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Abstract: Backward Stochastic Differential Equations (BSDEs) have been
widely employed in various areas of social and natural sciences, such as the
pricing and hedging of financial derivatives, stochastic optimal control prob-
lems, optimal stopping problems and gene expression. Most BSDEs cannot
be solved analytically and thus numerical methods must be applied to ap-
proximate their solutions. There have been a variety of numerical methods
proposed over the past few decades as well as many more currently be-
ing developed. For the most part, they exist in a complex and scattered
manner with each requiring a variety of assumptions and conditions. The
aim of the present work is thus to systematically survey various numerical
methods for BSDEs, and in particular, compare and categorize them, for
further developments and improvements. To achieve this goal, we focus pri-
marily on the core features of each method based on an extensive collection
of 333 references: the main assumptions, the numerical algorithm itself,
key convergence properties and advantages and disadvantages, to provide
an up-to-date coverage of numerical methods for BSDEs, with insightful
summaries of each and a useful comparison and categorization.

arXiv: 2101.08936
∗This work was initiated while JC and RK were based in School of Mathematics and

Statistics at the University of Sydney, Australia, and was partially supported by JSPS Grants-
in-Aid for Scientific Research (Grant Numbers 20K22301 and 21K03347) and by JST PRESTO
(Grant Number JPMJPR2029).

486

https://imstat.org/journals-and-publications/probability-surveys/
https://doi.org/10.1214/23-PS18
mailto:jared.chessari@appian.com
mailto:raykawai@g.ecc.u-tokyo.ac.jp
mailto:sinozaki.yuji@gmail.com
mailto:toshihiro.yamada@r.hit-u.ac.jp
https://arxiv.org/abs/2101.08936


Numerical methods for backward stochastic differential equations 487

MSC2020 subject classifications: 65C30, 65C05, 93E24, 49L20, 60H07.
Keywords and phrases: BSDEs, semilinear PDEs, least-squares regres-
sion, Picard iteration, Malliavin calculus, Monte Carlo methods, deep learn-
ing.

Received March 2022.
Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

2.1 Backward stochastic differential equations . . . . . . . . . . . . . 490
2.2 Forward backward stochastic differential equations . . . . . . . . 494

3 Backward numerical methods . . . . . . . . . . . . . . . . . . . . . . . 497
3.1 Backward Euler methods . . . . . . . . . . . . . . . . . . . . . . 497
3.2 Higher-order discretization methods . . . . . . . . . . . . . . . . 499

4 Computation of conditional expectations . . . . . . . . . . . . . . . . . 502
4.1 Least-squares regression based methods . . . . . . . . . . . . . . 502
4.2 Malliavin calculus based methods . . . . . . . . . . . . . . . . . . 505

4.2.1 Representation of conditional expectations using integration-
by-parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

4.2.2 Malliavin weights dynamic programming with regression . 506
4.3 Quantization methods . . . . . . . . . . . . . . . . . . . . . . . . 508
4.4 Tree based methods . . . . . . . . . . . . . . . . . . . . . . . . . 509
4.5 Cubature methods . . . . . . . . . . . . . . . . . . . . . . . . . . 511

5 Forward numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 513
5.1 Picard iteration methods . . . . . . . . . . . . . . . . . . . . . . . 513
5.2 Branching diffusion system based methods . . . . . . . . . . . . . 518
5.3 Asymptotic expansion . . . . . . . . . . . . . . . . . . . . . . . . 520
5.4 Multilevel Picard approximation . . . . . . . . . . . . . . . . . . 523
5.5 Further on forward numerical methods . . . . . . . . . . . . . . . 524

6 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
6.1 Deep BSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
6.2 Deep backward dynamic programming . . . . . . . . . . . . . . . 527
6.3 Deep splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
6.4 Deep Galerkin method and physics-informed neural networks . . 529
6.5 Further on deep learning based methods . . . . . . . . . . . . . . 530

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
7.1 Backward numerical methods along with computation of condi-

tional expectations . . . . . . . . . . . . . . . . . . . . . . . . . . 532
7.2 Forward numerical methods . . . . . . . . . . . . . . . . . . . . . 534
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

8 Numerical methods for BSDEs with nonstandard features . . . . . . . 536
8.1 Coupled FBSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
8.2 Reflected BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
8.3 BSDEs with jumps . . . . . . . . . . . . . . . . . . . . . . . . . . 540
8.4 BSDEs with non-global Lipschitz conditions . . . . . . . . . . . . 540
8.5 Quadratic BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

https://mathscinet.ams.org/mathscinet/msc/msc2020.html


488 J. Chessari et al.

8.6 Second-order BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.7 McKean-Vlasov FBSDEs . . . . . . . . . . . . . . . . . . . . . . 542
8.8 BSPDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

1. Introduction

A Backward Stochastic Differential Equation (BSDE) was first introduced by
Jean-Michel Bismut in 1973 [34]. The paper used a linear BSDE as an equation
for the adjoint process in the stochastic version of the Pontryagin maximum
principle. BSDEs were generalized by Pardoux and Peng in 1990 [255] to a
general non-linear BSDE of the following form:

Yt = ξT +
∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

Zs dWs, t ∈ [0, T ],

where questions regarding the existence and uniqueness of the solution process
(Yt, Zt)t∈[0,T ] were addressed. We also mention here the closely related Forward
BSDEs (FBSDEs) given as follows:{

Yt = Φ(XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs,

Xt = x +
∫ t

0 μ(s,Xs)ds +
∫ t

0 σ(s,Xs)dWs,

for t ∈ [0, T ]. They are essentially a BSDE coupled with a (forward) Stochastic
Differential Equation (SDE), in the sense that the driver can depend on the
solution to the SDE, and the terminal condition of the BSDE is a function of the
terminal value of the SDE. We also look in detail at FBSDEs, as these types of
BSDEs appear widely in literature (especially in regards to numerical methods).
The solution of an FBSDE can be formulated in terms of the solution of a
semilinear parabolic PDE, and this equivalence is exploited in many numerical
methods. For the remainder of the introduction when we mention BSDEs, this
can refer to BSDEs or FBSDEs. In following sections, however, we will be strict
on which type of BSDE we are referring to.

BSDEs have been used widely in a number of areas of social and natural
sciences. The problem of pricing and hedging a European option can be for-
mulated in terms of a BSDE. In fact, any pricing problem using a replication
argument can be written in terms of a BSDE [105, 171]. A BSDE can also take
into account portfolio constraints in pricing problems [43, 53, 83, 85]. Thus, BS-
DEs have often been employed for the valuation of many financial derivatives
in both complete and incomplete or constrained markets, including European
and American options [103, 104]. BSDEs can provide necessary and sufficient
conditions for optimality [260, 261] and enhance implementability [150, 166] in
optimal control problems such as utility maximization control problems with
constraints and risk-sensitive control problems [101, 171, 172, 176, 273, 307].
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BSDEs have also been tied to nonlinear expectations and thus have been used
to construct the risk measures [262]. The more complex reflected BSDEs [103]
and doubly reflected BSDEs [84, 214] have been developed in connection with
zero-sum Dynkin games, optimal stopping problems, recallable options, mixed
differential games, and mixed stochastic control [157, 159]. In addition, BSDEs
have found applications in filtering [14, 15, 16] and physics [93, 278]. More ex-
amples of applications in these areas can be found in [79, 102, 105] and image
processing [36].

Due to the complex nature of BSDEs, it is rarely possible to find an analyti-
cal solution. Thus, one must often resort to numerical methods in order to solve
these equations. There have been a variety of numerical methods proposed over
the past few decades and also many more currently in progress. For the most
part they exist in a complex and scattered manner, with each requiring a vari-
ety of assumptions and conditions. The ultimate goal of this survey is to further
facilitate the research activity on numerical methods for BSDEs by providing
an up-to-date overview of the different types in an organized structure. Before
providing the systematic survey of numerical methods, we will first review some
basic theory regarding BSDEs (Section 2) in order to better prepare for the
goal. Broadly speaking, we will then look at the three main classes of numerical
methods, namely backward (Section 3), forward (Section 5), and deep learn-
ing based methods (Section 6). By a backward method, we mean a numerical
method which works backwards in time and requires the computation of con-
ditional expectations (Section 4), whereas for a forward method, we refer to a
method that does not inherently work backward in time so as to (originally, at
least) avoid the computation of conditional expectations. In sharp contrast to
backward and forward methods, the method of deep learning (Section 6) is quite
distinctive in its rather mixed structure and effectiveness in high-dimensional
problems.

We then summarize in Section 7 the major components of each category to
discuss the power and limitations of various classes of numerical methods in
collective comparison. We next provide in Section 8 a further survey on numeri-
cal methods for BSDEs with a variety of nonstandard features, such as coupled
FBSDEs (Section 8.1), reflected BSDEs (Section 8.2), BSDEs with jumps (Sec-
tion 8.3), non-Lipschtiz BSDEs (Section 8.4), quadratic BSDEs (Section 8.5),
second-order BSDEs (Section 8.6), McKean-Vlasov BSDEs (Section 8.7) and
backward stochastic partial differential equations (Section 8.8), each of which
has attracted increasing interest for addressing various emerging problems in
social and natural sciences and nonlinear partial differential equations. Finally,
in Section 9, we summarize our discourse and highlight some future directions.

In order to achieve our main goal of describing and discussing the main
idea of each category, we will only focus on one or two relevant representative
methods in each subsection, followed by an overview of other methods. To avoid
overloading the paper with non-essential technical details, we omit the rather
lengthy technical intricacies of the methods in most instances. In particular, the
algorithms we provide in each section are described without going into detail
and are presented for illustrative purposes only.
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2. Preliminaries

The aim of this section is to review the basic theory of BSDEs (Section 2.1)
and FBSDEs (Section 2.2) in brief. In particular, we give the standard suf-
ficient conditions that ensure the existence and uniqueness of their solutions.
Let (Ω,F ,F,P) be a given filtered probability space which satisfies the usual
conditions of completeness and right continuity. On this space, we define the
d-dimensional standard Brownian motion (Wt)t∈[0,T ], whose natural filtration,
augmented by the class of P-null sets of FT , is F = (Ft)t∈[0,T ]. We reserve T for
a strictly positive constant which indicates a fixed terminal time of the interval
[0, T ], and denote by πn := {0 =: t0 < · · · < tk < tk+1 < · · · < tn := T} an
arbitrary yet fixed partition of the interval [0, T ] for all n ∈ N, with |πn| :=
maxk∈{0,··· ,n−1}(tk+1 − tk). For the sake of brevity, we often suppress the sub-
script n from the notation πn. We define the following probabilistic spaces and
sets:

• P: the σ-field of predictable sets in Ω × [0, T ].
• L2

m(Ft): the set of all Rm-valued random vectors X that are Ft-measurable
and square-integrable, that is, E[‖X‖2] < ∞.

• S2
m(0, T ): the space of all continuous predictable processes X : Ω×[0, T ] →

Rm, satisfying E[supt∈[0,T ] ‖Xt‖2] < ∞.
• H2

m(0, T ): the space of all predictable processes X : Ω × [0, T ] → Rm,
which satisfy ‖X‖2

0 := E[
∫ T

0 ‖Xt‖2dt] < ∞.

We reserve C for a positive constant, whose value changes from line to line,
depending on the context at hand. Let | · | and ‖ · ‖ denote the magnitude and
Euclidean norm respectively, where the latter is understood to be a suitable
matrix norm in the context of matrices. We denote D⊗2 := DD� and by B(D)
the Borel σ-field of a set D. We define the following function spaces which appear
throughout:

• Ck,l
b : set of continuously differentiable and bounded functions which are

k times continuously differentiable in their first coordinate and l times in
their second, with bounded partial derivatives up to order l.

• Ck
p : set of Ck−1 functions with piecewise continuous k-th derivative.

• Ck+α: set of Ck functions whose k-th derivative is Hölder continuous of
order α ∈ [0, 1].

2.1. Backward stochastic differential equations

We aim here to review the basics of the following BSDE:{
−dYt = f(t, Yt, Zt)dt− ZtdWt, t ∈ [0, T ],
YT = ξ,

(2.1)

where (Y,Z)t∈[0,T ] takes values in Rm×Rm×d. The function f : Ω×[0, T ]×Rm×
Rm×d → Rm is called the generator or driver. The random variable ξ = YT is the
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terminal condition for the process Y and the pair (f, ξ) are called the parameters
of the BSDE. A pair (Y,Z) of stochastic processes is a (not necessarily unique)
solution to the BSDE (2.1) if

• (Yt)t∈[0,T ] is an F-adapted continuous process in Rm.
• (Zt)t∈[0,T ] is an F-predictable process in Rm×d satisfying P(

∫ T

0 ‖Zt‖2dt <
∞) = 1.

• Yt = ξ +
∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
Zs dWs for all t ∈ [0, T ], a.s.

We will only consider solutions (Y,Z) in the space S2
m(0, T ) × H2

m×d(0, T ).
The following theorem [255, 318] identifies the standard sufficient conditions
imposed to ensure the existence and uniqueness of a solution to the BSDE (2.1)
in S2

m(0, T ) ×H2
m×d(0, T ).

Theorem 2.1 (Existence and uniqueness of the solution to a BSDE).
Consider the BSDE given by (2.1) with parameters (f, ξ), satisfying:

• f : Ω × [0, T ] ×Rm ×Rm×d → Rm is P ⊗ B(Rm) ⊗B(Rm×d)-measurable.
• The process (f(t, 0, 0))t∈[0,T ] belongs to H2

m(0, T ).
• The driver is uniformly Lipschitz continuous with respect to (y, z), that

is, there exists a constant C > 0 such that for all y1,y2 ∈ Rm and z1, z2 ∈
Rm×d, ‖f(ω, t,y1, z1) − f(ω, t,y2, z2)‖ ≤ C(‖y1 − y2‖ + ‖z1 − z2‖), dt⊗
dP-a.e.

• ξ ∈ L2
m(FT ).

Then, there exists a unique solution (Y,Z) ∈ S2
m(0, T ) × H2

m×d(0, T ) which
solves the BSDE (2.1).

Before moving on, we briefly present some intuition regarding the solution
(Y,Z) of the BSDE (2.1). Consider the simple case when f ≡ 0 in (2.1) giving
us the following BSDE: {

dYt = ZtdWt, t ∈ [0, T ],
YT = ξ.

(2.2)

Clearly, the degenerate driver f ≡ 0 satisfies the sufficient assumptions for
uniqueness and existence. Hence, under the assumption that ξ ∈ L2

m(FT ),
it holds by Theorem 2.1 that the BSDE with null generator (2.2) admits a
unique solution (Y,Z) ∈ S2

m(0, T ) × H2
m×d(0, T ). If (Y,Z) is the unique so-

lution in S2
m(0, T ) × H2

m×d(0, T ) of the BSDE with null driver (2.2), then Y
satisfies

Yt = E [YT |Ft] = E [ξ|Ft] ,

and thus Y is an (Ft)t∈[0,T ]-martingale. Moreover, based on the formulation (2.2),
the martingale Y can be written as follows:
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Yt = E [ξ|Ft] = Y0 +
∫ t

0
ZsdWs = E [ξ|F0] +

∫ t

0
ZsdWs = E [ξ] +

∫ t

0
ZsdWs.

As the process Y is a martingale, it is certainly a local martingale. Thus,
by the martingale representation theorem, there exists a unique process γ ∈
H2

m×d(0, T ) satisfying Yt = Y0 +
∫ t

0 γsdWs for all t ∈ [0, T ]. Hence, we ob-
tain

ξ = YT = Y0 +
∫ T

0
γsdWs = Y0 +

∫ t

0
γsdWs +

∫ T

t

γsdWs = Yt +
∫ T

t

γsdWs,

which shows that (Y, γ) solves the BSDE (2.2). By the uniqueness of the solu-
tion to the BSDE, we get Z = γ. For this simple case, we see that an adapted
solution to the BSDE can only be given by a pair, that is, the Z component
is needed to ensure that the process Y is adapted. In a sense, the Z compo-
nent “steers” the system and is thus called the control process. One cannot
simply revert time as in deterministic ODEs, as the filtration can only go in one
direction.

To better illustrate the interpretations of Y , Z and ξ, we provide a simple
example in a tangible problem in finance. Consider a financial market with one
risky asset S, whose price at time t, St, follows the following SDE:

dSt = Stμtdt + StσtdWt. (2.3)

A trader can either invest in the risky asset S or borrow/invest money at an
instantaneous risk free interest rate, denoted by r. Here, we assume that μ, σ
and r are bounded and predictable processes. If the amount of money invested
in S at time t is φt and the total wealth of the trade is Y , then the magnitude
|Yt−φt| represents the amount of money that is borrowed (if Yt−φt is negative)
or invested (if Yt − φt is positive) at time t. The wealth process Y can thus be
shown to follow the dynamics:

dYt = φt

St
dSt + rt(Yt − φt)dt = (φt(μt − rt) + rtYt) dt + φtσtdWt. (2.4)

Consider a European option with payoff at time T given by a random variable
ξ ∈ L2

m(FT ). We note that the payoff for a European option ξ will usually be a
function of the asset price S at time T , that is ξ = Φ(ST ). Although this would
move us to the context of a FBSDE (Section 2.2), we ignore this fact here for
illustrative purposes. A trader who wants to sell this option must identify the
minimal initial amount of capital Y0 in such a way that the payoff ξ = Φ(ST )
can be replicated. If a process φ is found such that YT = ξ, then this initial
amount is Y0. In other words, we look for a couple (Y, φ) such that

Yt = ξ −
∫ T

t

(φs(μs − rs) + rsYs) ds−
∫ T

t

φsσsdWs.
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If there exists a predictable process π such that (μ − r) = σπ, then by setting
Z = φσ, the above equation becomes

Yt = ξ −
∫ T

t

(Zsπs + rsYs) ds−
∫ T

t

ZsdWs.

Hence, the problem of pricing and hedging is reduced to finding a solution to
the above (linear) BSDE, where Y is the wealth process (which is equivalent to
the price of the option), ξ = Φ(ST ) is the payoff of a European option and Z is
proportional to the volatility in the model and the amount invested in the risky
asset S.

Another typical example in quantitative finance, that is more general than
the simple European case and which justifies the use of nonlinear BSDEs, is the
so-called the differential rates problem (for instance, [313] among many others).
Consider again, a financial market with one risky asset S given by the SDE (2.3),
with φt representing the amount of money invested in S at time t. We thus have
that the dynamics of the total wealth Y are again given by (2.4). Let a lending
interest rate r be applied to the lending case Yt − φt ≥ 0 and let a borrowing
interest rate R such that R > r be applied to the borrowing case Yt − φt ≤ 0.
In a similar manner to the European case above, if a process φ is found such
that YT = ξ with target payoff ξ ∈ L2

m(FT ) and with Z = φσ, we then get a
backward process:

Yt = ξ −
∫ T

t

[
μs

σs
Zs + rs

(
Ys −

Zs

σs

)
+
−Rt

(
Ys −

Zs

σs

)
−

]
ds−

∫ T

t

ZsdWs,

which lies in the framework of nonlinear BSDEs.
Stochastic control is undoubtedly a major field of application. To briefly

describe stochastic control in our notation, consider the stochastic optimization
problem supk J(k) in the weak formulation [105]:

J(k) := Ek

[
Φ(XT ) +

∫ T

0
f(s,Xs, ks)ds

]
, (2.5)

where Φ and f take values in R, and k controls the SDE as in

Xt = x +
∫ t

0
b(s,Xs, ks)ds +

∫ t

0
σ(s,Xs)dBk

s , t ∈ [0, T ],

and Ek is the expectation with respect to the probability measure Pk under
which Bk

t := Bt −
∫ t

0 σ−1(s,Xs)b(s,Xs, ks)ds is a Brownian motion. Then, the
following linear BSDE under Pk has a unique solution (Y k, Zk):

Y k
t = Φ(XT ) +

∫ T

t

f(s,Xs, ks)ds−
∫ T

t

Zk
s dB

k
s ,
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due to Theorem 2.1 with ξ = Φ(XT ), provided that all the conditions are met.
In view of J(k) = Y k

0 , the stochastic control problem (2.5) is well within the
framework (2.1).

2.2. Forward backward stochastic differential equations

We next review forward-backward stochastic differential equations (FBSDEs),
which have already made a brief implicit appearance in the example on European
option pricing (Section 2.1). Consider the following BSDE:{

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt, t ∈ [0, T ],
YT = Φ(XT ),

(2.6)

where (Y,Z)t∈[0,T ] takes values in Rm × Rm×d, X is the Rq-valued diffusion
process solving the standard stochastic differential equation:{

dXt = μ(t,Xt)dt + σ(t,Xt)dWt, t ∈ [0, T ],
X0 = x,

(2.7)

and f : [0, T ] × Rq × Rm × Rm×d → Rm, Φ : Rq → Rm, μ : [0, T ] × Rq → Rq

and σ : [0, T ] × Rq → Rq×d are all given functions, and x0 is a suitable point
in Rq. We note that the dimension of the Y component is set to one (m = 1)
in many instances, particularly when dealing with deterministic PDEs (Theo-
rems 2.2 and 2.3). The pair of equations (2.6)-(2.7) is known as the Markovian
BSDE, or the (uncoupled) FBSDE. We now introduce the “Markovian” coun-
terparts of the assumptions made in Theorem 2.1 which ensure the existence
and uniqueness of solutions to the FBSDE (2.6)-(2.7), as well as an equiva-
lence between the solution of the FBSDE to a viscosity solution of the parabolic
PDE (2.9). We refer the reader to, for instance, [256, 318] for more detail and
proofs.

Assumption 1. Assume the following conditions on the FBSDE (2.6)-(2.7):

• μ, σ, f and Φ are uniformly Lipschitz continuous in (x,y, z).
• μ(·, 0), σ(·, 0), f(·, 0, 0, 0) and Φ(0) are bounded.
• μ, σ and f are uniformly Hölder-(1/2) continuous in t.

Theorem 2.2 (Existence, uniqueness and PDE equivalence). Under As-
sumption 1, there exists a unique solution (X,Y, Z) to the FBSDE (2.6)-(2.7).
Define v : [0, T ] × Rq → R by

v(t,x) := Y t,x
t = E

[
Φ(Xt,x

T ) +
∫ T

t

f(s,Xt,x
s , Y t,x

s , Zt,x
s )ds

]
, (2.8)

for (t,x) ∈ [0, T ] × Rq, where (Xt,x, Y t,x, Zt,x) denotes the adapted solution
to the FBSDE (2.6)-(2.7), restricted to [t, T ] with Xt,x

t = x, a.s. Then, v is a
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viscosity solution to the parabolic PDE:⎧⎪⎨⎪⎩
((∂/∂t) + Lt)v(t,x)

+f(t,x, v(t,x), (∇v(t,x))�σ(t,x)) = 0, (t,x) ∈ [0, T ) × Rq,

v(T,x) = Φ(x), x ∈ Rq,

(2.9)

where L denotes the second-order differential operator

Ltv(t,x) := 〈μ(t,x),∇v(t,x)〉 + 1
2tr

[
σ⊗2(t,x)Hess(v(t,x))

]
.

Analytic solutions are rarely available for FBSDEs, especially those of prac-
tical relevance. However, for illustrative purposes, we present a few examples of
the FBSDE in the form (2.6)-(2.7), for which unique solutions are available in
closed form, to indicate how simple the FBSDE must be for an analytic solution
to be available. First, set μ(t, x) = θ(a − x) and σ(t, x) = b. With a suitable
initial state X0 = x0 ∈ R, the forward component (2.7) is then a diffusion pro-
cess in the form of Xt = e−θtx0 + a(1 − e−θt) + b

∫ t

0 e−θ(t−s)dWs, that is, an
Ornstein-Uhlenbeck process if θ > 0. With the quadratic terminal Φ(x) = x2

fixed, if the driver is given by f(t, x, y, z) = ry + e−r(T−t)b2 + θ(a − x)z/b,
for some r, a, b ∈ R, then the FBSDE (2.6) admits a unique solution given by
(Yt, Zt) = (e−r(T−t)X2

t , 2be−r(T−t)Xt) for t ∈ [0, T ]. Or, if the driver is set, in-
stead, to f(t, x, y, z) = 2θ(a − x)x + b2, for some a, b, θ ∈ R, then the unique
solution to the FBSDE (2.6) is available in closed form as (Yt, Zt) = (X2

t , 2bXt)
for t ∈ [0, T ]. Next, if the terminal, the driver and the forward component are
given by Φ(x) = ln(x), f(t, x, y, z) = a − b2/2, μ(t, x) = ax, σ(t, x) = bx, and
X0 = x0 > 0 for some a, b ∈ R, then the FBSDE (2.6)-(2.7) admits the unique
solution (Yt, Zt) = (ln(Xt), b) for t ∈ [0, T ] and the geometric Brownian mo-
tion Xt = x0 exp[(a − b2/2)t + bWt] for t ∈ [0, T ]. We once again stress that
these simple examples are only presented for demonstration purposes. FBSDEs
of practical interest are generally not explicitly solvable and thus do require
numerical treatment.

We next state the nonlinear Feynman-Kac formula with the representation of
the derivative of the PDE solution. We need the following additional assumption
to give the representation under the Lipschitz continuous condition of f and Φ.
For details (including the definition of the solution ∇X of a variational equation)
and applications we refer the reader to, for instance, [228, 316].

Assumption 2. Assume the following conditions:

• σ is uniformly elliptic on [0, T ]×Rq, that is, there exists C > 1 such that
C−1‖ξ‖2 ≤ 〈ξ, σ⊗2(t,x)ξ〉 ≤ C‖ξ‖2 for all t ∈ [0, T ] and x, ξ ∈ Rq.

• μ and σ are in C1
b in x.

Theorem 2.3 (Nonlinear Feynman-Kac formula with the representa-
tion of the derivative of the PDE solution). Under Assumptions 1 and 2,
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the viscosity solution v to the parabolic PDE (2.9) is in C0,1
b ([0, T )×Rq;R) and

it holds that

(Yt, Zt) = (v(t,Xt), (∇v(t,Xt))�σ(t,Xt)), t ∈ [0, T ), (2.10)

and

∇v(t,x) = E

[
Φ(Xt,x

T )N t,x
T +

∫ T

t

f(s,Xt,x
s , Y t,x

s , Zt,x
s )N t,x

s ds

]
, (2.11)

for (t,x) ∈ [0, T )×Rq, where N t,x
s := (s− t)−1(

∫ s

t
(σ−1(r,Xt,x

r )∇Xt,x
r )�dWr)�

for s ∈ (t, T ].

From here on out, with some exceptions (including Sections 5.2 and 8.4),
all the conditions of Theorems 2.1 and 2.2 are imposed as standing assump-
tions. Further assumptions (such as Assumption 2) may be imposed in different
forms for different numerical methods depending on the BSDEs and FBSDEs
of interest.

From a practical perspective, FBSDEs have long been actively studied in
the pricing and hedging problem in the incomplete market [83], which remains
an ongoing topic, for instance, [29]. With the aid of the relevant techniques
developed there, it has been known that FBSDEs play an essential role for
formulating X-Value Adjustment (XVA), which is a collective term for various
valuation adjustments for derivative instruments, for instance, credit risk and
funding costs. Ever since the catastrophic wave of bankruptcies of big financial
firms in the 2008 global financial crisis, the XVA pricing has been realized as one
of most urgent problems in derivatives pricing. To be more precise, XVAs can be
formulated in the form of a FBSDE with a Lipschitz continuous driver f , which
is non-differentiable at some points, such as f(t, x, y, z) = a(t)max{0, y}+ b(t).
Ever since the pioneering work [267], a variety of extensions and refinements
of the XVA formulation have been investigated, certainly in the framework of
FBSDEs, from both theoretical and practical standpoints [32, 33, 75, 77, 215].
In particular, various numerical methods for the XVA pricing have also been
proposed, such as a branching algorithm [167], a Fourier-based discretization
method [38], higher-order discretization methods [247], a dual algorithm for the
stochastic control problem [168] and the deep learning algorithm [136].

Despite being outside the scope of Assumption 1, the American option pricing
problem [103, 104] can also be formulated in the framework of FBSDEs with
a discontinuous driver of the form f(t, x, y, z) = a(t)1(y < Φ(x)) + b(t), based
on which various numerical methods have been proposed. Examples of such
methods include the perturbative expansion and particle method [117] and a
local polynomial approximation and branching processes method [40].

As such, there exist a variety of advanced features and relevant terminologies
around FBSDEs and their applications in the literature, which we summarize
here in brief. First, the FBSDE in the form (2.6)-(2.7) is called a decoupled FB-
SDE, in contrast to “coupled” when the coefficients μ and σ in the forward com-
ponent (2.7) depend on the backward component (2.6) (Section 8.1). Moreover,



Numerical methods for backward stochastic differential equations 497

the term “fully coupled” is often attached when those coefficients depend on
the outcome ω. The backward component may be reflected at a given stochastic
process (Section 8.2), while FBSDEs may contain jumps in the backward and/or
forward component (Section 8.3). If the drift of the backward component (2.6)
contains the second order derivative of the corresponding PDE (2.9), then such
a coupled FBSDE is referred to as a second-order FBSDE (Section 8.6). If not
only the coefficients μ and σ depend on the law of the processes (X,Y, Z) but
also the driver f , then such a coupled FBSDE is called a McKean-Vlasov FBSDE
(Section 8.7).

3. Backward numerical methods

With the basic background reviewed in Section 2, we begin with various numer-
ical methods for BSDEs which work backwards in time under two categories
with respect to the degree of discretization, namely, backward Euler methods
(Section 3.1) and higher-order methods (Section 3.2). In each subsection, we
present one or two representative numerical methods in some detail, while we
skip lengthy technical explanations. In particular, when describing the algo-
rithms in each subsection, we do not go into much technical detail in order to
avoid digression from the main idea. We then give a brief overview of various
other methods in the category.

In general, a discretization method is said to be of order p if the discretization
error has the convergence rate O(n−p) in a suitable norm where the given time
interval is discretized into n subintervals. However, this convergence rate does
not necessarily represent the efficiency of the numerical algorithm under con-
sideration. That is, in most instances, backward numerical methods require the
additional computation of conditional expectations in each subinterval, whose ef-
ficiency depends largely on many factors, such as the dimension and the method
applied. As we are only focusing on backward methods alone here, we will dis-
cuss various methods for computing conditional expectations collectively in Sec-
tion 4, such as least-squares regression (Section 4.1), Malliavin calculus based
methods (Section 4.2), quantization methods (Section 4.3), tree based methods
(Section 4.4) and cubature methods (Section 4.5).

3.1. Backward Euler methods

The first class of backward numerical methods we review are the so-called back-
ward Euler schemes. The main references on the topic are [47, 317], although
the ideas of the backward Euler scheme date back to [72]. The convergence of
the backward Euler scheme is of order 1/2 under standard Lipschitz assump-
tions and with Lipschitz terminal condition [47, 317]. However, the scheme has a
convergence rate of 1 if the forward SDE can be simulated perfectly on the grid
or if it is approximated by a higher order scheme under the conditions that the
coefficients are sufficiently smooth [137]. We note that discretization methods
of higher order are often collectively called higher-order discretization methods,
but we do not discuss them here and instead devote Section 3.2 to them.
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In the present context, there are certainly two general categories of explicit
and implicit discretization schemes for the FBSDE (2.6)-(2.7) (see, also, [318,
Section 5.3.2]), which can be summarized as follows:

Algorithm 1:
Initialization: Approximate the terminal condition Y n

tn = Φ(Xn
tn) with the

Euler-Maruyama scheme Xn.
for k = (n− 1) to 0 do

Zn
tk = 1

tk+1 − tk
E

[
Y n
tk+1(Wtk+1 −Wtk )�

∣∣∣Ftk

]
, (3.1)

Y n
tk =

⎧⎪⎨⎪⎩
E

[
Y n
tk+1 + f(tk, Xn

tk , Y
n
tk+1 , Z

n
tk )(tk+1 − tk)

∣∣∣Ftk

]
, (explicit)

E

[
Y n
tk+1

∣∣∣Ftk

]
+ f(tk, Xn

tk , Y
n
tk , Z

n
tk )(tk+1 − tk). (implicit)

(3.2)

end

As usual, the implicit scheme often provides better properties and perfor-
mance relative to the explicit scheme, with these benefits coming in exchange
for the additional computing effort for solving the defining equation for Y n

tk
,

which appears on both sides of the implicit scheme.
With (Y n, Zn)t∈[0,T ] understood to be the pair of the step processes whose

state at tk corresponds to (3.1)-(3.2), it was first derived [47, 317] that

sup
t∈[0,T ]

E

[
‖Yt − Y n

t ‖2
]

+ E

[∫ T

0
‖Zt − Zn

t ‖
2

]
≤ C

n
. (3.3)

The backward Euler scheme in the reflected case converges at order 1/2, when f
is independent of Z [11], but only at order 1/4 in the general case [39, 229]. We
note that convergence may depend on the regularity of the terminal condition
in general through the L2-regularity of Z [127]. Stability analysis is conducted
in [64] for the backward Euler method in a similar manner to the Euler method
for ordinary differential equations.

Backward Euler methods have been successfully generalized to address a
broader class of BSDEs with nonstandard features (Section 8), such as BSDEs
with a general terminal condition and driver [177], BSDEs driven by an infinite
activity Poisson random measure in addition to the Brownian motion [230], re-
flected BSDEs [39, 229, 281], BSDEs with jumps [42, 232] and quadratic BSDEs
[272]. Backward Euler methods have also been tailored to, for instance, mean-
field BSDEs [321], G-FBSDEs (FBSDEs driven by G-Brownian motion) [175],
FBSDEs driven by càdlàg martingales [205], and backward stochastic Volterra
integral equations of type I [24, 303] and of type II [160]. The convergence of the
backward Euler method for BSDEs is discussed in [177] with general terminal
condition and driver.

We close this section with [44, 106, 156], where some studies focus to construct
numerical methods for nonlinear PDEs based on backward Euler methods for



Numerical methods for backward stochastic differential equations 499

FBSDEs. One may also look to [152, 322] for related studies on discretization,
as well as [155] where a number of finite difference methods are reviewed for
solving BSDEs, similar to backward Euler methods for the most part.

3.2. Higher-order discretization methods

In the literature, a variety of discretization methods have been proposed to
achieve a higher order of convergence than the backward Euler method of order 1
(Section 3.1). In principle, to achieve a higher order of convergence, the following
three steps need to be planned and implemented carefully:

1. We first discretize the BSDE. A typical result on the discretization of a
solution to a BSDE (Y,Z) is given by

sup
k∈{0,1,··· ,n}

E

[∥∥Ytk − Y π
tk

∥∥2 + 1
n

∥∥Ztk − Zπ
tk

∥∥2
]1/2

≤ C

n2 , (3.4)

where discretization of the forward component X has not been taken into
account. Here, Y π and Zπ denote suitable simple schemes involving con-
ditional expectation representations for Y and Z, respectively (see, for
instance, [81]).

2. The corresponding forward component X is to be discretized using a suit-
able high-order discretization scheme and in such a way that the overall
error remains within the order of the backward component (like, the in-
equality (3.4)).

3. By then applying a computation method for the conditional expectation
(Section 4), an efficient numerical scheme is obtained which has a faster
convergence rate than a scheme with the backward Euler method (Sec-
tion 3.1).

A variety of relevant numerical methods have been developed in conjunction
with existing techniques in each of those three steps. We devote the present
section to a review of such higher-order discretization methods.

For illustrative purposes, we begin with a simple numerical method of higher-
order type based upon a random walk approximation of the Brownian motion.
This method is given in the context of FBSDEs whose driver is independent
of X, although the method can be easily extended to when one does not have
this independence. The forward (SDE) component is approximated using the
Euler-Maruyama method or Milstein method. The solution to the FBSDE is
approximated by a discretization scheme that is derived by using the so-called
theta method. For example, the numerical approximation for Y is derived by
first showing that

Ytk = E
[
Ytk+1

∣∣Ftk

]
+
∫ tk+1

tk

E
[
f(s, Ys, Zs)

∣∣Ftk

]
ds,

and then approximating the integral using a theta approximation: a convex
combination of an explicit term (term at time tk+1) and an implicit term (term
at time tk):
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Ytk ≈ E
[
Ytk+1

∣∣Ftk

]
+ Δnθ1f(tk, Ytk , Ztk)

+ Δn(1 − θ1)E
[
f(tk+1, Ytk+1 , Ztk+1)

∣∣Ftk

]
, (3.5)

for some θ1 ∈ [0, 1], where Δn := T/n(= tk+1 − tk) is a fixed time step.
In a similar manner, a numerical approximation for Z is derived, and then
a backward numerical scheme is presented using these approximations. Namely,
the scheme for approximating (Y,Z) by (Y π, Zπ) is given as Y π

tn = Φ(Xπ
tn),

Zπ
tn = (∇Φ(Xπ

tn))σ(tn, Xπ
tn), and then

Zπ
tk

= −1 − θ2

θ2
E

[
Zπ
tk+1

∣∣∣Ftk

]
+ 1

θ2Δn
E

[
Y π
tk+1

ΔWk

∣∣∣Ftk

]
+ 1 − θ2

θ2
E

[
f(tk+1, Y

π
tk+1

, Zπ
tk+1

)ΔWk

∣∣∣Ftk

]
,

Y π
tk

= E

[
Y π
tk+1

∣∣∣Ftk

]
+ θ1Δnf(tk, Y π

tk
, Zπ

tk
)

+ (1 − θ1)ΔnE

[
f(tk+1, Y

π
tk+1

, Zπ
tk+1

)
∣∣∣Ftk

]
,

(3.6)

for k ∈ {n−1, · · · , 0} backwards, with θ2 ∈ (0, 1]. The FBSDE and PDE equiva-
lence (Theorem 2.3) is applied in computing the terminal condition for Z. Hence,
Assumption 2 is essential here. The above scheme is proved in [328] to converge
with order of convergence 2 when θ1 = θ2 = 1/2 and order of convergence 1
otherwise.

Since its first development [323], the θ-scheme has been extensively gener-
alized in various directions. For instance, as previously mentioned, for BSDEs
whose driver is independent of the control process Z, the θ-scheme is proved
[328] to converge with order 2 when θ1 = θ2 = 1/2 and order 1 otherwise. In
order to achieve the same orders (2 when θ1 = θ2 = 1/2 and order 1 other-
wise) even when the driver depends on the pair (Y,Z), the θ-scheme is gener-
alized [327] by introducing more parameters. The concept of the θ-scheme has
been applied to more general problem settings, for instance, mean-field BSDEs
[283], BSDEs whose driver contains not only the present value (Yt, Zt) but also
the future values [173], and G-BSDEs [174]. In particular, the θ-scheme with
θ = 1/2, termed the Crank-Nicolson scheme [301], is investigated along with
error analysis [218, 326] and applications to FBSDEs [217], where higher-order
discretization formulas are derived for the control process Z via approximation
of the derivative of the backward process Y by the well-known Crank-Nicolson
method, as well as to mean-field BSDEs [321]. Inspired by the θ-scheme, a nu-
merical method for one-dimensional FBSDEs is proposed [277] without using
conditional expectations, along with a few analytical solutions of particular FB-
SDEs. From an implementation point of view, the θ-scheme has been further
accelerated via parallel computing [87].

To achieve even higher orders of convergence, the multistep scheme [329] is
developed as an extension of the θ-scheme with convergence at an arbitrary
order when the driver is independent of the control process. In the multistep
scheme, the pair (Y π

tk
, Zπ

tk
) is approximated based on the expectation of values at

multiple future time points {(Y π
tl
, Zπ

tl
)}l∈{k+1,··· ,k+L}, for which evidently more
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extensive computing is required than the backward Euler method (Section 3.1)
and the θ-scheme. Error analyses are conducted in the cases where the driver
depends on the control process [58] and with variable step sizes [164], backed
up by convincing numerical results. Moreover, by exploiting the independence
of the computation at each grid point, the multistep scheme is tailored [201] for
parallelized computing on GPUs.

The concept of multistep methods has also been quite prevalent in the context
of FBSDEs. A multistep scheme is developed for coupled FBSDEs [324] along
with a crude Euler-Maruyama method employed for discretizing the forward
component, with convergence analysis refined in [309]. The multistep method
has been generalized to address more general BSDEs with nonstandard features
(Section 8), such as BSDEs with jumps [112, 114], second-order FBSDEs [332]
and fully nonlinear parabolic PDEs [207], as well as improved in combination
with relevant techniques, such as the sparse-grid method [315], the spectral
sparse grid approximation with fast Fourier transform [115], the Lagrange in-
terpolation polynomial [221, 222], finite difference for approximating the deriva-
tives of the solution of FBSDEs in multi-time levels [294], 3-point Gauss-Hermite
quadrature rule and non-equidistant difference scheme [253], polynomial approx-
imation [331], and predictor-corrector and least-squares Monte Carlo schemes
[165]. Naturally, the multistep method for BSDEs and FBSDEs parallels with
the relevant numerical methods for ODEs and PDEs. For instance, the Runge-
Kutta method for ODEs is applied to BSDEs [61], where the order barrier is
exhibited to be more restrictive for BSDEs than for ODEs. The defferred cor-
rection method for ODEs is tailored to coupled FBSDEs [288] and second-order
FBSDEs [310]. It is proved [289] that a linear multistep method for FBSDEs is
stable as long as the so-called root condition is met in a similar manner to that
for ODEs. A general framework is constructed [311] to investigate the stability,
consistency and convergence of discretization schemes for FBSDEs in a unified
manner, including the backward Euler method, the θ-scheme and various types
of the multistep method. In [200, 201], the authors demonstrate an acceleration
of the multistep method for FBSDEs, relying on parallel GPU computing using
CUDA. It is natural to employ established higher-order discretization schemes
for the forward component, such as the Milstein and stochastic Taylor meth-
ods, together with the multistep method for BSDEs [113, 325, 330]. Along this
line, various first- and second-order discretization methods have been developed
by combining the multistep method for the backward component (such as the
trapezoidal rule) with a suitable discretization scheme for the forward com-
ponent, and then compute the resulting conditional expectations efficiently by
the Gauss-Hermite quadrature rule [330], a Lagrangian interpolation [113], and
an approach with Malliavin derivative [325]. Error estimates are improved in
[320] for the schemes developed in [330, 331]. Those methods are also applied
to mean-field FBSDEs [282].

In [81], a second order discretization scheme is constructed for BSDEs with
a nonsmooth boundary data using Brownian weights for the approximation of
the Z component under weaker conditions, where the gradient estimate of [78]
is employed. In order to construct numerical methods for these FBSDEs, the
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backward component is discretized by the trapezoidal or Simpson’s rule, and
the forward component by the cubature method on Wiener space (Section 4.5).
Such methods result in the orders of convergence 1 [80], 2 [81], and up to 3 [247].
A similar approach is employed in [88] for discretizing McKean-Vlasov FBSDEs.
When the forward and backward components are discretized, respectively, by
the cubature and backward Euler methods, one can construct a discretization
method on the basis of an explicit error expansion [66], resulting in an arbitrary
order of convergence with the aid of the Richardson-Romberg extrapolation.
Inspired by the development of [81], a second-order discretization method is
proposed in [241], by introducing higher-order correction terms for the backward
component in the form of a sum of polynomials of the Brownian motion through
the Malliavin weights.

As previously mentioned, the computation of conditional expectations is un-
doubtedly a major step in higher-order discretization methods (Section 4). Here,
Fourier analysis may play central roles for various purposes [68, 126, 180, 190,
251, 275, 302], for instance, via the characteristic function of the discretized
forward component [274]. A tree-based regression is suggested in [291] for effi-
ciently implementing higher-order discretization methods. In conjunction with
the four-step scheme [226], higher-order discretization methods are investigated,
for instance, on an approximation of spatial derivatives in the coefficients of the
four-step scheme using finite difference [238], and with the Hermite-spectral
method [227]. Finally, in [265], the authors explored the potential for parallel
computing with FBSDEs when using the binomial tree type approximation. Due
to the special structure of the numerical method proposed (which is similar to
that in [179]), a block allocation algorithm is developed in parallelization, where
large communication overhead is avoided, backed up by numerical illustration
of encouraging speedups for the parallel implementation.

4. Computation of conditional expectations

In the present section, we survey major techniques for the computation of condi-
tional expectations in the context of numerical methods (mostly, backward nu-
merical methods (Section 3)) for BSDEs, namely, least-squares regression based
methods (Section 4.1), Malliavin calculus based methods (Section 4.2), quan-
tization methods (Section 4.3), tree based methods (Section 4.4) and cubature
methods (Section 4.5). We remark that some deep learning based methods may
also be interpreted as a mechanism for computing the conditional expectation in
numerical methods for BSDEs, using nonlinear least-squares Monte Carlo with
a deep neural network architecture. We do not review those methods here but
review deep learning based methods collectively in Section 6, as this topic forms
a rapidly growing field of research deserving of a separate section.

4.1. Least-squares regression based methods

Methods that fit into this category are ones which use a form of least-squares
regression to evaluate the conditional expectations appearing in a discretization
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of the BSDE.
Here, we proceed with representative methods of [140, 213] to illustrate this

type of method in a clear and concise manner. Let Δk = T/n, that is, tk = kT/n
and ΔWk = Wtk+1 − Wtk for k ∈ {0, 1, · · · , n}. For each time point tk, we
take RK-valued deterministic function bases (eKi,k)i∈{0,1,··· ,d}, whose elements are
given by, for instance, the sequence of Hermite polynomials or that of Laguerre
polynomials of size K. For every k ∈ {1, · · · , n}, let {ΔWm

k }m∈{1,··· ,M} be
independent copies of ΔWk, and let {Xπ,m

k }m∈{1,··· ,M} be corresponding copies
of Xπ

k . An algorithm for approximating the backward Euler scheme (Y π
k , Zπ

k )
can be described as follows.
Algorithm 2:
Set yn,M,K

n (·) = Φ
for k = (n− 1) to 1 do

Find

αM,K
i,k = argmin

α

1
M

M∑
m=1

∣∣∣∣∣yn,M,K
k+1 (Xπ,m

k+1 )ΔW i,m
k

Δk
− α · eKi,k(Xπ,m

k )

∣∣∣∣∣
2

, (4.1)

for i ∈ {1, · · · , d}.
Put zn,M,K

k = (zn,M,K
1,k , · · · , zn,M,K

d,k ) where zn,M,K
i,k (·) = αM,K

i,k · eKi,k(·).

αM,K
0,k = argmin

α

1
M

M∑
m=1

∣∣∣yn,M,K
k+1 (Xπ,m

k+1 )

+ Δkf(tk, Xπ,m
k , yn,M,K

k+1 (Xπ,m
k+1 ), zn,M,K

k (Xπ,m
k )) − α · eK0,k(Xπ,m

k )
∣∣∣2.
(4.2)

Put yn,M,K
k (·) = αM,K

k · eK0,k(·).
end
Return

Y π,M,K
0 = 1

M

M∑
m=1

(yn,M,K
1 (Xπ,m

1 )+Δ1f(t0,x, yn,M,K
1 (Xπ,m

1 ), zn,M,K
1 (Xπ,m

1 ))).

Under the Lipschitz continuity in the state variables, the (1/2)-Hölder conti-
nuity in time of the coefficients of the Markovian BSDE, and the condition that
for all measurable functions ϕ such that ϕ(Xπ

k ) ∈ L2(Ω), there is (βK
k )k such

that βK ·eKi,k(Xπ
k ) → ϕ(Xπ

k ) in L2(Ω,FXπ
k ) as K → ∞. It is shown in [318] that

limK→+∞ yn,Kk (Xπ
k ) = Y π

k in L2(Ω) for all k ∈ {0, 1, · · · , n − 1}, where yn,Kk

and zn,Kk denote the theoretical means of the respective empirical ones yn,M,K
k

and zn,M,K
k of (4.1) and (4.2) above, as well as

lim
M→+∞

Y π,M,K
0 = Y π,K

0 ,

almost surely, by the strong law of large numbers. While the convergence holds
by taking sufficiently large K and M , its rate has been found to be quite com-
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plex. It is shown in [213], which extends [140], that the squared error of the
time discretization is of the order O(n−1), and roughly speaking, the numbers
of basis functions and of the paths are to be chosen as K ≈ nd and M ≈ nd+3 in
order to control the global squared error to be O(n−1), upon a suitable choice
of basis functions. We refer the reader to, for instance, [26, 140, 213, 318] for
detailed analyses.

In a similar spirit, a numerical scheme is developed in [147] for solving the
multi-step forward dynamic programming equation arising from the discretiza-
tion of the FBSDE. The resulting sequence of conditional expectations is com-
puted using empirical least-squares regressions. Also, in [142], we see another
algorithm based on least-squares Monte Carlo (LSMC). Here, the algorithm is
designed to allow large scale parallelization of the computations on highly mul-
ticore processors, such as GPUs by stratifying sample paths to minimize the
exposure to the memory requirements due to the storage of simulations. Possi-
ble discontinuities at the interfaces due to piecewise polynomial bases [142] are
avoided [141, 146] by instead employing smooth orthonormal basis functions.
Also, [26, 140] propose numerical schemes based on iterative least-square re-
gressions on function bases, where the involved coefficients are evaluated using
Monte Carlo simulations. We mention the so-called regression-later approach
[134], which can be thought of as a variant of least-squares regression methods.

The primal-dual methodology is generalized in [25] to a backward dynamic
programming equation associated with time discretization schemes of reflected
BSDEs (Section 8.2). They suggest a pathwise approach to the dynamic pro-
gramming equation, which avoids the evaluation of conditional expectations in
backward recursion in time. This approach leads to a minimization problem and
is thus thought of as a dual minimization problem. Under suitable assumptions,
Y can also be represented as the supremum over a class of classical optimal
stopping problems, and this maximization problem can be seen as a primal
problem. Using the representations for Y as the value of a maximization and a
minimization problem, confidence intervals are constructed for Y0 using LSMC
(even if only to generate an initial input approximation), along with a few nu-
merical examples to test the performance of the algorithm for multi-dimensional
reflected BSDEs in nonlinear pricing problems.

In [69], the authors apply the Stochastic Grid Bundling Method (SGBM) to
develop a numerical scheme. The SGBM algorithm involves the approximation
of conditional expectations by means of bundling Monte Carlo sample paths and
a local regress-later technique within each bundle. By employing Hermite mar-
tingales, the problem of solving a FBSDE is formulated in [257] as the problem
of solving a countably infinite-dimensional system of ODEs. On this basis, they
develop a numerical scheme which involves the projection of the solution onto
generalized Hermite polynomials. Similarly, a numerical scheme is proposed in
[293] based on the projection of conditional expectations onto cubic spline poly-
nomials. Finally, we refer to [241] for a second-order discretization method for
FBSDEs based on an algorithm which utilizes polynomials of Brownian motions
and is implemented by use of a least-squares Monte Carlo method.
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4.2. Malliavin calculus based methods

Malliavin calculus based methods are closely related to least-squares regression
based methods (Section 4.1) in the sense that a lot use least-squares regression
to solve the conditional expectations resulting from a discretization of a BSDE
which incorporates Malliavin weights.

4.2.1. Representation of conditional expectations using integration-by-parts

Malliavin calculus was first applied to BSDEs in [47] for the purpose of comput-
ing conditional expectations in line with [41, 111], for instance, the two terms
E[Y n

tk+1
(Wtk+1 − Wtk)�| Ftk ] and E[Y n

tk+1
| Ftk ] appearing in the implicit dis-

cretization scheme BSDEs (3.1) and (3.2). With the aid of the Markovian prop-
erty, those conditional expectations boil down to the form E[φ(Xs)|Xt = x] for
s ∈ (t, T ], where φ : Rq → R and {Xt : t ∈ [0, T ]} is the forward process (2.7).
Here, we describe in brief how this conditional expectation can be reformulated
without conditioning in such a way that Monte Carlo methods can play an
effective role. In general, for two smooth Wiener functionals F and G in the
sense of Malliavin, if G is “non-degenerate”, then the conditional expectation
E[F |G = x] can be written as fractions:

E[F |G = x] = E[Fδx(G)]
E[δx(G)] = E[Hx(G)δW (Fu)]

E[Hx(G)δW (u)] , (4.3)

where δx(G) is understood to be the composition of the delta function at x and
G as a Watanabe distribution on the Wiener space, Hx denotes a Heaviside
function, that is, Hx(c) :=

∏q
k=1 1(ck ≥ xk), and δW denotes the Skorohod

integral operator. The second equality is due to Malliavin integration by parts
and the process u satisfying

∫ T

0 DsGu(s)ds = 1. Under the further constraint∫ T

0 DsFu(s)ds = 0, by applying the property of the Skorohod integral operator
δW (Fu) = FδW (u) −

∫ T

0 DsFu(s)ds and setting F = φ(Xs), G = Xt and
u(s) = (DsXt)−1(t−11(s ∈ (0, t]) − (T − t)−11(s ∈ (t, T ])), the last expression
in (4.3) can be rewritten in the following form, which lends itself to estimation
of the conditional expectation E[φ(Xs)|Xt = x] by Monte Carlo methods:

E[φ(Xs)|Xt = x] = E[φ(Xs)Hx(Xt)δW (u)]
E[Hx(Xt)δW (u)]

≈
1
M

∑M
k=1 φ(Xk

s )Hx(Xk
t )δWk(u)

1
M

∑M
k=1 Hx(Xk

t )δWk(u)
, (4.4)

by generating independent copies with sufficiently large sample size M . This
approach can also be applied to reflected BSDEs (Section 8.2) in [47].

As is clear, the effectiveness of this approach depends, next to the Heaviside
function, on the Skorohod integral term δW (u). In principle, one needs a rea-
sonably explicit expression for this term, without which simulation would be
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essentially impossible. Even if one has an explicit form, its computation can be
prohibitive when the problem dimension is high. To address this issue, a vari-
ant of the method above is proposed in [82] for a significant reduction of the
numerical complexity by wisely modifying the Skorohod integral term δW (u) in
such a way to reduce the terms involved and skip differentiation of the drift and
diffusion coefficients of the forward component.

4.2.2. Malliavin weights dynamic programming with regression

We next describe a dynamic programming scheme with the regression methods,
named the Malliavin weights dynamics programming, an application of Malli-
avin calculus in a different spirit from Section 4.2.1. For illustrative purposes,
we proceed with the regression method [148], among many candidates, that
solves a dynamic programming equation with Malliavin weights arising from
the time-discretization of FBSDEs (which may also be fit for Section 3).

Now, the main idea of the dynamic programming scheme [148] is to approx-
imate the solution (Y,Z) of a FBSDE by the discrete time stochastic processes
(Y π, Zπ), defined on the partition πn, which are given as follows:⎧⎨⎩Y π

k = E

[
Φ(XT ) +

∑n−1
j=k fj(Y π

j+1, Z
π
j )Δj

∣∣∣Ftk

]
,

Zπ
k = E

[
Φ(XT )H(k)

n +
∑n−1

j=k+1 fj(Y π
j+1, Z

π
j )H(k)

j Δj

∣∣∣Ftk

]
,

(4.5)

for k ∈ {0, · · · , n} for the Y component, and for k ∈ {0, · · · , n − 1} for the Z
component, where (ω, y, z) → fj(ω, y, z) is Ftj ⊗ B(R) ⊗ B(R1×d)-measurable.
This system is then solved backwards in the order Y π

n , Zπ
n−1, Y

π
n−1 and so forth.

It is called the Malliavin weights dynamic programming (MWDP) equation,
as it literally takes the form of a dynamic programming equation with Malli-
avin weights. The MWDP equation (4.5) is inspired by [228], which gives the
following representation of the control process Z:

Zt = E

[
Φ(XT )H(t)

T +
∫ T

t

f(s,Xs, Ys, Zs)H(t)
s ds

∣∣∣Ft

]
, (4.6)

where the processes (H(t)
s )0≤t<s≤T are the Malliavin weights defined as follows:

H(t)
s = 1

s− t

(∫ s

t

(
σ−1(r,Xr)DtXr

)�
dWr

)�
, 0 ≤ t < s ≤ T, (4.7)

with (DtXr)t denoting the Malliavin derivative of the marginal Xr. We note that
this method adapts the least-squares multi-step forward dynamic programming
algorithm to a scenario which incorporates Malliavin weights. Under suitable
technical conditions presented in [147], it holds almost surely that |Y π

k | ≤ C(1+
(T − tk)θc) =: Cy,k and
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‖Zπ
k ‖ ≤ C

(
esssupω E[|Φ(XT ) − E[Φ(XT )| Ftk ]|2| Ftk ](ω)

(T − tk)1/2

+ 1
(T − tk)1/2−θc

+ (T − tk)θL/2
)

=: Cz,k,

for all k ∈ {0, · · · , n − 1}. Furthermore, there exists a constant Cy,z such that
|Y π

k | +
√
T − tk|Zπ

k | ≤ Cy,z almost surely for all k ∈ {0, · · · , n}.
The conditional expectations (and hence processes Y π and Zπ) appearing

in the MWDP equation (4.5) are computed using a Monte Carlo least-squares
regression scheme (Section 4.1). Due to the Markovian assumptions, there ex-
ist measurable and deterministic (but unknown) functions yk(·) : Rq → R

and zk(·) : Rq → R1×d for all k ∈ {0, · · · , n − 1} such that the solution
(Y π

k , Zπ
k )k∈{0,··· ,n−1} of the MWDP equation (4.5) is given by (Y π

k , Zπ
k ) :=

(yk(Xπ
k ), zk(Xπ

k )). The aim of the Monte Carlo regression scheme is thus to
estimate these functions. Ordinary least-squares regression (OLS) is defined in
such a way that easily allows path-dependence and joint laws. The authors re-
formulate the MWDP equation (4.5) in terms of the given definition of OLS.
Specifically, take K(l)

k to be any dense subset in the Rl-valued functions belong-
ing to L2(B(Rq),P ◦ (Xπ

k )−1), and then for each k ∈ {0, · · · , n− 1},

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yk(·) solves OLS
(
Φ(xn) +

∑n−1
j=k fj(yj+1(xj+1), zj(xj))Δj ,

K(1)
k ,P ◦ (H(k)

k+1, · · · , H
(k)
n , Xπ

k , · · · , Xπ
n )−1

)
,

zk(·) solves OLS
(
Φ(xn)hn +

∑n−1
j=k+1 fj(yj+1(xj+1), zj(xj))hjΔj ,

K(d)
k ,P ◦ (H(k)

k+1, · · · , H
(k)
n , Xπ

k , · · · , Xπ
n )−1

)
,

(4.8)

for (hk+1, · · · , hn) ∈ (R1×d)n−k and (xk, · · · , xn) ∈ (Rq)n−k+1. In words, for
instance, yk(·) is set to be the least-squares approximation of the term Φ(xn) +∑n−1

j=k fj(yj+1(xj+1), zj(xj))Δj in the space K(1)
k with respect to the law P ◦

(H(k)
k+1, · · · , H

(k)
n , Xπ

k , · · · , Xπ
n )−1. However, the above least-squares regressions

give rise to two computational problems, that is, L2(B(Rq),P ◦ (Xπ
k )−1) is of-

ten infinite dimensional, and the integrals of the OLS in (4.8) are presumably
computed using the untraceable law of (H(k)

k+1, · · · , H
(k)
n , Xπ

k , · · · , Xπ
n ). These is-

sues are addressed by approximating yk(·) and zk(·) on finite-dimensional func-
tion spaces KY,k and KZ,k, respectively, with respect to the empirical version
νk,M of the law P ◦ (H(k)

k+1, · · · , H
(k)
n , Xπ

k , · · · , Xπ
n )−1 based on M iid realiza-

tions.
The global error of the algorithm is a weighted time-average of three dif-

ferent errors. The first is the approximation error which relates to the error
involved in approximating the functions (yk, zk) in the finite dimensional ap-
proximation spaces. This accuracy is achieved asymptotically as the number of
simulations goes to infinity. The second error term is the usual statistical error,
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which improves with a larger number of simulations or a smaller dimension of
the vector spaces. The third and final error term together is the interdependence
error which is related to the inter dependencies between regressions at different
times. This error is of the same magnitude as the statistical error terms, up to
logarithmic factors. Thus, roughly speaking, the global error is of order of the
best approximation errors plus the statistical errors.

A similar method can be found in [149], where the solution of the FBSDE
is approximated by using a backward MWDP equation and LSMC regression
(Section 4.1), along with importance sampling to minimize the conditional vari-
ance occurring in the LSMC algorithm and accelerate the convergence of Monte
Carlo approximation in a similar manner to [23]. The Radon-Nikodym deriva-
tive is not given, as in [23], but rather computed adaptively within the LSMC
procedure. However, it makes sense to apply importance sampling only if the
driver is independent of Z. If the driver did depend on Z, there would be a
propagation of “lack of variance reduction” on the Y component due to the Z
component through the driver. This means that it would not be possible to keep
track of the benefit of importance sampling for Y . If the Monte Carlo estimation
of Z is made with appropriate variance reduction (suited to Z specifically), then
this problem would be avoided, and would allow the driver to depend on Z, but
this is left to future investigation.

4.3. Quantization methods

The quantization method is a numerical scheme for computing the conditional
expectation E[h(Xk+1)|Xk = x] for a Rq-valued Markov chain {Xk}k∈{0,1,··· ,n}
by settling the chain onto a space grid Γk := {x1

k, . . . , x
Nk

k }(⊂ Rq) of a suit-
able cardinality Nk ∈ N. The quantization method can be regarded somewhere
in the middle of deterministic and probabilistic methods, because it relies on
space grids and weights just like deterministic methods, while the computation
of weights often requires Monte Carlo methods. Such quantization methods are
developed and examined in [11, 12, 13] for probabilistically solving multidimen-
sional optimal stopping problems, and then applied to develop discretization
schemes for reflected BSDEs (Section 8.2) based on an optimal discrete spa-
tial quantization tree. Further improvements on quantized BSDE schemes are
provided in [54, 109, 248, 252].

Here, we describe quantized BSDE schemes in brief in accordance with [109].
On the basis of the explicit backward Euler scheme (3.1) and (3.2), we denote
by X̂n

tk
the so-called quantization of Xn

tk
taking values in a finite grid Γk(⊂ Rd),

that is, X̂n
tk

:= ProjΓk
(Xn

tk
) where ProjΓk

is a Borel projection of Rd onto the
grid Γk. For example, for a quantization level Nk ∈ N, an optimal quantization
grid Γk is found according to ‖Xn

tk
− ProjΓk

(Xn
tk

)‖2 = inf{‖Xn
tk

− p(Xn
tk

)‖2 :
Borel measurable p : Rq → Γ(⊂ Rq), card(Γ) ≤ Nk}, based on the nearest
neighbor projection ProjΓk

, given by ProjΓk
(Xn

tk
) =

∑Nk

i=1 x
i
k1(Xn

tk
∈ Ck

i (Γk)),
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where Nk := card(Γk) and {Ck
i (Γk)}i∈{1,··· ,Nk} is a sequence of Voronoi parti-

tions of Rq, satisfying Ck
i (Γk) ⊂ {ξ ∈ Rq : |xi

k − ξ| = minj∈{1,··· ,Nk} |x
j
k − ξ|}.

A quantized BSDE can then be defined as follows: ŷn(xi) = Φ(xn
i ) for i ∈

{1, · · · , Nn}, and then for k ∈ {n− 1, · · · , 1, 0} backwards,

ŷk(xi
k) = α̂k(xi

k) + f(tk, xi
k, α̂k(xi

k), β̂k(xi
k))(tk+1 − tk), xi

k ∈ Γk,

for i ∈ {1, · · · , Nk}, where

α̂k(xi
k) :=

Nk+1∑
j=1

ŷk+1(xj
k+1)p

ij
k , β̂k(xi

k) := 1√
tk+1 − tk

Nk+1∑
j=1

ŷk+1(xj
k+1)Λ

ij
k ,

with weights given in the forms of conditional probability and expectations:

pijk := P

(
X̂k+1 = xj

k+1| X̂k = xi
k

)
,

Λij
k := E

[
(Wtk+1 −Wtk)1(X̂k+1 = xj

k+1)| X̂k = xi
k

]
,

which are to be estimated by Monte Carlo methods if analytic formulas are not
available.

In principle, more accurate results are naturally expected by increasing the
size of the quantizations, whereas from an implementation point of view, the
size should be chosen carefully and reasonably, relative to the problem dimen-
sion, especially when the dynamics is multivariate with dependent components,
since then the conditional distribution cannot be decomposed into a set of inde-
pendent univariate distributions. The complexity of the quantization methods
comes largely from the computation of the optimal quantizers and their tran-
sition probabilities, if Monte Carlo simulation needs to be employed for the
estimation of the transition probabilities.

4.4. Tree based methods

Tree based methods have been found effective in the computation of conditional
expectations, particularly in low-dimensional problems, with relevant analyses
presented in [49, 225] (while its origin may date back to [72]). In order to illus-
trate the basics of tree based methods, we describe a numerical method proposed
in [225] for a BSDE whose driver is independent of Z. The main idea is to ap-
proximate the Brownian motion W by a simple random walk Bn

t := 1√
n

∑	nt

k=0 ζ

n
k

for t ∈ [0, 1], where {ζnk }k∈{1,··· ,n} is a sequence of iid Rademacher random vari-
ables. Then, they use this approximation in a discretized version of the BSDE
with a constant time step Δ := 1/n, whose solution is denoted (Y n, Zn). The
solution to this discretized BSDE is then approximated by (Ỹ n, Z̃n), which sat-
isfies the following algorithm.
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Algorithm 3:
Initialization: Approximate the terminal conditions Ỹ n

tn = ξn and Z̃n
tn = 0.

for k = (n− 1) to 0 do

X̃n
tk = E

[
Ỹ n
tk+1

∣∣∣Gn
k

]
, Ỹ n

tk = X̃n
tk + 1

n
f(tk, X̃n

tk ),

Z̃n
tk = E

[(
Ỹtk+1 + 1

n
f(tk, Ỹ n

tk ) − Ỹ n
tk

)
(ΔBn

tk+1)
−1
∣∣∣Gn

k

]
.

end

The involved conditional expectations are computed using a tree structure.
We briefly look at the error involved in approximating (Y,Z) by (Y n, Zn) (and
(Y n, Zn) by (Ỹ n, Z̃n)). It is assumed that ξ = F (W ) and thus ξn = F (Bn),
where F : Ω → R is a bounded Lipschitz function with respect to the uniform
topology on Ω, that is, |F (ω1) − F (ω2)| ≤ C supt∈[0,1] |ω1(t) − ω2(t)| for all
ω1, ω2 ∈ Ω. The authors prove that it can then be assumed without loss of
generality that the driver is bounded and furthermore that for all k ∈ {0, · · · , n}
and for large n,

sup
ω∈Ω

|Y n
tk

− Ỹ n
tk
| � e2c − 1

n
, sup

ω∈Ω
|Zn

tk
− Z̃n

tk
| � (e2c − 1)(2 + c/n)√

n
,

where c denotes the Lipschitz coefficient of the driver. Moreover, the sequence
(Y n, Un) is shown to converge weakly in the Skorohod topology to (Y,

∫
ZdW ),

where

Un
tk

=
k−1∑
j=0

Zn
tjΔBn

tj+1
= Y n − F (Bn) − 1

n

k∑
j=1

f(tj , Y n
tj ).

We also mention Donsker’s theorem which has been derived in the relevant con-
text [49, 51]. In addition, stability and convergence of the discretized filtration
have been analyzed in [9, 73, 74]. With the aid of those results, an approxima-
tion is investigated [50] in the sense that a sequence of solutions to a BSDE
driven by a martingale, approximating the Brownian motion, converges to the
solution to (2.1), and is further generalized to BSDEs with random terminal
time [295].

Tree based methods can also be employed in conjunction with the theta
approximation (3.5), which is a convex combination of explicit and implicit
terms:

Ytk ≈ E
[
Ytk+1

∣∣Ftk

]
+ Δnθ1f(tk, Ytk , Ztk)

+ Δn(1 − θ1)E
[
f(tk+1, Ytk+1 , Ztk+1)

∣∣Ftk

]
,

for θ1 ∈ [0, 1]. Here, the resulting conditional expectations can be approximated
on the basis of a recombining tree structure of a random walk approximation
for the Brownian motion with the aid of the Markov property of the approxi-
mation of the forward process X. After all conditional expectations have been
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approximated in this way, one obtains the following algorithm (in accordance
with the θ-scheme (3.6)) for computing Yj,k and Zj,k at node (j, k) backward in
time in the recombining tree structure (for instance, [179]).

Algorithm 4:
Initialization: Approximate the terminal conditions Y π

j,n = Φ(Xπ
j,n) and

Zπ
j,n = (∇Φ(Xπ

j,n))σ(tn, Xπ
j,n) for all j ∈ {0, · · · , n}.

for k = (n− 1) to 0 do
for j = 0 to k do

Zπ
j,k = θ2 − 1

2θ2

[
Zπ

j+1,k+1 + Zπ
j,k+1

]
+ 1

2θ2
√

Δn

[
Y π
j+1,k+1 − Y π

j,k+1
]

+ 1 − θ2

2θ2

√
Δn

[
f(tk+1, Y

π
j+1,k+1, Z

π
j+1,k+1) − f(tk+1, Y

π
j,k+1, Z

π
j,k+1)

]
,

Y π
j,k = 1

2
[
Y π
j+1,k+1 + Y π

j,k+1
]
+ θ1Δnf(tk, Y π

j,k, Z
π
j,k)

+ (1 − θ1)
Δn

2
[
f(tk+1, Y

π
j+1,k+1, Z

π
j+1,k+1) + f(tk+1, Y

π
j,k+1, Z

π
j,k+1)

]
.

end
end

Since the order of convergence for the tree approximation is 1 and this error
dominates the error coming from the θ-discretization, the overall scheme has
an order of convergence 1 for any values of θ1 ∈ [0, 1] and θ2 ∈ (0, 1]. The
expression for Y π

j,k above is given implicitly and thus needs approximation by
Picard iterations.

We close this section by mentioning random walk approximations of BSDEs
[71, 194, 231, 235, 243, 263] and an L2-convergence of the random walk approx-
imation of BSDEs derived in [129, 130] which makes use of [127]. Finally, we
finish by noting that parallel computing on GPUs is found effective in acceler-
ating tree-based methods [264, 265].

4.5. Cubature methods

Finally, we review cubature methods on the Wiener space and its application
in computing conditional expectations appearing in discretization methods for
BSDEs. Consider the following Stratonovich forward SDE and backward SDE:

dXt,x
s = V0(Xt,x

s )ds +
∑d

i=1
Vi(Xt,x

s ) ◦ dW i
s , Xx

t = x,

−dY t,x
s = f(Xt,x

s , Y t,x
s , Zt,x

s )ds−
∑d

i=1
Zi,t,x
s dW i

s , Y t,x
T = Φ(Xt,x

T ),

where the coefficients satisfy suitable conditions and ◦ denotes the symbol for
the Stratonovich integral. We say that the positive weights {λk}k∈{1,··· ,N} and
the paths of bounded variation ω1, · · · , ωN : [0, t] → Rd define a cubature
formula of degree m at time t if the identity
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E

[∫
0<t1<···<tk<t

◦dWα1
t1 · · · ◦ dWαk

tk

]

=
N∑
�=1

λ�

∫
0<t1<···<tk<t

dωα1
�,t1

· · · dωαk

�,tk
(4.9)

holds true for any multi-index α ∈ {0, 1, · · · , d}k satisfying the condition #{i :
αi ∈ {1, · · · , d}} + 2#{i : αi = 0} ≤ m, with W 0

t := t. With the cubature
measure Qm

t :=
∑N

�=1λlδω�
where δω denotes the Dirac measure mass at ω ∈

C([0, t]), the formula (4.9) can be rewritten as

E

[∫
0<t1<···<tk<t

◦dWα1
t1 · · · ◦ dWαk

tk

]
= EQm

t

[∫
0<t1<···<tk<t

◦dWα1
t1 · · · ◦ dWαk

tk

]
.

Let x0,x
· (ω) be the solution of the ordinary differential equation obtained by

replacing the d-dimensional Brownian motion W with a path of bounded varia-
tion ω in X0,x

· . Then, we have EQm
t

[g(X0,x
t )] =

∑N
�=1λ�g(x0,x

t (ω�)) for a function
g : Rq → R. We note that implementable expressions of cubature measures are
available for some specific degrees (such as m = 3, 5) and dimensions d. Broadly
speaking, the cubature measure of degree m yields the following short-time
asymptotics:

E

[
g(X0,x

t )
]
− EQm

t

[
g(X0,x

t )
]

= O(t(m+1)/2), (4.10)

for a smooth function g. We note that the error term depends on the bounds of
the higher order derivatives of g. For instance, the following method provides
an implicit computation scheme for the iterative conditional expectations in the
backward Euler scheme:

Ri,n−1Φ(x) = EQm
Δi+1

[
Ri+1,n−1Φ(Xti,x

ti+1
)
]

+ Δi+1f
(
x, Ri,n−1Φ(x),Δ−1

i+1EQm
Δi+1

[
Ri+1,n−1Φ(Xti,x

ti+1
)(Wti+1 −Wti)�

])
,

for i ∈ {n − 1, · · · , 0}, with a suitable degree m [80]. In order to reduce its
computational cost, some additional techniques, such as the tree-based branch-
ing algorithm, are recommended in implementation. A non-uniform partition is
found effective to treat possibly nonsmooth boundary data Φ based on the fact
that the corresponding solution of the non-linear PDE u(t, ·) is smooth under a
suitable condition on Vi, even when Φ is not smooth enough, so that the cuba-
ture method (4.10) performs well. Similarly, cubature methods are employed in
[81] for constructing a second order discretization scheme, in [247] for a third
order scheme, and in [88] for discretizing McKean-Vlasov FBSDEs (Section 8.7).
We refer the reader to [66] for an error expansion and the complexity control of
the cubature method for solving BSDEs.
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5. Forward numerical methods

Unlike the backward numerical methods (Section 3), the methods that we review
in the present section do not inherently work backwards in time, and thus (orig-
inally, at least) avoid the computation of conditional expectations (Section 4).
We hence call this category “forward” numerical methods in a collective way. In
a similar manner to Section 3, we examine one or two representative methods
in some detail in each subsection, followed by a brief overview of various other
methods in the category.

5.1. Picard iteration methods

In this section, we survey forward numerical methods based on Picard iterations.
We start with a forward scheme proposed in [22] via Picard iterations on sample
paths, which is aimed at numerically approximating sample paths of nonlinear
FBSDEs, based upon the discretization of a Picard type iteration. It is assumed
that W and X are multidimensional, while Y is univariate. Also, we impose that
μ and σ are 1/2-Hölder continuous with respect to the time variable, as well as
Φ is Lipschitz. We note that it is not assumed that the matrix σ is quadratic or
that σ⊗2 is invertible.

The limit of a Picard type iteration is used to approximate the processes
(Y,Z). Specifically, we set (Y (0), Z(0)) ≡ (0, 0), and (Y (r), Z(r)) as the solution
of the following FBSDE:

Y
(r)
t = Φ(XT ) +

∫ T

t

f(s,Xs, Y
(r−1)
s , Z(r−1)

s )ds−
∫ T

t

Z(r)
s dWs.

By taking conditional expectation, the process Y (r) is given as follows:

Y
(r)
t = E

[
Φ(XT ) −

∫ T

t

f(s,Xs, Y
(r−1)
s , Z(r−1)

s )ds
∣∣∣∣Ft

]
,

and Z(r) is given via the martingale representation theorem, meaning the above
Picard iteration is implicit. The authors propose a time discretization of the
above iteration which is explicit in time, but still requires the evaluation of
conditional expectations. Given a partition πn of [0, T ] and an approximation
X(π) of X, set (Y (0,π), Z(0,π)) ≡ (0, 0). Then, for k ∈ {0, 1, · · · , n} forward,
define the conditional expectations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y
(r,π)
tk

:= E

[
Φ(X(π)

T ) −
∑n−1

j=k f(tj , X(π)
tj , Y

(r−1,π)
tj , Z

(r−1,π)
tj )Δj

∣∣∣∣Ftk

]
,

Z
(r,π)
l,tk

:= E

[
W l

tk+1
−W l

tk

Δk

(
Φ(X(π)

T )

−
∑n−1

j=k+1 f(tj , X(π)
tj , Y

(r−1,π)
tj , Z

(r−1,π)
tj )Δj

)∣∣∣∣Ftk

]
,
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for l ∈ {1, · · · , d}, where W l
· denotes the l-th component of W·. The processes

Y (r,π) and Z(r,π) are extended to RCLL processes by using constant interpo-
lation. By then approximating those conditional expectations, for instance, by
using the LSMC regression method (Section 4.1), the convergence of the above
discretized Picard type iteration is given in the form:

sup
t∈[0,T ]

E

[
|Yt − Y

(r,π)
t |2

]
+ E

[∫ T

0
|Zs − Z(r,π)

s |2ds
]

≤ C

(
|πn| +

(
1
2 + C|πn|

)r)
,

as |πn| is sufficiently small, provided that supt∈[0,T ] E[|Xt−X
(π)
t |2] ≤ C|πn| and

sup|πn|≤1 E[|Φ(X(π)
T )|2] ≤ C, for some positive constant C > 0.

The discretized Picard type iteration has no (high order) nestings of con-
ditional expectations backwards in time, whereas it does have (lower order)
nestings of conditional expectations forward in time in the number of Picard
iterations. This turns out to be an advantage from a numerical point of view
relative to backward methods. Overall, the error when approximating the in-
volved conditional expectations (by a generic estimator) is significantly lower
relative to backward methods. Specifically, it turns out the error grows moder-
ately when the mesh of partition goes to zero and the number of Picard itera-
tions tends to infinity. This is once again an advantage over backward methods,
where the error often explodes when the mesh tends to zero. The algorithm
that puts everything all together is tested on a hedging problem to demonstrate
the proven theoretical convergence of the numerical method. We note that a
variance reduced version of the algorithm is also mentioned and tested on a
numerical example.

This work is extended in [23, 239], where the authors introduce a variance
reduced version of the forward approximation scheme by means of importance
sampling, or more specifically, by means of a measure transformation based on
a general Radon-Nikodym derivative. The technique of importance sampling
is generalized from simulating expectations to computing the initial value of
a FBSDE. The convergence of this modified and fully implementable numer-
ical method is proved and the success of the involved generalized importance
sampling is illustrated by numerical examples in the context of financial option
pricing.

We next look at forward numerical methods which focus on solving the equiv-
alent PDE (Theorem 2.3) by Picard iterations. Here, we primarily examine one
numerical method, which illustrates this category well. In [138], the authors com-
bine two main ingredients to an algorithm which is aimed at solving the PDE
equivalent to the general FBSDE (Theorem 2.3). Hence, Assumption 2 is essen-
tial. To describe the scheme, we prepare some notation. Let v : [0, T ]×Rq → R

be C1 in space and define fv : [0, T ] × Rq → R as the following function

fv(t,x) := f(t,x, v(t,x), (∇v(t,x))�σ(t,x)), (5.1)
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where f is the driver of the FBSDE (2.6) and σ is the diffusion coefficient of
the SDE (2.7). We define the following two random variables

Ψ(s, y, g1, g2) :=
∫ T

s

g1(r,Xs,y
r )dr + g2(Xs,y

T ),

ΨN (s, y, g1, g2) :=
∫ T

s

g1(r,XN,s,y
r )dr + g2(XN,s,y

T ),
(5.2)

where Xs,y (respectively, XN,s,y) denotes the diffusion process starting from
y at time s (respectively, its approximation with N -time steps) which solves
the forward SDE (2.7). Finally, we define ci,j(φ) :=

∑i,j
k,l=0 |∇k(∂t)lφ|∞, with

c0(φ) := c0,0(φ) for φ ∈ Ci,j
b .

We first look at the case where the FBSDE has a driver which is independent
of Y and Z, that is, f(t,x, y, z) = f(t,x), which means the FBSDE is linear.
We demonstrate the adaptive control variate approach (one of the two main
ingredients) in this simple setting. It is then extended to the general FBSDE via
Picard iterations (the second of the two main ingredients). From Theorem 2.3,
we see that in order to solve a linear FBSDE, one can equivalently solve the
linear PDE (2.9), for which an adaptive control variate scheme is developed in
[143]. Here, one aims to numerically solve the linear PDE:

((∂/∂t) + Lt)v + f = 0, v(T, ·) = Φ(·). (5.3)

Using the Feynman-Kac formula, the probabilistic solution of this PDE can be
expressed as the following conditional expectation in accordance with (5.2):

v(t,x) = Et,x

[
Φ(XT ) +

∫ T

t

f(s,Xs)ds
]

= E [Ψ(t,x, f,Φ)] , (5.4)

where Xt,x is the solution to the standard SDE (2.7) starting from x at time t.
One wishes to compute a sequence of solutions (vr)r∈{0,1,··· } by writing

vr+1 = vr + (Monte Carlo evaluations of the error (v − vr)) ,

as this sequence is proved to converge to the solution v of (5.3). This approach
is backed up by the probabilistic representation of the error term:

v(t,x) − vr(t,x) = E [Ψ (t,x, f + ((∂/∂t) + Lt)vr,Φ − vr)] =: cr(t,x).

We now proceed to the second ingredient, which is the most general form
of Picard iterations [138] and will be used to approximate the solution of the
nonlinear FBSDE by the solutions of a sequence of (simple) linear FBSDEs
(ones with driver independent of Y and Z), which converge geometrically to
(Y,Z). Define recursively the Picard iterative sequence (Y r, Zr)r∈{0,1,··· } with
(Y 0, Z0) = (0, 0), as follows:

−dY r+1
t = f(t,Xt, Y

r
t , Z

r
t )dt− Zr+1

t dWt, Y r+1
t = Φ(XT ), t ∈ [0, T ].
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for r ∈ {0, 1, · · · } forward. This sequence of linear FBSDEs converges to the
unique solution (Y,Z) of the original non-linear FBSDE dt⊗dP-a.e. By writing
Y r
t = vr(t,Xt) and Zr

t = (∇vr(t,Xt))�σ(t,Xt) and by Theorem (2.3), each
linear FBSDE can be equivalently written as a PDE:

((∂/∂t)+Lt)vr+1+f(·, ·, vr, (∇vr)�σ) = 0, vr+1(T, ·) = Φ(·), r ∈ {0, 1, · · · }.

The sequence of solutions of linear PDEs (vr,∇vr)r∈{0,1,··· } converges in a suit-
able L2 norm to the solution (v,∇v) of the semilinear PDE:

((∂/∂t) + Lt)v + f(·, ·, v, (∇v)�σ) = 0, v(T, ·) = Φ(·),

which then yields the solution of the non-linear FBSDE by setting (Y,Z) =
(v, (∇v)�σ). The adaptive control variate method also converges geometrically,
and so when combined, the two ingredients provide an algorithm with geomet-
ric convergence. To describe the algorithm, we employ the notation Lnu(s,x) :=
1
2 tr[σ⊗2(φn(s),x)Hess(u(s,x))]+〈μ(φn(s),x),∇u(s,x)〉, and φn(s) := max{tk ∈
πn : tk ≤ s} with respect to the partition πn on the interval [0, T ].

Algorithm 5:
Initialization: Set v0 ≡ 0 and assume that an approximate solution vr of
class C1,2

b has been built at step r. Take n points
(trk,xr

k)k∈{1,··· ,n} ∈ [0, T ] × Rq at each step of the iteration.
• Evaluate cr(trk,xr

k) using M iid realizations by

cMr (trk,xr
k) = 1

M

M∑
m=1

ΨN (trk,xr
k, fvr + ((∂/∂t) + Ln)vr,Φ − vr)m .

• Build the global solution cMr (·) based on the values (cMr (trk,xr
k))k∈{1,··· ,n}

using a linear approximation operator Pr:

Prc(·) =
n∑

k=1

c(trk,xr
k)wr

k(·),

where (wr
k)k∈{1,··· ,n} are suitable weight functions. The approximation of v

at step r + 1 is then computed as

vr+1(t,x) = Pr(vr + cMr )(t,x).

We here address a few key questions regarding the algorithm. First, it is
critical how to choose the grid points (trk,xr

k)k∈{1,··· ,n} at each iteration r. There,
at each iteration, we take a new grid of n points (trk,xr

k)k∈{1,··· ,n} that are
independent and uniformly distributed on [0, T ]× [−a, a]q for a suitable positive
constant a. As we want to solve the PDE on [0, T ]×Rq, we must choose a large
enough. Next, an appropriate norm needs to be prepared for measuring the error.
By combining results on BSDEs stated in a norm (leading to the integration with
respect to the measure eβsds [105]) and results on the bounds for solutions of
linear PDEs in weighted Sobolev spaces (leading to the integration with respect
to the measure e−λ‖x‖dx [30]), the convergence of the algorithm is derived in
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the norm:

‖V ‖2
λ,β := E

[∫ T

0

∫
Rq

eβs‖Vs(x)‖2e−λ‖x‖dxds
]
< +∞,

for λ > 0, β > 0 and the set of processes V : Ω × [0, T ] × Rq → Rd that
are Pr ⊗ B(Rq)-measurable (where Pr is the σ-field of predictable subsets of
Ω× [0, T ]). This norm is then employed to measure the error (Y − Y r, Z −Zr),
corresponding to the approximation error made at step r of the algorithm. The
expectations appearing in ‖Y − Y r‖2

λ,β and ‖Z − Zr‖2
λ,β are computed with

respect to the law of X, Xn and all the possible random variables used to
compute vr.

The sequence of approximation operators (Pr)r∈{0,1,··· } is allowed to change
at each step of the iteration, under a number of technical conditions: measur-
ability, linearity, regularity, boundedness, able to approximate functions and
spatial derivatives well and stability and centering property for random func-
tion. We refer the reader to [138] for explicit definitions of each property and an
example of a sequence of operators Pr which satisfy the desired properties. The
operators used are kernel based estimators and are based on the non-parametric
technique local averaging. This scheme is further accelerated via parallel com-
puting [210] by replacing the kernel operator with an extrapolating operator for
approximating functions and their derivatives.

The geometric convergence results for the algorithm can be described as
follows [138]. If Assumption 2 holds, Φ ∈ C2+α

b and f is bounded and Lipschitz,
then there exists a constant K(T ) such that

‖Y − Y r‖2
λ,β + ‖Z − Zr‖2

λ,β ≤ Sk + K(T )
c20,2(v)

n
,

where Sr ≤ ηSr−1 + ε for suitable constants η and ε. Moreover, for β and
P-parameters large enough so that η < 1, it holds that

lim sup
r→+∞

‖Y − Y r‖2
λ,β + ‖Z − Zr‖2

λ,β ≤ ε

1 − η
+ K(T )

c20,2(v)
n

.

This result is derived by splitting the error ‖Y − Y r‖2
λ,β + ‖Z − Zr‖2

λ,β into
its difference sources, such as an Euler scheme, Picard iteration, approximation
operator P and Monte Carlo simulations.

In [286], the authors propose an analytical approximation scheme which also
centers on the representation of FBSDEs given in [228], where a Malliavin cal-
culus method is applied to the forward SDE in conbination with the Picard
iteration scheme for the backward component. Various numerical examples are
presented to demonstrate the convergence of the proposed algorithm.

Before moving on, we mention that there is a line of research on deep learning
based algorithms for solving FBSDEs and parabolic PDEs in high dimensions.
The main idea is to make an analogy between the FBSDE and reinforcement
learning, where PDEs play an important role from an implementation point
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of view. As the class of deep learning based algorithms cannot be categorized
simply as forward methods and has become a very active field of research on
its own, we do not discuss it here but set up an individual section (Section 6)
exclusively for this class of algorithms.

5.2. Branching diffusion system based methods

We next look at the branching diffusion system based numerical methods for
nonlinear PDEs and corresponding BSDEs [167, 170]. Consider the following
semilinear PDE of KPP (Kolmogorov-Petrovskii-Piskunov) type:

((∂/∂t) + Δ)u(t,x) + β
(∑

k∈N0
pk(u(t,x))k − u(t,x)

)
= 0, (5.5)

with u(T,x) = Φ(x), which can be written in the formulation (2.9) with Lt =
Δ and f(t,x, y, z) = β(

∑
k∈N0

pky
k − y), where Δ denotes the Laplacian and

{pk}k∈N0 is a probability mass sequence satisfying pk ∈ [0, 1] and
∑

k∈N0
pk = 1.

It is well known [233, 280, 306] that the solution to the PDE (5.5) admits a
probabilistic representation based on the branching diffusion system in which
every particle dies in an exponential time of parameter β and creates k iid
descendants with probability pk. Then, every descendant dies and reproduces iid
descendants independently after independent exponential times in accordance
with the same mechanism. In the other words, the solution to the PDE (5.5)
can be represented as

u(t,x) = E

[∏NT

k=1
Φ(Zk

T )
∣∣∣ (Nt, Z

1
t ) = (1,x)

]
, (5.6)

where NT is the number of particles alive at time T , Zk
T denotes the position

of the kth particle at time T and the condition indicates that the system is
initialized at time t with one particle at position x. For the semilinear PDE
with the Laplacian Δ in (5.5) replaced by the Ito generator Lt and a general
function f(y):

((∂/∂t) + Lt)u(t,x) + f(u(t,x)) = 0, u(T,x) = Φ(x),

or the corresponding FBSDE (2.6) and (2.7) with driver f(t,x, y, z) = f(y), the
so-called “marked” branching diffusion method is proposed in [167] to evaluate
u(0,x) based on the equivalence between (5.5) and (5.6) after a polynomial
approximation of the driver f(y) ≈ β(

∑m
k=0(ak/pk)pkyk − y) of finite degree

m, where {pk}k∈{0,··· ,m} here is such that pk ∈ [0, 1] and
∑

k∈{0,··· ,m} pk = 1
and the fraction (ak/pk) represents the weight to count at vertices of type k.
The corresponding FBSDE can thus be evaluated via a fully forward-looking
simulation of particles owing to the representation (5.6).

The computation required for branching diffusion methods comes almost en-
tirely from the construction of branching particles. Hence, in terms of the prob-
lem dimension, those methods are not as prohibitive as Picard iteration methods
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(Section 5.1), let alone the computation of conditional expectations (Section 4),
for which a few dimensions would be the best in practice. It is reported in [170]
that eight-dimensional PDEs are successfully solved without an issue. We note
that the marked branching diffusion method is extended further in [3] to elliptic
semilinear PDEs by introducing absorption of particles and in [169] to address
the case where the nonlinear driver depends on the Z component. In addition,
the branching diffusion system is rich enough to provide probabilistic represen-
tations of semilinear PDEs beyond the standard form (2.9). For instance, those
up to any higher order derivative in the driver (not only up to the first order
∇u as of (2.9)) have been addressed in [245, 246] with numerical illustrations.
Moreover, probabilistic representations and associated numerical methods have
been developed in [258, 259] for parabolic and elliptic semilinear PDEs (2.9), but
with the Ito generator Lt replaced by a fractional Laplacian that corresponds
to subordination of the underlying Brownian motion by a stable subordinator.

Interestingly, the concept of the branching diffusion system can be employed
for constructing backward numerical methods [45, 46], where the driver de-
pends on Z [45] or is independent of Z [46]. Despite the backward nature
lies outside the primary scope of Section 5, we illustrate such a method in
brief, in accordance with the latter for the sake of simplicity. The other main
assumptions made are that Φ : Rd → R is measurable and bounded and
that f : Rd × R → R is measurable (as usual), uniformly Lipschitz contin-
uous in its first argument and satisfies linear growth and Lipschitz continu-
ity in its second argument. As a consequence, there exists a constant M ≥ 1
such that |Φ(XT )| ≤ M and ‖X‖ + |Y | ≤ M on [0, T ] almost surely. The
driver f of the FBSDE is approximated by fl0 which has a local polynomial
structure and is given as fl0(x, y1, y2) :=

∑j0
j=1

∑l0
l=0 aj,l(x)yl1φj(y2), where

(aj,l, φj)(j,l)∈{1,··· ,j0}×{0,··· ,l0} is a family of continuous and bounded maps. For
all y1, y2 ∈ R, j ∈ {1, · · · , j0}, l ∈ {0, · · · , l0} and a positive constant C, these
maps satisfy |aj,l| ≤ C, |φj(y1) − φj(y2)| ≤ C|y1 − y2| and |φj | ≤ 1. If the
driver was simply approximated by a polynomial, then typically, the approxi-
mating FBSDEs would explode in finite time and thus no convergence could be
expected. The solution to the FBSDE (Y , Z) with driver f replaced by fl0 can
approximate the true solution (Y,Z) well whenever fl0 is a good approximation
of f :

E

[
sup

t∈[0,T ]
|Yt − Y t|2

]
+ E

[∫ T

0
‖Zs − Zs‖2ds

]

≤ CE

[∫ T

0
|f − fl0 |2(Xs, Ys, Ys)ds

]
,

where the positive constant C is independent of fl0 . Hence, for accurate approx-
imation, one requires a driver that can be approximated well by polynomials.

The solution to the new FBSDE (Y , Z) is then approximated by means of a
Picard type iteration scheme. To that end, define the process Y m in a recursive
way. That is, let Y

r

T := Φ(XT ), and define, on each interval [tk, tk+1], (Y r
. , Z

r
. )
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as the solution on [tk, tk+1] of

Y r
. = Y

r

tk+1
+
∫ tk+1

.

fl0(Xs, Y
r
s , Y

r−1
s )ds−

∫ tk+1

.

Zr
sdWs. (5.7)

Then, Y
r = Y r on (tk, tk+1], and Y

r

tk
= (−M) ∨ Y m

tk
∧ M . The aim is thus

to solve the above Picard iteration backwards on each interval [tk, tk+1], and
then using the now completely solved iteration on [0, T ], begin solving the next
iteration backwards across the intervals. Importantly, this algorithm requires
the truncation of the approximation of Y at some given time steps in order to
reduce the approximating driver to a globally Lipschitz driver. The error due to
the Picard iteration scheme is given in the form |Y r

t − Y t| ≤ C(T − t)r for all
t ∈ [0, T ] and r ∈ N, where |Y r

t | is uniformly bounded in t and r.
Each step of the Picard iteration is conducted backwards on each interval

[tk, tk+1) by using a representation of Y r in terms of branching diffusion systems.
A set of particles (X(l))l∈K is constructed, where each particle is the solution
to the forward SDE (but each with their own Brownian motion) with a killing
time Tl. At this time, the particle splits into a random number of new particles
which follow the same dynamics, but with their own killing times and Brownian
motion. Define the set Kl

t as the collection of particles in the l-th generation
that were born before or at time t, and the set Kl

t as the collection of particles
in Kl

t that are still alive at time t. Also, given vr−1 and vr(tk+1, ·), define

V r
t,x :=

⎡⎣ ∏
l∈Ktk+1−t

vr(tk+1, X
x,(l)
tk+1−t)

F (tk+1 − t− Tl−)

⎤⎦
×

⎡⎢⎣ ∏
l∈Ktk+1−t\Ktk+1−t

∑j0
j=1 aj,ξl(X

x,(l)
Tl

)φj(vr−1(t + Tl, X
x,(l)
Tl

))
pξlρ(δl)

⎤⎥⎦ ,

for all (t,x) ∈ [tk, tk+1) × Θ, where Θ is a compact subset of Rd. Finally,
set vr(t,x) := E[V r

t,x] for (t,x) ∈ (tk, tk+1) × Θ and r ∈ N, and vr(tk,x) :=
(−M) ∨ E[V r

tk,x] ∧ M , for x ∈ Θ and r ∈ N. Then, it can be proven that
Y

r

· = vr(·, X) on [0, T ]. By then approximating E[V ] by Ẽ[Ṽ ], a Monte Carlo
approximation on a finite functional space, and putting everything together,
one obtains a numerical method for approximating (Y,Z). When implementing
the algorithm in practice, it is best to modify the algorithm to avoid lots of
expensive Picard iterations. Two modifications are suggested which use only
one Picard iteration, but provide an accurate estimate nevertheless.

5.3. Asymptotic expansion

The method of asymptotic expansion provides a tailor-made approximation for
BSDEs by expanding a nonlinear BSDE into by a sequence of linear BSDEs in
a flexible way, yet with a rigorous error analysis. By taking advantage of simple
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computation involved, the method offers a fast computing scheme for BSDEs.
Asymptotic expansion is categorized here as a forward methods since the result-
ing linear BSDEs here can be computed by forward Monte Carlo schemes alone,
without the need for backward or regression schemes. We discuss the method of
asymptotic expansion here separately from Picard based forward methods, as
PDEs are certainly useful here (as we describe shortly) but not fully essential.

We here describe the method in accordance with [285]. On a filtered probabil-
ity space (Ω,F ,F,P), consider the following FBSDE with a small perturbation
ε ∈ [0, 1]:

dXt = μ(t,Xt)dt + σ(t,Xt)dWt, (5.8)
−dY ε

t = εf(t,Xt, Y
ε
t , Z

ε
t )dt− Zε

t dWt, Y ε
T = Φ(XT ), (5.9)

where the driver f is sufficiently smooth, with corresponding PDE given by

((∂/∂t) + Lt)vε(t,x) + εf(t,x, vε(t,x), (∇vε(t,x))�σ(t,x)) = 0,

and vε(T,x) = Φ(x), due to Theorem 2.3. Recall that Y ε
t = vε(t,Xt) and

Zε
t = (∇vε(t,Xt))�σ(t,Xt) =: ∇vεσ(t,Xt) hold. Now, we expand the process

(Y ε, Zε) around the solution of null driver (linear) BSDE (Y 0, Z0):

−dY 0
t = −Z0

t dWt, Y 0
T = Φ(XT ).

Note that (Y 0, Z0) is explicitly solvable as Y 0
t = E[Φ(XT )|Ft] = v0(t,Xt) and

Z0
t = (∇v0(t,Xt))�σ(t,Xt) = ∇v0σ(t,Xt), where v0 is the solution of the

corresponding linear PDE ((∂/∂t) + Lt)v0(t,x) = 0 with v0(T,x) = Φ(x). The
following expansion is then proposed [118, 285]: for every m ∈ N,

(Y ε, Zε) ≈ (Y 0, Z0) +
m∑

k=1

εk

k! (Y
(k), Z(k)), (5.10)

where each process (Y (k), Z(k)) evidently satisfies

(Y (k), Z(k)) =
(
(∂k/∂εk)Y ε, (∂k/∂εk)Zε

)
|ε=0,

and, moreover, can be characterized by the linear BSDE:

−dY
(k)
t = k

dk−1

dεk−1 f(t,Xt, Y
ε
t , Z

ε
t )|ε=0dt− Z

(k)
t dWt, Y

(k)
T = 0.

It is essential that every (Y (k), Z(k)) is explicitly solvable since each solves a
linear BSDE. The expansion (5.10) is justified in [285] as follows: for each β > 0,
λ > 0 and m ∈ N, there exists C > 0 such that∥∥∥∥∥vε −

(
v0 +

m∑
k=1

εk

k! v
(k)

)∥∥∥∥∥
2

β,λ

+

∥∥∥∥∥∇vεσ −
(
∇v0σ +

m∑
k=1

εk

k!w
(k)

)∥∥∥∥∥
2

β,λ

≤ Cε2(m+1),
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for all ε ∈ (0, 1], where

v(k)(t,x) := ∂k

∂εk
vε(t,x)|ε=0, w(k)(t,x) := ∂k

∂εk
∇vεσ(t,x)|ε=0,

for k ∈ N, with the norm ‖h‖β,λ :=
∫ T

0
∫
Rq e

βs‖h(s,x)‖e−λ|x|dxds for β > 0 and
λ > 0. This error estimate is consistent with the expansion (5.10) in the sense
of Y (k)

t = v(k)(t,Xt) and Z
(k)
t = w(k)(t,Xt) for k ∈ N.

The development in [285] is generalized in [145] to nonsmooth drivers. The
development in [145] can be summarized as follows: for a driver f which is
Lipschitz in (t, x) and is Gateaux-differentiable in (y, z) in the sense that for
any square-integrable predictable processes φ and ψ, there exist κ ∈ (0, 1] and
a square-integrable predictable process Df·(φ, ψ) such that E[

∫ T

0 |(f(t,Xt, Y
0
t +

εφt, Z
0
t + εψt) − f(t,Xt, Y

0
t , Z

0
t ) − εDft(φ, ψ))/ε|2dt] = o(ε2κ), it holds that

sup
t∈[0,T ]

E

[∣∣∣∣Y ε
t −

(
Y 0
t + εY

(1)
t + ε2

2 Y
(2)
t

)∣∣∣∣2
]

+ E

[∫ T

0

∣∣∣∣Zε
t −

(
Z0
t + εZ

(1)
t + ε2

2 Z
(2)
t

)∣∣∣∣2 dt
]

= o(ε4+2κ).

The effectiveness and practical accuracy of the schemes has been well demon-
strated via numerical experiments in [118, 145]. In practice, the expansion up to
the first or second order often provides a sufficient accuracy even for non-smooth
drivers. An efficient implementation with interacting particles is developed in
[120]. We also refer to [76] for nonlinear Monte Carlo scheme using asymptotic
expansion method with interacting particles.

The method of asymptotic expansion has found its application to a variety
of models in mathematical finance. For instance, it is employed in [119] for a
complete market on BSDEs. Numerical analyses are conducted for American
options in [117] based on asymptotic expansion method with interacting par-
ticles. Asymptotic expansion is applied in [77] for numerical experiments in a
counterparty risk model. In [10], a dynamic framework is introduced for an-
alyzing XVAs with asymptotic expansion employed in numerical experiments.
A polynomial expansion method is developed in [116] by approximating target
BSDEs via a recursive system of linear ODEs. Using asymptotic expansion, nu-
merical approximations are derived in [4] for McKean-type anticipative BSDEs
arising in initial margin requirement models. We close this section with even
different lines of research, such as [276] for quadratic BSDEs, [121] for BSDEs
with jumps, [123, 242, 284] for deep learning schemes inspired by asymptotic
expansion, and [107, 122, 286] for similar but different types of expansions in
nonlinear PDE and BSDEs.

Based on asymptotic expansion, though not quite in the same spirit as above,
statistical inference has been investigated for BSDEs, as from a practical point
of view, it may well happen that some problem coefficients cannot be fully
determined upon implementation. For instance, in the case where the drift coef-
ficient μ(t,x; θ) of the forward process (2.7) remains partially unspecified in its
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parameter θ and the diffusion coefficient εσ(t,x) is kept small with ε ≈ 0, the
approximation problem for the solution to FBSDEs is investigated in [208, 209]
with maximum likelihood estimation of the unknown parameter θ concurrently
conducted. The case where the diffusion coefficient is parameterized instead is
investigated in [125].

5.4. Multilevel Picard approximation

Multilevel Picard approximation is an emerging class of numerical methods,
mainly consisting of the following three steps [98]:

1. reformulation of the PDE as a stochastic fixed point problem,
2. approximation of the unique fixed point by Picard iterations,
3. and then approximation of the iterations by multilevel Monte Carlo meth-

ods.

The method is said to be full history recursive in the sense that the realizations
in the m-th iteration require those in the 1st, 2nd, · · · , (m − 1)-th iteration.
Literally, its name originates from the two major components, that is, Picard
iterations and multilevel Monte Carlo methods. As only a few Picard iterations
are required in practice and expectations are nested along the iterations, the
conditional expectations may be approximated by the standard Monte Carlo
method, leading to nested simulations in the number of iterations. The cost can
be kept tractable by using only a small number of samples in each nested layer
of simulations, for which a very efficient variance reduction is needed, typically
handled by the multilevel Monte Carlo approach.

A major motivation for introducing multilevel Picard approximation is to
solve high dimensional nonlinear PDEs in a similar spirit to deep learning based
methods (Section 6). The category is initiated in the work [99], in which the ap-
plicability of approximation methods based on Picard iterations and multilevel
Monte Carlo methods is investigated for high dimensional nonlinear PDEs aris-
ing in physics and finance. It is subsequently shown [183] that the complexity
grows polynomially both in the dimension and in the reciprocal of the required
accuracy in the case of semilinear heat equations with gradient-independent
and globally Lipschitz continuous nonlinearities. For instance, its complexity is
shown to be O(dε−4) for such semilinear heat equations, where d is the dimen-
sion of the problem and ε is the required precision.

Multilevel Picard approximation methods have been developed further in
many papers. A class of multilevel Picard approximation is proposed in [20]
for computing iterated nested expectations. For very high-dimensional prob-
lems, there is another nested Monte Carlo algorithm for the PDE formulation,
where the nesting is along a random time grid [305] Multilevel Picard approx-
imation algorithms are shown to overcome the curse of dimensionality for high
dimensional nonlinear heat equations with general time horizons and gradient-
dependent nonlinearities [182] and also overcome the curse of dimensionality in
the Lp sense for high-dimensional semilinear PDEs [186]. It is shown in [185]
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that a Monte Carlo type numerical method approximates the solution path of
BSDEs with complexity which is at most polynomial in the model dimension and
at most quadratic in the reciprocal of the prescribed approximation accuracy. It
is proved in [187] that semilinear heat equations with gradient-dependent non-
linearities can be approximated under suitable technical conditions with poly-
nomial complexity both in the dimension and the reciprocal of the accuracy. In
[188], Picard iterations for backward stochastic differential equations with glob-
ally Lipschitz continuous nonlinearity are shown to converge, at least, at the
rate of square-root of factorial. An extension of multilevel Picard approxima-
tion is applied to general forward diffusion in [189]. Other numerical algorithms
can be found in [100] for approximating solutions of general high-dimensional
semilinear parabolic partial differential equations at single space-time points,
and in [21] for parametric approximation problems by combining Monte Carlo
algorithms with machine learning techniques to learn the random variables in
Monte Carlo simulations including the multilevel Picard approximation. Yet an-
other type can be found in [60] based on a Picard iteration scheme in which a
sequence of linear-quadratic optimization problems are solved by means of the
stochastic gradient descent algorithm.

5.5. Further on forward numerical methods

We also find a fully forward-looking numerical method in [117], where the non-
linear driver of the FBSDE is treated as a perturbation and consequently the
FBSDE is converted into a series of decoupled linear FBSDE. The method
proposed for approximating these linear FBSDEs uses an interacting particle
method in order to perform the involved integration steps, as opposed to us-
ing direct Monte Carlo simulation. The homotopy analysis method has been
reported effective [333] for FBSDEs. The coupled FBSDEs are transformed into
a control problem [86] by discretizing the backward component in the forward
direction and are simulated by combining the standard backward discretiza-
tion with Picard iterations [28]. Finally, a forward method can be found in [52]
based on a Wiener chaos expansion, Picard iterations and Malliavin calculus
techniques.

6. Deep learning

The method of deep learning is one of the most active emerging categories in the
context of numerical methods for BSDEs. These methods have attracted a great
deal of attention for their unique feature of solving high dimensional nonlinear
BSDEs and corresponding nonlinear PDEs, owning to neural network approx-
imation by which the estimation of nested high-dimensional expectations and
gradients is significantly eased. So far, a wide variety of numerical results have
been developed for approximating the solution of nonlinear PDEs by a neural
network from physics and finance and FBSDEs related to a nonlinear pricing
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model for financial derivatives. Those numerical methods demonstrate the ef-
ficiency and accuracy of the algorithm for several 100-dimensional nonlinear
PDEs and FBSDEs. This effectiveness in high-dimensional problems, in addi-
tion to the intrinsic structure involving both aspects of backward and forward
methods, makes the method of deep learning quite distinctive in sharp contrast
to backward and forward methods (Sections 3 and 5). Despite the complexity
of deep learning methods not being able to be investigated in a general form at
present, there exist a few theoretical results in the literature that support deep
neural networks in overcoming the curse of dimensionality in numerical approx-
imations of some linear and nonlinear PDEs, where the complexity is shown to
grow at most polynomially in both the PDE dimension and the reciprocal of the
approximation accuracy (for instance, [19, 31, 153, 154, 184, 195, 271, 287]).

In what follows, we describe and summarize such deep learning based meth-
ods. To this end, we start with the basics on multilayer neural networks. We
reserve L for the number of layers. For k ∈ {0, 1, · · · , L− 1}, let �k ∈ N denote
the size of input of the k-th layer and let �L be the size of the output layer.
For k ∈ {1, · · · , L}, define Wk := (wk

i,j)i,j in R�k×�k−1 with wk
i,j := θkj+�k(i−1)

called weight and bk := (θk�k−1×�k+1, · · · , θk�k−1×�k+k) in R�k called bias. Let
Ak : x(∈ R�k−1) �→ Wkx + bk(∈ R�k) and define Ae(x) := (a(x1), · · · , a(xe))
for x ∈ Re, where a denotes a real-valued nonlinear function on R, called
the activation function. With all those, we define the neural network N Θ

L :
R�0 → R�L by N Θ

L (x) := AL ◦ · · · ◦ A�2 ◦ A2 ◦ A�1 ◦ A1(x) for x ∈ R�0 , with
Θ := (θ1

1, · · · , θL�L−1×�L+L). Note that every continuous function on a compact
set can be approximated by a neural network to any desired precision.

6.1. Deep BSDE

We first summarize a numerical scheme called the deep BSDE method [97,
162]. The essence of deep BSDE methods is, broadly speaking, to make use
of the gradient of the solution (with respect to the control process Z) as the
policy function, and approximate it through a neural network as is done in the
standard deep reinforcement learning. For the reader’s convenience, we recall
the FBSDE (2.6) and (2.7):

dXt = μ(t,Xt)dt + σ(t,Xt)dWt,

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt,

with X0 = x and YT = Φ(XT ), and Theorem 2.3, which asserts (Yt, Zt) =
(v(t,Xt), (∇v(t,Xt))�σ(t,Xt)), with v satisfying the semilinear parabolic PDE
under Assumption 2:

((∂/∂t) + Lt)v(t,x) + f(t,x, v(t,x), (∇v(t,x))�σ(t,x)) = 0,

with v(T,x) = Φ(x).
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In general, the deep learning-based method aims to approximate Y0 = v(0,x).
We start with the following stochastic optimization problem:

inf
y,Z

E

[
|Φ(XT ) − Y y,Z

T |2
]

s.t. Y y,Z
t := y −

∫ t

0
f(s,Xs, Y

y,Z
s , Zs)ds +

∫ t

0
ZsdWs, t ∈ [0, T ].

Evidently, to solve this minimization problem, the expectation E[|Φ(XT ) −
Y y,Z
T |2] needs to be computable or approximated. For this purpose, define the

sequence {Xn

tk
}k∈{0,1,··· ,n} as the Euler-Maruyama discretization of the forward

process:

X
n

tk+1
= X

n

tk
+ μ(tk, X

n

tk
)(tk+1 − tk) + σ(tk, X

n

tk
)
(
Wtk+1 −Wtk

)
, (6.1)

for k ∈ {0, 1, · · · , n − 1}, with initial state X
n

t0 = x, and define the forward
discretization {Y n

tk
}k∈{0,··· ,n−1} of the backward process by

Y
n

tk+1
= Y

n

tk
− f(tk, X

n

tk
, Y

n

tk
, zk(X

n

tk
))(tk+1 − tk)

+ zk(X
n

tk
)
(
Wtk+1 −Wtk

)
, k ∈ {0, 1, · · · , n− 1}, (6.2)

with initial state Y n
t0 = y, in order to approximate the minimization problem,

as follows:

inf
y,Z

E

[
|Φ(XT ) − Y y,Z

T |2
]
≈ inf

y,{zk}k

E

[
|Φ(Xn

T ) − Y
n

T |2
]

≈ inf
y,{zk}k

1
M

M∑
l=1

|Φ(Xn

T,l) − Y
n

T,l|2, (6.3)

for sufficiently large M for decent estimation quality, where {Xn

T,l}l∈N and
{Y n

T,l}l∈N are independent copies of Xn

T and Y
n

T , respectively. At the end, the
obtained solutions, say, y∗ and {z∗k}k∈{0,1,··· ,n−1}, provide the approximation
Y0 ≈ y∗ and Ztk ≈ z∗k(Xn

tk
) for k ∈ {0, 1, · · · , n− 1}.

Deep learning comes into play when solving the approximate minimization
problem (6.3). For k ∈ {1, · · · , n− 1}, approximate the target continuous func-
tion zk by a neural network as x �→ zθkk (x) ≈ N θk

L (x) with parameter θk ∈ Rq(L)

for a suitable dimension q(L) ∈ N, depending on the number of layers L. For
Θ = (θ1, · · · , θd+1, θ1, · · · , θn−1) with θk ∈ R for k ∈ {1, · · · , d+1}, the forward
discretization of the backward process (6.2) can be parameterized with Θ as

Y
n

tk+1
(Θ) = Y

n

tk
(Θ) − f(tk, X

n

tk
, Y

n

tk
(Θ), zθkk (Xn

tk
))(tk+1 − tk)

+ zθkk (Xtnk
)
(
Wtk+1 −Wtk

)
, k ∈ {0, 1, · · · , n− 1},

with initial states Y
n

0 (Θ) = θ1and zθ00 (x) = (θ2, · · · , θ1+d). We seek the param-
eter vector Θ via the following minimization problem:

inf
Θ

1
M

M∑
l=1

∣∣∣Φ(Xn

T,l) − Y
n

T,l(Θ)
∣∣∣2 =: inf

Θ
φ(Θ),
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by stochastic gradient descent, that is, Θm = Θm−1 − γ∇φ(Θm−1) recursively
for m ∈ N, where γ is a suitable learning rate. After a sufficiently large num-
ber of recursions, say K, we obtain the parameter vector ΘK with which the
approximation of the target is given by Y0 = u(0,x) ≈ Y

n

0 (ΘK).
As described in brief in the beginning of the present section, the significance

of deep BSDE methods is to adopt deep neural networks for computing gradients
of the solution and approximating the backward component forward in time so
that high-dimensional PDEs and BSDEs can be solved in a realistic runtime. An
error analysis is conducted for deep BSDE methods in [163], where a posteriori
estimates are derived for coupled FBSDEs which relate the quadratic terminal
loss to the approximation error for the numerical solution of the FBSDE (a
posteriori estimates for BSDEs can also be found in [27]). We note that the
approximation of the backward component Y parametrically forward in time as
above and then the minimization of an error criterion has been found valid even
outside the realm of deep learning [8].

The deep BSDE method is modified in [304] by measuring the loss at the
forward initial time (rather than the terminal time, as above), called Deep
BSDE-ML method, for approximating linear decoupled FBSDEs, as well as is
extended in [135] for BSDEs with jumps. The backward deep solvers are de-
veloped in [299, 313] in order to apply the deep BSDE solver-based method
to financial problems, such as pricing Bermudan swaption and nonlinear pric-
ing in high-dimensional settings. High-dimensional coupled FBSDEs with non-
Lipschitz diffusion coefficients are numerically solved in [198] using the deep
BSDE method. The deep BSDE method is also developed in [6] for strongly
coupled FBSDEs stemming from stochastic control.

6.2. Deep backward dynamic programming

Deep backward dynamic programming is proposed in [181] and then further im-
proved in [132], literally on the basis of backward dynamic programming arising
from discretization methods of BSDEs for high dimensional nonlinear PDEs via
the minimization of loss functions at each step, defined recursively by backward
induction. In contrast to deep BSDE methods (Section 6.1), deep backward dy-
namic programming is built in reference to the backward resolution technique
upon an implicit backward Euler scheme. It employs machine learning tech-
niques for estimating the solution and its gradient by minimizing a loss function
on each time step, where such local problems are then solved recursively with
a stochastic gradient algorithm backward in time. Two schemes are proposed
in [181] for dealing with those local problems: (DB1) approximating both the
solution and its gradient by a neural network, and (DB2) approximating the
solution alone by a neural network, with its gradient estimated directly with
automatic differentiation. It is worth mentioning that from a viewpoint of the
computation of conditional expectations, deep backward dynamic programming
may also be regarded as a backward Euler scheme where nonlinear regression is
employed with a deep learning technique.
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Here, we describe deep backward dynamic programming in brief. The so-
lution (X,Y, Z) of the FBSDE (2.6) and (2.7) is discretized, first through the
Euler-Maruyama discretization of the forward component {Xn

tk
}k∈{0,1,··· ,n} with

X
n

t0 = x on the time grid (0 =)t0 < t1 < · · · < tn(= T ) in a similar manner
to (6.1) and the backward component, by starting with Y

n

tn = Φ(Xn

tn) and then
defining

Y
n

tk
= Y

n

tk+1
+ f(tk, X

n

tk
, Y

n

tk
, Z

n

tk
)(tk+1 − tk) − Z

n

tk
(Wtk+1 −Wtk),

for k ∈ {n − 1, · · · , 1, 0} backwards, where the component {Zn

tk
}k∈{0,··· ,n} is

not explicit as of yet and to be found during the following procedure. Along
the discretized pair {(Xn

tk
, Y

n

tk
)}k∈{0,··· ,n}, we describe the aforementioned two

schemes of deep backward dynamic programming:
(DB1) With the terminal condition Un = Φ, iterate

(Uk,Zk) = argmin
(uk,zk)

E

[∣∣∣Uk+1(X
n

tk+1
) −

(
uk(X

n

tk
)

+ f(tk, X
n

tk
, uk(X

n

tk
), zk(X

n

tk
))(tk+1 − tk) − zk(X

n

tk
)(Wtk+1 −Wtk)

)∣∣∣2],
for k ∈ {n− 1, · · · , 1, 0} backwards.
(DB2) With the terminal condition Vn = Φ, iterate

Vk = argmin
uk

E

[∣∣∣∣Vk+1(X
n

tk+1
) −

(
uk(X

n

tk
)

+ f(tk, X
n

tk
, uk(X

n

tk
), (∇uk(X

n

tk
))�σ(tk, X

n

tk
))(tk+1 − tk)

− (∇uk(X
n

tk
))�σ(tk, X

n

tk
)(Wtk+1 −Wtk)

)∣∣∣∣2
]
,

for k ∈ {n−1, · · · , 1, 0} backwards, where ∇uk is the automatic differentiation of
the network function uk. At each step k ∈ {n−1, · · · , 1, 0}, the network functions
(Uk,Zk) in (DB1) and Vk in (DB2) can be found literally by employing deep
neural networks. The effectiveness of deep backward dynamic programming has
been supported by numerical results on nonlinear PDEs up to 50-dimension
[181] as well as error analysis [132].

6.3. Deep splitting

In a similar yet different line from the previous two methods, the so-called deep
splitting method is proposed in [17] on the basis of the splitting principle with
deep neural networks. Consider the nonlinear parabolic PDE:

((∂/∂t) + Lt)u(t,x) + f(t,x, u(t,x), (∇u�σ)(t,x)) = 0, (t,x) ∈ [0, T ) × Rq,



Numerical methods for backward stochastic differential equations 529

with u(T,x) = Φ(x), which can be represented, by the nonlinear Feynman-Kac
formula, as

u(t,Xt) = E

[
Ψ(XT ) +

∫ T

t

f(s,Xs, u(s,Xs), (∇u�σ)(s,Xs))ds
∣∣∣∣Ft

]
,

where the forward component {Xt : t ∈ [0, T ]} is as given in Section 6.1. In
light of this nonlinear Feynman-Kac representation, one wishes to construct the
recursive approximation Vk(·) ≈ u(tk, ·) for k ∈ {n − 1, · · · , 1, 0} backwards at
discrete time points (0 =)t0 < t1 < · · · < tn(= T ), given by

Vk(X
n

tk
) = E

[
Vk+1(X

n

tk+1
)

+f(tk+1, X
n

tk+1
, Vk+1(X

n

tk+1
), (∇Vk+1(X

n

tk+1
))�σ(tk+1, X

n

tk+1
))(tk+1−tk)

∣∣∣Xn

tk

]
,

where {Xn

tk
}k∈{0,1,··· ,n} is a sequence of discrete observations of the forward

component by the Euler-Maruyama scheme with X
n

t0 = x in a similar manner
to (6.1). In the deep splitting method, this recursion is approximated by a
continuous function on the support of the marginal via the minimization:

Vk ≈ argmin
v∈C(supp(Xn

tk
))
E

[∣∣∣v(Xn

tk
) −

(
Vk+1(X

n

tk+1
)

+f(tk+1, X
n

tk+1
, Vk+1(X

n

tk+1
), (∇Vk+1(X

n

tk+1
))�σ(tk+1, X

n

tk+1
))(tk+1−tk)

)∣∣∣2],
so as to approximate the map x �→ Vk(x) by a neural network Vk(·) ≈ NΘ

L (·)
with respect to parameter set Θ. It is reported in [17] that the deep splitting
method succeeds to deal with as high-dimensional nonlinear PDEs as 10000
dimensions.

6.4. Deep Galerkin method and physics-informed neural networks

Deep Galerkin Method (DGM) [279] and Physics-Informed Neural Networks
(PINN) [240] are proposed for solving high-dimensional nonlinear problems.
Despite both methods being based largely on deterministic PDEs, we summarize
their essence here for the reason that those may provide solvers for nonlinear
BSDEs as well. Hereafter, we refer to DGM and PINN collectively as the deep
learning based PDE solver and give a brief summary in accordance with [279].

Let D ⊂ Rd and let u : [0, T ] ×D → R solve the following (nonlinear) PDE:⎧⎪⎨⎪⎩
(∂/∂t)u(t,x) + f(u(t,x),∇u(t,x),Hess(u(t,x))) = 0, (t,x) ∈ [0, T ] ×D,

u(0,x) = Ψ(x), x ∈ D,

u(t,x) = g(t,x), (t,x) ∈ [0, T ] × ∂D,
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where f is a nonlinear differential operator, and Ψ : Rd → R and g : [0, T ] ×
Rd → R represent the initial and boundary conditions, respectively. In the
deep learning based PDE solver, the solution u is approximated by a function
uΘ = NΘ

L through a deep neural network with respect to parameter set Θ, by
minimizing the error between both sides of the nonlinear PDE above, evaluated
at sampled points in the space-time domain and in its boundary. An optimal
parameter set Θ∗ is here searched for in such a way to ideally minimize the loss
function:

�(Θ) :=
∥∥(∂/∂t)uΘ + f(uΘ,∇uΘ,Hess(uΘ))

∥∥
[0,T ]×D,ν1

+
∥∥uΘ(0, ·) − Ψ(·)

∥∥
D,ν2

+
∥∥uΘ − g

∥∥
[0,T ]×∂D,ν3

, (6.4)

where ‖ϕ‖S,ν :=
∫
S
|ϕ(x)|2ν(dx) with the probability measure ν and its support

S. For minimization, one employs stochastic gradient decent on an approximate
loss function:

Θn+1 = Θn − γn∇Gn(Θn),

where {γn}n∈N is a sequence of learning rates. Here, Gn is an approximation of
the loss function (6.4), defined by

Gn(Θ) :=
∣∣(∂/∂t)uΘ(tn, xn) + f(uΘ(tn, xn),∇uΘ(tn, xn),Hess(uΘ(tn, xn)))

∣∣2
+
∣∣uΘ(0, wn) − Ψ(wn)

∣∣2 +
∣∣uΘ(τn, zn) − g(τn, zn)

∣∣2 ,
where (tn, xn), wn and (τn, zn) are random elements, respectively, taking values
in [0, T ] × D, in D and in [0, T ] × ∂D, according to the probability measures
ν1, ν2 and ν3. The iterative procedure above is to be repeated until a suitable
convergence criterion is met.

In addition, more generalized frameworks using Monte Carlo methods and
an efficient implementation of the neural network are discussed in [279], along
with various numerical results on high-dimensional American options, high-
dimensional HJB equations and Burger’s equations. We do not go into further
details and applications on the deep learning based PDE solver, since those
would lie way outside the scope of the present survey on BSDEs. Instead, we
refer the reader to [202, 224] for more applications and to [249, 269] for its close
connection with BSDEs.

6.5. Further on deep learning based methods

A wide variety of deep learning based schemes have been developed for solving
high-dimensional BSDEs, some of which take advantage of the aforementioned
backward and forward methods (Sections 3 and 5). For instance, in [123], a
deep learning scheme is introduced in combination with asymptotic expansion
(Section 5.3), which is further extended in [242, 284, 297]. The deep learning
technique of [97] is extended in [124, 312] to address both terminal and boundary
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conditions of PDEs. As a computational framework for portfolio risk manage-
ment problems, the so-called Deep xVA solver is proposed [136] by recursively
using the deep BSDE method for a coupled system of BSDEs. A discretiza-
tion scheme is employed in [244] for solving BSDEs based on deep learning
regressions (Section 4.1). A deep signature/log-signature FBSDE algorithm is
developed in [108] for approximating FBSDEs with state and path dependent
features. A deep Runge-Kutta method is proposed in [59]. In the presence of con-
straints on the gains process, an approximation of BSDEs is obtained in [204] by
neural network approximation. Iterative diffusion optimization techniques are
studied using deep learning techniques [250] for applications such as importance
sampling and rare event simulation. The Long Short Term Memory networks is
applied in [199] to improve the Deep BSDE method [97]. A new algorithm is pro-
posed in [292] based on a θ-discretization of the time-integrands with eXtreme
Gradient Boosting (XGBoost) regression for efficiently computing conditional
expectations. A deep learning-based stochastic branching algorithm is devel-
oped in [245] for numerically solving fully nonlinear PDEs. High-dimensional
fully-coupled FBSDEs are solved in [196] with three algorithms based on deep
learning. A deep learning based method is proposed in [290] for solving forward-
backward doubly stochastic differential equations. Finally, we refer the reader
to [19, 35, 98, 133] for more recent developments and surveys on deep learn-
ing based methods, to [67] for singular BSDEs, to [18] for second-order BSDEs
(Section 8.6), to [56, 110, 131, 161] for McKean-Vlasov BSDEs (Section 8.7),
and to [197, 266] for stochastic control problems.

7. Discussion

In the preceding sections (Sections 3, 4, 5 and 6), we have presented a systematic
survey and categorization of various numerical methods for BSDEs. However,
these methods have thus far been presented in isolation and so not in an appro-
priate manner for drawing comparisons. In the present section, we thus present
those categories all on the table, with a brief description of each, so that a
relevant contrast can be made against a few key factors regarding their imple-
mentation. Such factors include the convergence property, the dimensionality,
and the complexity, which directly influence, individually and/or in combina-
tion, what method would be chosen for the BSDE in question. For instance, if
a very accurate approximation is needed, on the one hand, then it is desirable
to select a method with a strong theoretical convergence guarantee even if the
method is more difficult to code and has a longer running time. On the other
hand, if a less rigorous approximation is enough for the time being (such as,
for preliminary testing purposes), then it would be more reasonable to choose a
method that is easier to code and runs faster, even if it may be less theoretically
accurate.

In order to make comprehensive, yet, to-the-point contrasts, we must, out of
sheer necessity, restrict ourselves to a representative method or two in displaying
each category and do not claim that the resulting conclusions entirely hold
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for every numerical method in a certain category. Moreover, throughout, we
focus on the approximation of the backward component Y of each BSDE model
(X,Y, Z) and the corresponding PDE solution (either the point u(t,x) or the
function u(t, ·)). We reserve d for the dimension of the forward component X
and assume Y is one-dimensional, that is, x(∈ Rd) �→ u(t,x)(∈ R), and write C
for constant multiples whose values change depending on the context.

7.1. Backward numerical methods along with computation of
conditional expectations

As backward discretization (Section 3) is intrinsically built upon the computa-
tion of conditional expectations (Section 4), we discuss representative methods
consisting of those two methodological components in combination. Here, we let
n represent the number of discretization points in the given time interval, that
is, (t0, t1, · · · , tn) and let M indicate the number of iid replications for Monte
Carlo methods involved in each subinterval.

• LSMC (Section 4.1) + Backward Euler (Section 3.1): Let Y n,M,K
tk

denote
an approximation at time tk in accordance with Section 4.1, and let n be
the number of time discretization, instead of the mesh π. It is shown under
suitable conditions and choice of basis functions [213] that

max
k∈{0,··· ,n}

∥∥∥Ytk − Y n,M,K
tk

∥∥∥
2

= O
(
n−1/2

)
, (7.1)

provided that K ≈ nd and M ≈ nd+3. Despite the availability of theoret-
ical analyses [139, 140, 213], it is still an open question as to the choice
of basis functions for a given BSDE. It is worth mentioning that LSMC
methods are effective in approximating the function u(t, ·) (rather than a
single point u(t,x) alone).

• Malliavin (Section 4.2) + Backward Euler (Section 3.1): Let Y n,M
tk

denote
an approximation at time tk in accordance with [47]. It is shown under
suitable conditions that

max
k∈{0,··· ,n}

∥∥∥Ytk − Y n,M
tk

∥∥∥
2
≤ Cn−1/2 + C

nd/4

M1/2 , (7.2)

which suggests M ≈ nd/2+1 to bound the overall rate by O(n−1/2). In
general, the required computation can be heavy for dealing with terms
involving Skorohod integrals (such as (4.4)), for which an improved algo-
rithm is proposed in [82], while as many as 2d iid standard normal random
variables need to be generated.

• Quantization (Section 4.3) + Backward Euler (Section 3.1): Let Y n,N
tk

denote an approximation at time tk in accordance with [11], where N =
1 +N1 + · · ·+Nn with each Nk the number of points in Rd used to make
up the space grid at the k-th discretization step. It is shown under suitable
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conditions that

max
k∈{0,··· ,n}

∥∥∥Ytk − Y n,N
tk

∥∥∥
2
≤ Cn−1/2 + C

n1+1/d

N1/d , (7.3)

which suggests N ≈ n(3/2)d+1 to bound the overall rate by O(n−1/2). As
described in the above and Section 4.3, Monte Carlo simulation is required
for completing the quantization method with care on the number of iid
replications M . Quantization methods work in relatively low dimensions,
while generally being effective for the approximation of the function u(t, ·).

• Tree (Section 4.4) + Backward Euler (Section 3.1): Let Y n
tk

be an approx-
imation at time tk by the standard (deterministic) binomial tree method
[49, 225]. In order to satisfy the order 1/2, that is,

max
k∈{0,··· ,n}

∥∥Ytk − Y n
tk

∥∥
2 = O

(
n−1/2

)
, (7.4)

the required complexity is approximately 2dn, which is very large, whereas
the complexity drops down to (n + 1) with a recombination tree in one-
dimensional problems.

• Cubature (Section 4.5) + Second-order discretization (Section 3.2): Let
Y n,N

0 be an approximation of the initial state Y0 by a cubature method and
the tree-based branching algorithm (TBBA) measure with the cubature
degree of 7 and N particles at every time point tk, while n here denotes
the number of time discretization by the second order method [81]. It is
known under suitable conditions that

E

[∣∣∣Y0 − Y n,N
0

∣∣∣] ≤ Cn−2 + C
n

N1/2 .

We refer the reader to [66] for relevant complexity analysis.

With numerical methods for conditional expectations (Section 4) now col-
lectively aligned in conjunction with backward discretization methods (Sec-
tion 3), we make a few relevant remarks before moving on to forward numer-
ical methods (Section 7.2). First, recall that the backward Euler method Y n

with forward Euler-Maruyama scheme Xn is shown to be of order 1/2 for the
backward process Y of a Markovian FBSDE (X,Y, Z) under minimal Lipschitz
conditions [317], that is, maxk ‖Ytk − Y n

tk
‖2 ≤ Cn−1/2, whereas the better rate

‖Y0−Y n
0 ‖ ≤ Cn−1 at the initial time has also been reported elsewhere [72, 137].

This is not an essential disagreement but a simple difference in the evaluation
point, due to the error on the forward component of order 1/2 for all time points
but the initial time (that is, ‖Xtk − Xn

tk
‖2 = O(n−1/2) for all k ∈ {1, · · · , n})

and the deterministic equality at the initial time (that is, X0 = Xn
0 = x). Thus,

the rates described in (7.1), (7.2), (7.3) and (7.4) can be conservative if the
approximation is focused on the initial state Y0 alone.

Next, we make a note on the complexity and dimensionality, which are un-
doubtedly important upon implementation individually, as well as inextrica-
bly bound up together. LSMC can work in up to 10 dimensions and tends to
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be more efficient than Malliavin calculus based methods. For example, it is
known [213] that the complexity of LSMC is O(ε−d−4) to achieve the squared
error ε2 in some instances, while the Malliavin calculus based method bears
the complexity O(ε−d−13), provided that the forward component is a geometric
Brownian motion [47]. In general, the application of quantization or tree based
methods is limited to considerably low-dimensional problems due to the use of
the safety grid. Cubature methods with multi-linear interpolation result in the
complexities O(ε−3d/2+1/2) if the backward Euler discretization is employed and
O(ε−d+1/2) with the second-order discretization with the Richardson-Romberg
extrapolation [66]. As such, in most cases, the complexity of backward meth-
ods (in combination with computation for conditional expectations) tends to
explode exponentially as the dimension of the problem increases.

We also remark on the standing assumption of each category. Least-squares
regression based methods generally work under minimal assumptions on BS-
DEs (and SDEs), while a few extra regularity assumptions on the coefficients
are required to allow the derivation of robust estimates for the involved error
using various regression tools and also to ensure the stability of the algorithm
(for instance, [61, 147, 257, 293]). Malliavin calculus based methods tend to re-
quire lots of extra assumptions, including various regularity assumptions and in
particular, assumptions regarding the Malliavin weights (as in [148, 149, 241]).
Quantization and tree based methods work under the standard Lipschiz con-
ditions on forward and backward SDEs, while cubature methods require some
extra smoothness on coefficients of the forward SDE and a smooth driver with
Lipschitz terminal condition in most instances.

7.2. Forward numerical methods

Next, we make a contrast of the four categories of forward numerical methods
(Section 5), again, by providing a brief summary of the convergence property,
and key features.

• Picard iteration (Section 5.1): For an approximate solution (Y r,n
t )t∈[0,T ]

in accordance with the Picard iteration method [22], it is shown that

sup
t∈[0,T ]

E

[
|Yt − Y r,n

t |2
]
≤ Cn−1 + C

(
1
2 + Cn−1

)r

,

for sufficiently large n. This scheme needs to be combined with a numerical
method for computing conditional expectations (Section 4) and, by and
large, similar limitations apply as described in Section 7.1. As such, in its
implementation, variance reduction techniques play an importance role,
for instance, importance sampling [23, 239] and control variates [138], in
solving high-dimensional problems.

• Branching diffusion system (Section 5.2): For a BSDE (Y,Z) with driver
f (independent of z), it is shown under suitable conditions [170] that∣∣∣Y0 − Y n,�

0

∣∣∣ ≤ C
∥∥f − fn,�

∥∥+ Cn−1/2,
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where Y n,�
· denotes a branching diffusion approximation to the BSDE with

a discretized �-th order polynomial driver fn,� [45, 46]. After the branching
diffusion approximation has been applied, it is the usual practice to employ
Monte Carlo simulation for implementation, such as a nonlinear Monte
Carlo simulation [76], which is known to be effective in high-dimensional
nonlinear pricing problems.

• Asymptotic expansion (Section 5.3): For a BSDE (Y ε, Zε) with a per-
turbed driver εf , it holds under suitable conditions [145, 285] that

sup
t∈[0,T ]

E

[∣∣∣Y ε
t −

(
Y

(0)
t + εY

(1)
t + · · · + (εm/m!)Y (m)

t

)∣∣∣2]1/2

= O(εm+1),

where Y
(k)
t = ((dk/dεk)Y ε

t )|ε=0 for k ∈ {0, 1, · · · }. After the expansion
has been performed, similarly to the aforementioned branching diffusion
system, often Monte Carlo simulation is used for implementation [76].

• Multilevel Picard approximation (Section 5.4): Consider a solution u of a
d-dimensional semilinear PDE corresponding to a BSDE model, and let
uθ
n,M : [0, T ] × Rd × Ω → R denote an approximate solution to the PDE

u(·, ·) by the multilevel Picard approximation in accordance with [98, 183].
For each x ∈ Rd, there exist K : (0, 1] → N and c > 0 such that for all
d ∈ N and ε ∈ (0, 1],

E

[∣∣∣u(T,x) − u0
K(ε),K(ε)(T,x)

∣∣∣2]1/2
≤ ε,

with the complexity O(ε−cdc), which suggests that for each initial state
of the forward component, the initial state Y0 of the backward component
can be approximated without suffering from the curse of dimensionality.

To conclude the categories of forward numerical methods, we make a short
remark on the standing assumption, as we have done towards the end of Sec-
tion 7.1. As mentioned throughout the survey, forward numerical methods do
not inherently work backwards to avoid the computation of conditional expec-
tations, often with the aid of the FBSDE and PDE equivalence (Theorem 2.3).
In return, it is rather evident that numerical methods based on solving the
equivalent PDE (Section 5) must impose Assumption 2 so that the FBSDE
and PDE equivalence holds. In addition, a few extra regularity assumptions are
often made. For instance, the branching diffusion system based method (as of
[45, 46, 170]) often requires the key assumption that the driver can be repre-
sented as the sum of a power series to be approximated by polynomials, which
obviously does not hold for every BSDE. The asymptotic expansion method
(as of [77, 118, 120, 285]) requires some smoothness on the driver to expand a
nonlinear BSDE by linear BSDEs, while the condition can be relaxed in some
instances [145]. Finally, to employ the multilevel Picard iteration method, one
needs to carefully verify the relevant conditions on the driver as well as check the
structure of the forward component (see, for example, [182, 183, 187, 188, 189]).
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7.3. Summary

To conclude the comparisons and discussions made above, and by considering
the enormous numerical examples on BSDEs in the literature, we summarize
in Table 1 key aspects of each category upon implementation, that is, what is
approximated and the problem dimension. In particular, the dimension of the
problem at hand is one of the more restrictive conditions for which method
can be chosen, in particular, most methods are not efficient in high-dimensional
problems. Note that we did not make a comparative discussion on deep learning
based methods (Section 6) in the form of a separate subsection (like Sections 7.1
and 7.2), as their error and complexity analyses are still evolving, some in in-
fancy, and awaiting major advances, as opposed to the effectiveness in very
high-dimensional spatial approximation problems. Still, for the sake of com-
pleteness, we align the category of deep learning based methods at the bottom
of Table 1 with a very broad perspective.

Table 1

Two key aspects upon implementation
methods target dimension

LSMC + Backward Euler function u(t, ·) d ≈ 10
Malliavin + Backward Euler function u(t, ·) a few

Quantization + Backward Euler function u(t, ·) a few
Tree + Backward Euler function u(t, ·) one or two

Cubature + Second-order discretization function u(t, ·) a few
Picard iteration point u(t,x) higher than a few

Branching diffusion system point u(t,x) higher than a few
Asymptotic expansion point u(t,x) higher than a few

Multilevel Picard approximation point u(t,x) d > 100
Deep learning function u(t, ·) d > 100

Without a doubt, computing time is a vital factor to consider when selecting
a method, as there may be a need for very quick calculations. However, if no
time pressure exists, then the choice of method is less restrictive. We remark
that various attempts have been made so far in the literature by wisely splitting
the required computation for massive parallelization on highly multicore GPUs.
Parallelization here has naturally proven effective because the primary issue
does not lie in the computational time but memory consumption requirements,
for instance, by algorithms that require many sample paths at once on memory,
such as binomial lattice based methods [87, 264, 265], the multistep method
[201], LSMC [141, 142, 146], the four-step scheme [296], and the forward Picard
iteration [210].

8. Numerical methods for BSDEs with nonstandard features

To address problems in stochastic control, finance, and partial differential equa-
tions, BSDEs often need to be equipped with extra features for better capturing
relevant properties under consideration. There has been an increasing interest
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in those classes of BSDEs and in developing numerical methods exclusively for
each or some combinations of those features. Despite most of what follows hav-
ing already appeared in their respective subsections, we again categorize and
summarize those numerical methods here in terms of the class of BSDEs in
brief, without going into much detail in order to avoid overloading the paper
with lengthy technical intricacies.

8.1. Coupled FBSDEs

Consider the following FBSDE, where the coefficients of the forward SDE can
depend on the backward components (Y,Z):{

Xt = x +
∫ t

0 μ(s,Xs, Ys, Zs)ds +
∫ t

0 σ(s,Xs, Ys)dWs,

Yt = Φ(XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs,

for t ∈ [0, T ]. The FBSDE in this form is called a coupled FBSDE in the sense
that the backward components are allowed to couple in the drift and the dif-
fusion of the forward component, in sharp contrast to the decoupled formula-
tion (2.6)-(2.7). Hence, the standard Ito generator Lt and the diffusion coeffi-
cient σ in the PDE (2.9) for decoupled FBSDEs needs to replaced accordingly in
order to carry the backward components, resulting in the following PDE under
suitable technical conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂/∂t)v(t,x) + 〈μ(t,x, v(t,x), (∇v(t,x))�σ(t,x, v(t,x))),∇v(t,x)〉
+1

2 tr[σ⊗2(t,x, v(t,x))Hess(v(t,x))]
+f(t,x, v(t,x), (∇v(t,x))�σ(t,x, v(t,x))) = 0, (t,x) ∈ [0, T ) × Rq,

v(T,x) = Φ(x), x ∈ Rq.

As such, numerical approximation of a coupled FBSDE or the equivalent PDE
is evidently far more intricate than that of a decouple counterpart, of which the
forward component can be treated separately from the backward components.
In particular, if the forward component depends on Z as well, then the gradient
of the solution ∇u(t,x) needs to be addressed inside the forward component.
Such coupled FBSDEs naturally appear in the utility maximization problem
with general utility function in economics [172].

As for numerical methods, the four-step scheme [226] opened the door for
coupled FBSDEs as early as in the 1990s, followed by various studies through
the corresponding semi- or quasi-linear parabolic PDE. Based on this four-step
scheme, the authors in [92] develop an implementable numerical method. Specif-
ically, for the PDE part, they use the combined characteristics and finite dif-
ference method to approximate its solution. Almost sure uniform convergence
and weak convergence of the method are proven, with the rate of convergence
being comparable to that of the approximation of the forward SDE (done using
an Euler type scheme). In [89] and moreover [90], we find improved alterna-
tives of the method described in [92], which weakens regularity assumptions
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required. The authors in [236, 237, 238] also give a numerical method based on
the four-step scheme, but propose a different method for solving the involved
PDE. They approximate the solution of the PDE by using layer methods, which
are constructed by means of a probabilistic approach. The derivatives of the so-
lution to the PDE are found by using finite differences. The four-step scheme
once again appears and is reconstructed in [296] with new conditions. It is then
associated with the idea of domain decomposition methods (associated with the
Schawrz waveform relaxation method). This approach is used in order to paral-
lelize the related equations. Finally, in [151], we find a numerical method based
on the four-step scheme which focuses on approximating the solution to coupled
FBSDEs.

We add that various numerical methods have also been applied in tailored
ways to coupled FBSDEs, such as Picard iterations [28], a transform into a con-
trol problem via a fully forward discretization [86], multistep schemes [221, 324],
a defferred correction method for ODEs [288], Fourier methods for computing
conditional expectations [180], and more recently, deep learning based methods
[6, 163, 196, 197].

8.2. Reflected BSDEs

We first review reflected backward stochastic differential equations (RBSDEs)
[103], which form an important class of BSDEs in the sense that they provide a
deep insight into many practical problems, such as optimal stopping problems,
American option pricing, stochastic optimal controls and differential games.
Their solutions are reflected at a given stochastic process, called the obstacle,
and provide a probabilistic representation for the unique viscosity solution of
an obstacle problem for a nonlinear parabolic partial differential equation.

Now, consider the following BSDE, where the process (Yt)t∈[0,T ] is forced to
stay above the process (h(t,Xt))t∈[0,T ]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Yt = h(T,XT ) +
∫ T

t
f(s,Xs, Ys, Zs)ds + KT −Kt −

∫ T

t
ZsdWs,

Yt ≥ h(t,Xt),∫ T

0 (Ys − h(s,Xs))dKs = 0,
Xt = x +

∫ t

0 μ(Xs)ds +
∫ t

0 σ(Xs)dWs,

for t ∈ [0, T ], where the stochastic process (Kt)t∈[0,T ] is continuous and non-
decreasing with K0 = 0, and grows only when Yt = h(t,Xt). The process
(Yt)t∈[0,T ] can then be written in the form of the solution to an optimal stopping
problem, as

Yt = esssup
τ∈Tt

E

[∫ τ

t

f(s,Xs, Ys)ds + h(τ,Xτ )
∣∣∣Ft

]
, t ∈ [0, T ],

where Tt denotes the set of (Fs)s∈[t,T ]-stopping times taking values in [t, T ], and
provides a probabilistic interpretation Yt = v(t,Xt) where v is a solution to the
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obstacle problem⎧⎪⎨⎪⎩
max {((∂/∂t) + Lt)v(t,x) + f(t,x, v(t,x)), h(t,x) − v(t,x)} = 0,

(t,x) ∈ [0, T ) × Rq,

v(T,x) = h(T,x), x ∈ Rq,

in a similar yet different manner from Theorem 2.3. For theoretical details on
RBSDEs, we refer the reader to, for instance, the monograph [91, Chapter 14].

The most popular application of RBSDEs is, perhaps, the pricing of Amer-
ican options [103, 104], due to its structure with lower obstacles. In fact, the
RBSDE framework is not strictly necessary for the pricing of American op-
tions, as the classical binomial pricing model for example works well for its low-
dimensional problems, while least-square Monte-Carlo methods [223] remain
efficient for high-dimensional problems, both outside the RBSDE framework.
Nonetheless, the RBSDE framework is useful for the pricing of American op-
tions, for instance, through detailed error analysis by approximating RBSDEs
in quantization methods [11, 12] and its stability results for approximating its
payoff function [48].

As for discretization methods, it is proved in [11] that the backward Euler
type discretization attains the order 1/2 for BSDEs with Lipchitz coefficients
and the order 1 for those with semi-convex obstacles. Other backward Euler
methods are developed for RBSDEs in [194, 231] based on the random walk ap-
proximation, in [263] based on the lattice tree and in [47] in combination with
LSMC regression and the Malliavin approach (Sections 4.1 and 4.2) for ap-
proximating conditional expectations. The stability analysis for backward Euler
methods for RBSDEs is conducted in [39, 229]. Most recently, the stability and
convergence analysis is refined in [281] with a focus on quadratic RBSDEs.

After discretizing RBSDEs, more complex equations need to be solved con-
currently with approximation of conditional expectations in the presence of the
obstacle term. This difficulty has been addressed by discretizing the state space,
such as the so-called quantization, before employing the dynamic programming
principle. Quantization algorithms for RBSDEs, initially developed in [13], have
been investigated intensively in [11, 12] to deal with multi-dimensional RBSDEs
with an application to the pricing of an American option, and further extended,
for example, in combination with the higher-order discretization [234] and for
those whose driver depends on the control process [248]. In addition, the primal-
dual method is generalized in [25] to a backward dynamic programming equation
associated with time discretization schemes for RBSDEs.

In the literature, other advanced types of RBSDEs have also attracted atten-
tion, such as discrete RBSDEs, RBSDEs with multiple obstacles and RBSDEs
with jumps. To deal with those classes, the concept of penalization, which was
originally employed for proving the existence and uniqueness of RBSDEs [103],
proves useful for numerical discretization [235] as well, and can be combined
with Fourier transform techniques [190]. It has been applied to optimal switch-
ing problems in real option pricing [158], followed by RBSDEs with oblique re-
flections [63, 178], doubly RBSDEs [308], and doubly RBSDEs with jumps [95].
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A numerical method is developed in [300] for doubly RBSDEs whose generator
depends on the future values of the solution with application to the default risk
modeling.

8.3. BSDEs with jumps

BSDEs may contain jumps in their backward component as

−dYt = f(t,Xt, Yt, Zt, Ut) − ZtdWt − UtdNt,

with a suitable jump process (Nt)t∈[0,T ] and an control process (Ut)t∈[0,T ], and
often in their forward component as well. On top of non-trivial issues on exis-
tence, uniqueness and stability [254], the presence of jumps increases complexity
of numerical implementation, for instance, by paying a great deal of attention
to the jump size and timing. For instance, discretization schemes are developed,
based on Malliavin calculus on the Gaussian space [42], and the so-called shot
noise representation of the Poisson random measure [314] in [232]. A forward
scheme for BSDEs [52] is extended [128] to BSDEs with jumps by Wiener chaos
expansion and Picard iterations. A numerical algorithm is developed in [1] to
approximate the solution to a decoupled FBSDE driven by a pure Lévy process
with its small jumps approximated by a suitable Brownian motion. An explicit
prediction-correction scheme is developed for solving decoupled FBSDEs with
jumps [112]. In [212], Brownian and Poissonian components are independently
approximated by random walks. More complex structures are also of interest.
A Fourier-based method [38] and asymptotic expansion [121] are proposed, by
which non-Poissonian local jump measures can be taken care of. Numerical
methods for doubly reflected BSDEs with jumps are developed, with [94] and
without [95] penalization. A single jump (not systematic jumps) is considered in
the context of BSDEs in [203], where a single jump can represent a default time
in credit risk or counterparty risk. A deep learning based method is developed in
[135] and applied to BSDEs with jumps. We refer the reader to the monograph
[91] for details as well as applications in insurance and finance.

8.4. BSDEs with non-global Lipschitz conditions

The majority of key properties of numerical methods for BSDEs are derived
upon the global Lipschitz conditions on the drivers and terminal condition,
whereas such restrictive conditions do not hold all the time in important ap-
plications, such as the Fisher-KPP and FitzHugh-Nagumo equations. In the
literature, considerable attempts have been made to develop viable numerical
methods where those Lipschitz conditions are relaxed. The L2-time regularity
of the Z-component is studied in [144] for an irregular terminal condition (such
as an indicator function), as an extension of the L2-time regularity result [317]
for a Lipschitz terminal, where the order of convergence is explicitly connected
to the rate of decrease of the expected conditional variance of the terminal. Two
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discretization methods are studied in [298] for a class of locally Lipschitz Marko-
vian BSDEs: One is a backward Euler scheme (Section 3.1) by approximating
a projection of the Z process, while the other is the Malliavin weight scheme
(Section 4.2, especially (4.6) and (4.7)) by directly approximating the marginals
of the Z process, where advanced a priori estimates and stability results for
this class of BSDEs are derived by extending the representation theorem [228]
and employed for obtaining competitive convergence rates. It is proved [71] that
a backward stochastic difference equation (BSΔE) admits a solution and its
sequence is convergent to a BSDE as the time-grid gets finer even when their
drivers are not Lipschitz in the Z component. An error analysis of a time dis-
cretization method is performed in [219] for systems of BSDEs with drivers of
polynomial growth and monotone in the state variable, where a tamed version of
the explicit Euler scheme is shown to converge despite that the standard version
may diverge unlike with the canonical Lipschitz driver. A general framework is
developed in [220] for explicit numerical schemes for BSDEs with drivers of
polynomial growth, where the convergence of some modified explicit scheme is
of the same rate as implicit schemes and has comparable computing cost to
the standard explicit scheme. Finally, for drivers not Lipschitz in the backward
component, the Picard iteration is applied to discretized FBSDEs [37] and is
employed for deriving the existence and uniqueness for G-BSDEs [319].

8.5. Quadratic BSDEs

BSDEs with generators of quadratic growth (with respect to the variable z as in
|f(t,x,y, z)| ≤ C(1 + ‖y‖ + ‖z‖2)) have been studied actively under the name
of quadratic BSDEs. Quadratic BSDEs play important roles in mathematical
finance, such as utility optimization with exponential utility functions and risk
minimization for the entropic risk measure. Their numerical aspects have thus
been investigated ever since the theoretical formalization [206]. In contrast to
standard BSDEs, the treatment of the quadratic driver is not trivial, particularly
in placing the upper bound estimate of the control process Z. In the develop-
ment of numerical methods, this issue is typically addressed by truncating the
quadratic driver.

The well-known path regularity theorem [317] is extended in [191] to the
quadratic-growth setting along with convergence rate of the distance between
the solution of a quadratic BSDE and its approximation by truncation. In [192],
the Cole-Hopf exponential transformation is applied to the approximate solu-
tion. Time-discretization schemes are developed in [272] for quadratic BSDEs
based on truncation and non-uniform time partition, and in [65] with the er-
ror of order less than 1/2. For quadratic BSDEs with reflection, a truncated
discrete-time numerical scheme is proposed in [281] along with some practical
examples. In [119], an asymptotic expansion technique (Section 5.3) is developed
for a quadratic-growth FBSDE appearing in an incomplete market with stochas-
tic volatility. An approximation method is constructed in [122] for quadratic
BSDEs using semi-analytic asymptotic expansion. With a view towards utility
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maximization problems, a special class of backward stochastic partial differential
equations (Section 8.8) is investigated in [193], along with numerical simulation
for relevant portfolio optimization problems.

8.6. Second-order BSDEs

Second-order BSDEs (2BSDEs) are a type of BSDE whose nonlinear drift con-
tains the second order derivative of the corresponding PDE, widely applied
in financial modeling such as the uncertain volatility model, transaction cost
model, illiquid market model and the pricing for passport options. In general, a
process (Yt, Zt,Γt, αt)t≥0 is called a 2BSDE if it solves the system{

−dYt =
[
f(Xt, Yt, Zt,Γt) − 1

2 tr
[
σ⊗2(t,Xt)Γt

]]
dt− Ztσ(t,Xt)dWt,

dZt = αtdt + Γtσ(t,Xt)dWt,

for t ∈ [0, T ], with YT = g(XT ) and a suitable forward process X in the form
of (2.7). This system can be expressed as Yt = u(t,Xt), Zt = ∇u(t,Xt), Γt =
Hess(u(t,Xt)) and αt = ((∂/∂t) + L)∇u(t,Xt) for t ∈ [0, T ] on the basis of the
parabolic PDE:

∂

∂t
u(t, x) + f(t, x, u(t, x),∇u(t, x),Hess(u(t, x))) = 0, u(T, x) = g(x),

whose full nonlinearity makes the class of 2BSDE distinct from the standard
BSDEs. Its existence and the uniqueness are proved in [70] under Lipschitz con-
tinuity of the driver and suitable conditions, along with the numerical scheme:
starting with Y T = g(XT ) and ZT = ∇g(XT ), proceed backwards for k ∈
{1, · · · , n},⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Y tk−1 = E[Y tk |Ftk−1 ] +

[
f(tk−1, Xtk−1 , Y tk−1 , Ztk−1 ,Γtk−1)

−1
2 tr

[
σ⊗2(tk−1, Xtk−1)Γtk−1

] ]
(tk − tk−1),

Ztk−1 = 1
tk−tk−1

(σ−1(tk−1, Xtk−1))�E
[
Y tk(Wtk −Wtk−1)|Ftk−1

]
,

Γtk−1 = 1
tk−tk−1

E
[
Ztk(Wtk −Wtk−1)�|Ftk−1

]
σ−1(tk−1, Xtk−1),

based on the aforementioned nonlinear Feynman-Kac representation. In [106],
an implementable explicit method is developed to approximate the conditional
expectations appearing in the above scheme. A variance reduction method is
proposed in [5] for the computation of involving conditional expectations. 2BS-
DEs can also be effectively solved numerically with a monotone scheme [156].
We mention that deep learning based approximation algorithms (Section 6) are
developed in [18] for 2BSDEs.

8.7. McKean-Vlasov FBSDEs

When dealing with a stochastic differential game with mean field interactions,
also known as a mean field game, one often encounters the following optimal
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control problem:

inf
α∈A

E

[∫ T

t

f(s,Xs, μs, αs)ds + g(XT , μT )
∣∣∣Xt = x

]
=: u(t,x), (8.1)

subject to the so-called McKean-Vlasov stochastic differential equation

dXs = b(s,Xs, μs, αs)ds + σ(s,Xs, μs, αs)dWs, (8.2)

where (μt)t∈[0,T ] is a deterministic flow of probability measures and the infi-
mum in (8.1) is taken over the set A of all progressively measurable processes.
The McKean-Vlasov SDE (8.2) can be interpreted as a limit of the empirical
measure of increasing individual particles, known as the propagation of chaos
[57] where the particles tend to be independent of each other in this limit as
the impact of each decreases. Under suitable technical conditions, the solution
u to the optimization problem (8.1) corresponds to that of a suitable HJB equa-
tion, as well as providing an insightful probabilistic interpretation through the
representation u(t,Xt) = Yt in accordance with the McKean-Vlasov FBSDE, in
general: for s ∈ [t, T ],

dXs = b(s,Xs,L(Xs),L(Ys),L(Zs))ds + σ(s,Xs,L(Xs),L(Ys),L(Zs))dWs,

−dYs = f(s,Xs,L(Xs),L(Ys),L(Zs))ds− ZsdWs,

with Xt = ξ and YT = g(XT ,L(XT )), where L(F ) denotes the law of the random
element F . We note that two approaches (of Pontryagin and weak types) result
in distinct McKean-Vlasov FBSDEs and thus numerical methods [7].

As for relevant numerical methods, a variety of deterministic ones can be
found in the literature for mean field games [2, 211], for instance, based on
finite differences or variational approaches, whereas McKean-Vlasov FBSDEs
above pave the way towards probabilistic numerical methods and analysis [7],
such as a tree method [62], first-order and Crank-Nicolson schemes [321], a
higher order discretization method for decoupled cases [88], McKean-Vlasov
anticipative FBSDEs arising in initial margin requirements [4] and a posteriori
error estimates for fully coupled McKean-Vlasov FBSDEs [270], and recently
very actively, deep learning based methods [55, 56, 110, 131, 161].

8.8. BSPDEs

Backward stochastic partial differential equations are of emerging interest from
an implementation point view in its intimate relation to stochastic optimal and
utility maximization problems. A few existing developments of numerical meth-
ods are as follows. For forward-backward stochastic heat equations from stochas-
tic optimal control, discretization methods are developed via spatial discretiza-
tion [96], space-time discretization [268], and the local discontinuous Galerkin
method [216]. A special class of BSPDEs is investigated in [193] via their reduc-
tion to BSDEs from both theoretical and numerical perspectives in the context
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of utility maximization and portfolio optimization problems. A deep learning
based method is developed in [290] for forward-backward doubly stochastic dif-
ferential equations, where the additional diffusion terms in its BSDE component
yields an equivalence to semilinear parabolic SPDEs as well as optimal control
problems.

9. Concluding remarks

In this survey, we have focused on examining a wide array of numerical methods
for BSDEs along with the main assumptions made, key convergence properties,
as well as summaries of the key advantages and disadvantages. In particular,
we have characterized broadly into three categories; backward (Section 3), for-
ward (Section 5) and deep learning based methods (Section 6), along with the
computation of conditional expectations (Section 4) to complete the categories
of backward numerical methods (Section 3). Within those categories, we have
further categorized the involved methods. For backward methods, we have sub-
categorized the methods as backward Euler methods (Section 3.1) and higher-
order methods (Section 3.2). For the computation of conditional expectations to
complement backward methods (Section 3), we have sub-categorized the meth-
ods as least-squares regression based methods (Section 4.1), Malliavin calculus
based methods (Section 4.2), Malliavin weights dynamic programming with re-
gression methods (Section 4.2.2), quantization methods (Section 4.3), tree based
methods (Section 4.4), and cubature methods (Section 4.5). For forward meth-
ods, we have sub-categorized the methods as Picard iteration methods (Sec-
tion 5.1), branching diffusion system based methods (Section 5.2), asymptotic
expansion (Section 5.3), and multilevel Picard iterations (Section 5.4). For deep
learning based methods, we have sub-categorized the methods as deep BSDE
(Section 6.1), deep backward dynamic programming (Section 6.2), deep splitting
(Section 6.3), and deep Galerkin methods and physics-informed neural networks
(Section 6.4).

As is clear from the present survey, numerical methods for BSDEs are in-
trinsically involved, and further, have been presented in a scattered manner in
the literature. Hence, for the sake of collective comparison, we have devoted
Section 7 to displaying those surveyed categories against a few important prac-
tical aspects, such as convergence properties and implementation aspects, each
of which is crucial for understanding the power and limitations of numerical
methods from a practical viewpoint.

In addition, BSDEs of complex structure, and thus the numerical methods
employed for them, have become of growing interest in the years to come. To
enhance this line of research, we have also surveyed existing numerical meth-
ods in terms of BSDEs with nonstandard features in Section 8, such as cou-
pled (Section 8.1), reflection (Section 8.2), jumps (Section 8.3), non-Lipschtiz
(Section 8.4), quadratic (Section 8.5), second-order (Section 8.6) and McKean-
Vlasov BSDEs (Section 8.7), and BSPDEs (Section 8.8). To the best of our
knowledge, numerical aspects have not been explored for other types as of yet,
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such as ergodic BSDEs, delayed BSDEs, and BSDEs with regime-switching. As
such, we hope this survey can serve as an initial yet insightful guideline when se-
lecting and developing appropriate numerical methods for the interested BSDE,
now and in the future.

With the advent of deep learning based methods (Section 6), advances in nu-
merical methods for BSDEs appear to have entered a new era. In sharp contrast
to the conventional approaches (Sections 3, 4, and 5), deep learning based meth-
ods have opened the door wide for very high-dimensional BSDEs and nonlinear
PDEs by employing the policy functions for readily approximating gradient de-
pendent nonlinearities, to which the existing methods have devoted substantial
effort. Further lines of numerical methods are still expected to come, which will
benefit from being built upon the distinctive developments and advantageous
features of the existing numerical methods for BSDEs and PDEs, to say nothing
of expanding fields of application in relation to high-dimensional and nonlinear
problems. However, it also remains to address a variety of unexplored theoretical
aspects of the existing numerical methods, for instance, ones for BSDEs with
nonstandard features (Section 8), not only from the traditional perspective of
applied mathematics and numerical analysis, but also from the viewpoint of
pure mathematics. Synergy and complementarity of those distinctive expertise
would be beneficial and indispensable for making further advances on numerical
methods for BSDEs.
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