 1]. Applied
to the Ising model, for example, one would end up with a representation akin to
that of Edwards and Sokal [9]. Alternatively, Feng, Vishnoi and Yin [12] incorpo-
rated soft constraints directly, thereby allowing a wider range of spin systems to
be addressed more naturally. Another possible extension is to continuous state
spaces, with Guo and Jerrum [19] (see also Wellens [39]) treating the hard-disks
model, and Moka and Kroese [31] more general point processes. Feng, Guo and
Yin [11] show how to achieve perfect sampling when strong spatial mixing holds.
This last work is quite far from PRS, but still relies on growing a sample by
repeatedly ‘repairing’ parts of the current configuration.

Acknowledgments

The treatment of PRS presented here draws on many sources, in some cases
heavily. Particularly influential are the works of Moser and Tardos [32], Knuth [27],
Kolipaka and Szegedy [28] and Viennot [38]. I also learned a great deal through
collaboration with Heng Guo. Finally, in retrospect, it is remarkable how many
of the ideas behind PRS were already present in the work of Propp and Wil-
son [34] on cycle-popping.

I thank the referees for a thorough reading of the manuscript, encouraging
remarks, and insightful comments.

References

[1] Konrad Anand and Mark Jerrum. Perfect sampling in infinite spin sys-
tems via strong spatial mixing. SIAM J. Comput., 51(4):1280–1295, 2022.
MR4456711

[2] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant.
Log-concave polynomials II: High-dimensional walks and an FPRAS for
counting bases of a matroid. Ann. of Math. (2), 199(1):259–299, 2024.
MR4681146

https://mathscinet.ams.org/mathscinet-getitem?mr=4456711
https://mathscinet.ams.org/mathscinet-getitem?mr=4681146

Partial rejection sampling 197

[3] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence
in high-dimensional expanders and applications to the hardcore model. In
2020 IEEE 61st Annual Symposium on Foundations of Computer Science,
pages 1319–1330. IEEE Computer Soc., Los Alamitos, CA, [2020] c©2020.
MR4232133

[4] Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scop-
pola. An improvement of the Lovász local lemma via cluster expansion.
Combin. Probab. Comput., 20(5):709–719, 2011. MR2825585

[5] Graham R. Brightwell and Peter Winkler. Graph homomorphisms and
phase transitions. J. Combin. Theory Ser. B, 77(2):221–262, 1999.
MR1719348

[6] P. Cartier and D. Foata. Problèmes combinatoires de commutation et réar-
rangements. Lecture Notes in Mathematics, No. 85. Springer-Verlag, Berlin-
New York, 1969. MR0239978

[7] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of
Glauber dynamics: entropy factorization via high-dimensional expansion.
In STOC’21—Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 1537–1550. ACM, New York, [2021] c©2021.
MR4398939

[8] Henry Cohn, Robin Pemantle, and James G. Propp. Generating a ran-
dom sink-free orientation in quadratic time. Electr. J. Comb., 9(1), 2002.
MR1946148

[9] Robert G. Edwards and Alan D. Sokal. Generalization of the Fortuin-
Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm.
Phys. Rev. D (3), 38(6):2009–2012, 1988. MR0965465

[10] Kimmo Eriksson. Strong convergence and a game of numbers. European J.
Combin., 17(4):379–390, 1996. MR1387469

[11] Weiming Feng, Heng Guo, and Yitong Yin. Perfect sampling from spatial
mixing. Random Structures Algorithms, 61(4):678–709, 2022. MR4504840

[12] Weiming Feng, Nisheeth K. Vishnoi, and Yitong Yin. Dynamic sampling
from graphical models. SIAM J. Comput., 50(2):350–381, 2021. MR4235179

[13] James Allen Fill and Mark Huber. The randomness recycler: a new tech-
nique for perfect sampling. In 41st Annual Symposium on Foundations of
Computer Science (Redondo Beach, CA, 2000), pages 503–511. IEEE Com-
put. Soc. Press, Los Alamitos, CA, 2000. MR1931847

[14] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of
the partition function for the antiferromagnetic Ising and hard-core models.
Combin. Probab. Comput., 25(4):500–559, 2016. MR3506425

[15] Igor Gorodezky and Igor Pak. Generalized loop-erased random walks and
approximate reachability. Random Structures Algorithms, 44(2):201–223,
2014. MR3158629

[16] Heng Guo and Kun He. Tight bounds for popping algorithms. Random
Structures Algorithms, 57(2):371–392, 2020. MR4129725

[17] Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm
for all-terminal network reliability. SIAM J. Comput., 48(3):964–978, 2019.
MR3948248

https://mathscinet.ams.org/mathscinet-getitem?mr=4232133
https://mathscinet.ams.org/mathscinet-getitem?mr=2825585
https://mathscinet.ams.org/mathscinet-getitem?mr=1719348
https://mathscinet.ams.org/mathscinet-getitem?mr=0239978
https://mathscinet.ams.org/mathscinet-getitem?mr=4398939
https://mathscinet.ams.org/mathscinet-getitem?mr=1946148
https://mathscinet.ams.org/mathscinet-getitem?mr=0965465
https://mathscinet.ams.org/mathscinet-getitem?mr=1387469
https://mathscinet.ams.org/mathscinet-getitem?mr=4504840
https://mathscinet.ams.org/mathscinet-getitem?mr=4235179
https://mathscinet.ams.org/mathscinet-getitem?mr=1931847
https://mathscinet.ams.org/mathscinet-getitem?mr=3506425
https://mathscinet.ams.org/mathscinet-getitem?mr=3158629
https://mathscinet.ams.org/mathscinet-getitem?mr=4129725
https://mathscinet.ams.org/mathscinet-getitem?mr=3948248

198 M. Jerrum

[18] Heng Guo and Mark Jerrum. Approximately counting bases of bicircular
matroids. Combin. Probab. Comput., 30(1):124–135, 2021. MR4205662

[19] Heng Guo and Mark Jerrum. Perfect simulation of the hard disks model
by partial rejection sampling. Ann. Inst. Henri Poincaré D, 8(2):159–177,
2021. MR4261668

[20] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through
the Lovász local lemma. J. ACM, 66(3):Art. 18, 31, 2019. MR3941342

[21] David G. Harris. Lopsidependency in the Moser-Tardos framework: beyond
the lopsided Lovász local lemma. ACM Trans. Algorithms, 13(1):Art. 17,
26, 2016. MR3598122

[22] Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász
local lemma via resampling oracles. SIAM J. Comput., 49(2):394–428, 2020.
MR4082011

[23] Mark Huber. Perfect sampling using bounding chains. Ann. Appl. Probab.,
14(2):734–753, 2004. MR2052900

[24] Fotis Iliopoulos. Commutative algorithms approximate the LLL-
distribution. In Approximation, randomization, and combinatorial opti-
mization. Algorithms and techniques, volume 116 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 44, 20. Schloss Dagstuhl. Leibniz-Zent. In-
form., Wadern, 2018. MR3857282

[25] F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational com-
plexity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos.
Soc., 108(1):35–53, 1990. MR1049758

[26] Adrien Kassel and Richard Kenyon. Random curves on surfaces in-
duced from the Laplacian determinant. Ann. Probab., 45(2):932–964, 2017.
MR3630290

[27] Donald E. Knuth. The Art of Computer Programming, volume 4, Fascicle
6. Addison-Wesley Professional, 2015. MR2251595

[28] Kashyap Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In
STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Com-
puting, pages 235–243. ACM, New York, 2011. MR2931973

[29] Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local
lemma. SIAM J. Comput., 47(6):2029–2056, 2018. MR3874020

[30] Michael Luby and Eric Vigoda. Fast convergence of the Glauber dynam-
ics for sampling independent sets. Random Structures Algorithms, 15(3-
4):229–241, 1999. MR1716763

[31] Sarat B. Moka and Dirk P. Kroese. Perfect sampling for Gibbs point pro-
cesses using partial rejection sampling. Bernoulli, 26(3):2082–2104, 2020.
MR4091102

[32] Robin A. Moser and Gábor Tardos. A constructive proof of the general
Lovász Local Lemma. J. ACM, 57(2), 2010. MR2606086

[33] Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma.
SIAM J. Discrete Math., 28(2):911–917, 2014. MR3215059

[34] James G. Propp and David B. Wilson. How to get a perfectly random
sample from a generic Markov chain and generate a random spanning tree
of a directed graph. J. Algorithms, 27(2):170–217, 1998. MR1622393

https://mathscinet.ams.org/mathscinet-getitem?mr=4205662
https://mathscinet.ams.org/mathscinet-getitem?mr=4261668
https://mathscinet.ams.org/mathscinet-getitem?mr=3941342
https://mathscinet.ams.org/mathscinet-getitem?mr=3598122
https://mathscinet.ams.org/mathscinet-getitem?mr=4082011
https://mathscinet.ams.org/mathscinet-getitem?mr=2052900
https://mathscinet.ams.org/mathscinet-getitem?mr=3857282
https://mathscinet.ams.org/mathscinet-getitem?mr=1049758
https://mathscinet.ams.org/mathscinet-getitem?mr=3630290
https://mathscinet.ams.org/mathscinet-getitem?mr=2251595
https://mathscinet.ams.org/mathscinet-getitem?mr=2931973
https://mathscinet.ams.org/mathscinet-getitem?mr=3874020
https://mathscinet.ams.org/mathscinet-getitem?mr=1716763
https://mathscinet.ams.org/mathscinet-getitem?mr=4091102
https://mathscinet.ams.org/mathscinet-getitem?mr=2606086
https://mathscinet.ams.org/mathscinet-getitem?mr=3215059
https://mathscinet.ams.org/mathscinet-getitem?mr=1622393

Partial rejection sampling 199

[35] Alexander D. Scott and Alan D. Sokal. The repulsive lattice gas, the
independent-set polynomial, and the Lovász local lemma. J. Stat. Phys.,
118(5-6):1151–1261, 2005. MR2130890

[36] James B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245,
1985. MR0837067

[37] Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs.
Ann. Probab., 42(6):2383–2416, 2014. MR3265170

[38] Gérard Xavier Viennot. Heaps of pieces. I. Basic definitions and combina-
torial lemmas. In Combinatoire énumérative (Montreal, Que., 1985/Que-
bec, Que., 1985), volume 1234 of Lecture Notes in Math., pages 321–350.
Springer, Berlin, 1986. MR0927773

[39] Jake Wellens. A note on partial rejection sampling for the hard disks model
in the plane, 2018.

https://mathscinet.ams.org/mathscinet-getitem?mr=2130890
https://mathscinet.ams.org/mathscinet-getitem?mr=0837067
https://mathscinet.ams.org/mathscinet-getitem?mr=3265170
https://mathscinet.ams.org/mathscinet-getitem?mr=0927773

	The setting
	Partial rejection sampling in the extremal setting
	Example applications
	Sink-free orientations of a graph
	Spanning trees of a graph
	Root-connected subgraphs
	Bases of bicircular matroids
	Notes

	Non-extremal instances
	Example: independent sets (the hard-core gas model)
	Runtime analysis

	Generalisations
	Acknowledgments
	References

