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Abstract: Covariances and variances of linear statistics of a point pro-
cess can be written as integrals over the truncated two-point correlation
function. When the point process consists of the eigenvalues of a random
matrix ensemble, there are often large N universal forms for this correla-
tion after smoothing, which results in particularly simple limiting formulas
for the fluctuation of the linear statistics. We review these limiting formu-
las, derived in the simplest cases as corollaries of explicit knowledge of the
truncated two-point correlation. One of the large N limits is to scale the
eigenvalues so that limiting support is compact, and the linear statistics
vary on the scale of the support. This is a global scaling. The other, where
a thermodynamic limit is first taken so that the spacing between eigenval-
ues is of order unity, and then a scale imposed on the test functions so they
are slowly varying, is the bulk scaling. The latter was already identified
as a probe of random matrix characteristics for quantum spectra in the
pioneering work of Dyson and Mehta.
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1. Introduction

The formulation of random matrix theory for applications to the spectra of
complex quantum systems was laid out in pioneering works of Wigner, Gaudin,
Mehta and Dyson. Preprints of the original papers, dating from the late 1950’s
and early 1960’s, are conveniently bundled in a book edited by Porter [147],
itself published in 1965, which contains too a review of this early literature.
During the 1980’s, as a fundamental contribution to the subject of quantum
chaos, work of Bohigas et al. [25] made it clear that the correct meaning to
give to a “complex quantum system” is any quantum system for which the
underlying classical dynamics is chaotic. Single particle quantum systems in
this class, such as kicked tops and irregular billiard domains, were subsequently
studied intensely; see [100].

To test against random matrix predictions two statistical quantities, both of
which were prominent in the works of the pioneering researchers cited above,
were preferred. Assuming an unfolding of the energy levels so that their mean
spacing becomes unity, one is the distribution of the spacing between consec-
utive eigenvalues, while the other is the so-called number variance, Σ2(L) say,
corresponding to the fluctuation of the number of eigenvalues in an interval
of length L, assumed large. From a theoretical viewpoint, these statistics have
distinct characteristics.

Define
NL =

∑
l

χλl∈[0,L], (1.1)

where {λl} denotes the unfolded eigenvalues labelled from some origin in the
bulk. Then, by the unfolding assumption,

〈NL〉 = L,

while the variance is precisely the number variance

〈(NL − L)2〉 = Σ2(L). (1.2)

Generally a statistic A =
∑

l a(λl) is referred to as a linear statistic. Thus Σ2(L)
is the variance of the particular linear statistic (1.1). In contrast the spacing
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distribution, being a function of consecutive eigenvalues, does not relate to the
structure of a linear statistic.

The present review focusses attention on fluctuation formulas associated with
linear statistics. In addition to the quantity NL, there are now many linear statis-
tics and random matrix ensembles for which knowledge of the corresponding
distributional properties is of applied interest. Moreover, consideration of the
calculation of these distributions involves rich mathematical structures, with
the scope for further research. At the same time the existing literature is vast,
necessitating some restriction to the scope of the review. Thus for the most
part we consider only the formulas for covariances and variances of linear statis-
tics. Where possible we relate these formulas to the corresponding smoothed
truncated two-point correlation function.

Throughout Section 2 we identify models in random matrix theory for which
the truncated two-point correlation function is known explicitly and has a suf-
ficiently simple analytic structure to allow large N analysis of the covariances
and variances of linear statistics. There are two types of large N limits which
lead to structured results. One is when the eigenvalues are scaled to have a
limiting compact support, with the test functions by way of the linear statistics
varying on the scale of the support. The other is when the test functions are
first chosen to vary on the scale of the mean spacing between eigenvalues, and
a scaling is chosen so that in the large N limit the eigenvalues are on average
a unit distance apart. Next a scale L is introduced into the test functions, and
the limit L → ∞ is taken. Some understanding of the structures found can be
given by adapting a log-gas viewpoint, which we do in subsection 2.10.2.

In Section 3 we review fluctuation formulas which are generalisations of those
encountered in Section 2, but which require a more challenging analysis. First
considered are the classical β-ensembles, where a loop equation analysis suf-
fices to obtain the fluctuation formulas in a global scaling. Most prominent
in this class are the Gaussian orthogonal and unitary ensemble cases. They
permit numerous generalisations, and we take note of the corresponding fluctu-
ation formulas of a number of them. One of these generalisations is to Wigner
matrices, where the independent Gaussian entries are replaced by a more gen-
eral zero mean, fixed standard deviation random variable. The classical La-
guerre ensembles, realised in the case of orthogonal and symplectic symme-
try by the matrix structure W †W for W a rectangular Gaussian matrix, also
permit generalisations. One is to consider the eigenvalues of W †

MWM , where
WM = GMGM−1 · · ·G1, with each Gj an Nj × Nj−1 a rectangular complex
Gaussian matrix. In the global scaling limit, there is a simple formula for the
variance of a polynomial linear statistic. The predictions of this formula can be
compared with that obtained from a loop equation analysis. The final topic con-
sidered is that of variance formulas associated with the eigenvalues of Ginibre
matrices, i.e. non-Hermitian square Gaussian random matrices, in the global
scaling limit.
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2. Formalism and simple examples

2.1. Covariance, variance and correlation functions

We take the viewpoint of the eigenvalues for a random matrix ensemble as an
example of a continuous point or particle process. For notational convenience
we regard the points as confined to an interval I of the real line, although this
in not necessary — the domain may as well be in higher dimensions. For N
particles we let pN (x1, . . . , xN ) denote their joint probability density function.
Integrating out all but one, respectively two, particles gives the corresponding
one and two point correlations

ρ(1),N (x1) = N

∫
I

dx2 · · ·
∫
I

dxN pN (x1, . . . , xN )

ρ(2),N (x1, x2) = N(N − 1)
∫
I

dx3 · · ·
∫
I

dxN pN (x1, . . . , xN ). (2.1)

Equivalently

ρ(1),N (x) =
〈 N∑

l=1

δ(x− xl)
〉

ρ(2),N (x, x′) =
〈 N∑

l,l′=1
l �=l′

δ(x− xl)δ(x′ − xl′)
〉
. (2.2)

For large separation we expect ρ(2),N (x1, x2) ≈ ρ(1),N (x1)ρ(1),N (x2) which mo-
tives introducing the truncated (or connected) two point correlation

ρT(2),N (x1, x2) = ρ(2),N (x1, x2) − ρ(1),N (x1)ρ(1),N (x2). (2.3)

A simple but fundamental result is that these correlations relate to the co-
variance between two linear statistics, defined by

Cov
( N∑

l=1
f(xl),

N∑
l=1

g(xl)
)

:=
〈 N∑

l,l′=1
f(xl)g(xl′)

〉
−
〈 N∑

l=1
f(xl)

〉〈 N∑
l=1

g(xl)
〉
.

(2.4)

Proposition 2.1. We have

Cov
( N∑

l=1
f(xl),

N∑
l=1

g(xl)
)

=
∫
I

dx

∫
I

dx′ f(x)g(x′)
(
ρT(2),N (x, x′) + ρ(1),N (x)δ(x− x′)

)
(2.5)

= −1
2

∫
I

dx

∫
I

dx′ (f(x) − f(x′))(g(x) − g(x′))ρT(2),N (x, x′).

(2.6)



174 P. J. Forrester

Proof. In relation to the first term on the RHS of (2.4) we have

〈 N∑
l,l′=1

f(xl)g(xl′)
〉

=
∫
I

dx

∫
I

dx′ f(x)g(x′)
〈 N∑

j,k=1
j �=k

δ(x− xj)δ(x′ − xk)
〉

+
∫
I

f(x)g(x)
〈 N∑

j=1
δ(x− xj)

〉
dx

=
∫
I

dx

∫
I

dx′ f(x)g(x′)
(
ρ(2),N (x, x′) + δ(x− x′)ρ(1),N (x)

)
,

(2.7)

while the second term allows the simple rewrite

〈 N∑
l=1

f(xl)
〉〈 N∑

l=1

g(xl)
〉

=
∫
I

dx

∫
I

dx′ f(x)g(x′)ρ(1),N (x)ρ(1),N (x′). (2.8)

Subtracting (2.8) from (2.7), substituting in (2.4) and recalling the definition
(2.3) gives (2.5).

In relation to (2.6), comparing with (2.5) we see that it suffices to show

−
∫
I

dx f(x)g(x)
∫
I

dx′ ρT(2),N (x, x′) =
∫
I

f(x)g(x)ρ(1),N (x) dx.

This is true since we can check from the definitions that∫
I

ρT(2),N (x, x′) dx′ = −ρ(1),N (x). (2.9)

We remark that a simple consequence of the first equation in (2.2) is the
formula for the mean

E

( N∑
l=1

f(xl)
)

:=
〈 N∑

l=1
f(xl)

〉
=

∫
I

f(x)ρ(1),N (x) dx, (2.10)

as already used in (2.8), and setting f = g in Proposition 2.1 gives the corre-
sponding result for the variance. We note too that the quantity

C(2),N (x, x′) := ρ(2),N (x, x′) + δ(x− x′)ρ(1),N (x) (2.11)

has the interpretation of a response density which is induced by there being an
eigenvalue at point x′.
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2.2. Global scaling limit of CUE random matrices

Haar distributed random unitary matrices, or equivalently the circular unitary
ensemble (CUE), provides the most straightforward example within random
matrix theory of a significant simplification of the formulas in Proposition 2.1
for the covariances. First, with the eigenvalues of the CUE all being on the unit
circle in the complex plane, we interpret the xl as the angle parametrising the
eigenvalues, and so take I = [0, 2π). For the density we then have ρ(1),N (x) =
N/2π independent of the angle x, and C(2),N (x, x′) (recall the notation (2.11))
is a function of x − x′ which is periodic of period 2π in this variable. The
corresponding Fourier series is well known (see e.g. [168, §5.2]) to have the
simple form

C(2),N (x, x′) = 1
(2π)2

∞∑
l=−∞

mCUE
l eil(x−x′), mCUE

l =
{
|l|, |l| < N

N, |l| ≥ N.
(2.12)

Substituting in (2.5) allows for simplification to a single sum.

Proposition 2.2. We have

CovCUE
( N∑

l=1

f(xl),
N∑
l=1

g(xl)
)

=
∞∑

l=−∞
mCUE

l flg−l, (2.13)

where fl = (1/2π)
∫ 2π
0 f(x)eilx dx and similarly the meaning of g−l. Moreoever,

if f and g are differentiable on [0, 2π) with f ′, g′ Hölder continuous of order
α > 0 then

lim
N→∞

CovCUE
( N∑

l=1

f(xl),
N∑
l=1

g(xl)
)

=
∞∑

l=−∞
|l|flg−l, (2.14)

while if f = g = χ[0,L] (0 < L < 2π) and NL is specified by (1.1) then

lim
N→∞

1
logN VarCUE (NL) = 1

π2 . (2.15)

Proof. It remains to consider (2.14) and (2.15). To deduce (2.14) from (2.13),
the essential point is that the stated conditions on f and g imply that for large
l the decay of flg−l is O(1/l2(1+α)). This allows the sum over l on the RHS of
(2.13) to be truncated at |l| < N in the large N limit and tells us too that the
sum on the RHS of (2.14) converges.

In relation to (2.15), with f = g = χ[0,L], 0 < L < 2π, we compute that
for l 	= 0, fl = (eilL − 1)/(2πil). This substituted in (2.13) implies the stated
result.

Let 0 < L1, L2 < 2π with L1 	= L2. We see from (2.13) and the derivation of
(2.15) that

lim
N→∞

CovCUE(NL1 , NL2) = 1
π2

∞∑
l=1

1
l

(
cos l(L1 − L2)/2 − cos l(L1 + L2)/2

)
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= 1
π2

(
log | sin(L1 + L2)/2| − log | sin(L1 − L2)/2|

)
.

(2.16)

Note that this diverges for L1 = L2, which is in keeping with (2.15). We refer
to [155] for the analogous result in the case of complex Gaussian Hermitian
random matrices, and a discussion of further context.
Remark 2.3. 1. The characteristic function, P̂N,f (t) say, for the distribution of
the linear statistic

∑N
l=1 f(xl) in the setting of the first paragraph of §2.1 is

given by

P̂N (t; f) =
∫
I

dx1 · · ·
∫
I

dxN

( N∏
l=1

eitf(xl)
)
pN (x1, . . . , xN ). (2.17)

In the case of the CUE, I = [0, 2π) and

pN (x1, . . . , xN ) = 1
(2π)NN !

∏
1≤j<k≤N

|eixk − eixj |2; (2.18)

see [75, Prop. 2.2.5 with β = 2]. A well known variant of the Andréief iden-
tity [10, 77] allows (2.17) to be written as the Toeplitz determinant

P̂N (t; f) = det
[

1
2π

∫ 2π

0
eitf(x)ei(j−k)x dx

]N
j,k=1

. (2.19)

For f satisfying the conditions of Proposition 2.2, the celebrated strong Szegö
theorem [19] gives

lim
N→∞

e−itNf0 P̂N (t; f) = exp
(
− t2

∞∑
l=1

lflf−l

)
. (2.20)

On the other hand, according to the cumulant expansion, for small t

P̂N,f (t) = eitE(
∑N

j=1 f(xj))−(t2/2)Var (
∑N

j=1 f(xj))+O(t3). (2.21)

Comparing (2.20) to (2.21) shows consistency with (2.13) in the case f = g.
Moreover (2.20) gives that the limiting distribution of the centred linear statistic
under the conditions of Proposition 2.2 is a Gaussian. This interpretation of the
strong Szegö theorem was first given by Johansson [109].

2. We see from (2.12) that mCUE
l is independent of N for all |l| < N . Closely

related to this is the fact that the distribution of |TrUk|2 = |
∑N

j=1 e
ixjk|2, for k a

positive integer less than or equal to N , is such that its first N moments coincide
with the corresponding moments of

√
k times a standard complex Gaussian

random variable for k ≤ N [110], [56].
3. Consistent with (2.12) is the functional form [64]

ρT(2),N (x, x′)= −
(

sinN(x− x′)/2
2π sin(x− x′)/2

)2

= − 1
8π2

(
1

sin2(x− x′)/2
− cosN(x− x′)

sin2(x− x′)/2

)
.

(2.22)
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Substituting in (2.6) then shows

lim
N→∞

CovCUE
( N∑

l=1
f(xl),

N∑
l=1

g(xl)
)

= 1
16π2

∫ 2π

0
dx

∫ 2π

0
dx′ (f(x) − f(x′))(g(x) − g(x′))

sin2(x− x′)/2

= − 1
2π2

∫ 2π

0
dx

∫ 2π

0
dx′

( d

dx
f(x)

)( d

dx′ g(x
′)
)

log | sin(x− x′)/2)|,

(2.23)

valid provided f and g are Hölder continuous of order α > 1/2 in the first
expression, and satisfy the conditions required for (2.14) in the second (these
conditions ensure the double integrals converge). The second formula follows
from the first upon using the identity

1
4

1
sin2(x− x′)/2

= ∂2

∂x∂x′ log
∣∣∣ sin(x− x′

2

)∣∣∣. (2.24)

and integrating by parts. The Fourier expansion

log
∣∣∣ sin(x− x′

2

)∣∣∣ =
∞∑

p=−∞
αpe

ip(x−x′), (2.25)

where
αp = 1

2π

∫ 2π

0
log

∣∣∣ sin(x
2

)∣∣∣e−ipx dx =− 1
2|p| (p 	= 0),

provides a direct transformation from the second formula in (2.23), to the for-
mula of (2.13), upon integration by parts.

For a given N it is straightforward to sample N ×N CUE matrices — indeed
this is now an inbuilt function in the Mathematica computer algebra package
— and to numerically compute the corresponding eigenangles {xj}Nj=1. This
allows the result (2.14) to be illustrated for a particular linear statistic. We
choose f(x) = g(x) = cos 2x. The corresponding random function

∑N
j=1 cos 2xj

then has mean zero, and according to (2.14) has variance equal to 2. A plot of
the value of a single realisation of this random function for N = 1, 2, . . . , 150,
and with successive values joined by straight lines as a visual aid, is given in
Figure 2.1.

2.3. Global scaling limit for a deformation of the CUE

The non-oscillatory term in (2.22) is independent of N , which according to
(2.6) is responsible for the leading large N covariance itself being independent
of N , as seen in (2.22). In contrast, for eigenvalues behaving as a perfect gas of
non-interacting particles on [0, 2π), the joint eigenvalue density is

pN (x1, . . . , xN ) = 1
(2π)N , (2.26)
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Fig 2.1. Plot of values of a single realisation of the random function
∑N

j=1 cos 2xj for {xj}
the eigenangles of an N ×N CUE matrix, for N from 1 up to 150.

and we see from (2.2) and (2.3) that the truncated two-particle correlation is
now proportional to N ,

ρT(2),N (x1, x2) = − N

(2π)2 . (2.27)

Substituting in (2.6) gives that the corresponding covariance is similarly pro-
portional to N ,

Cov
( N∑

l=1

f(xl),
N∑
l=1

g(xl)
)

= N

8π2

∫ 2π

0
dx

∫ 2π

0
dx′ (f(x) − f(x′))(g(x) − g(x′)).

(2.28)
In the mid 1960’s Gaudin [93] introduced into random matrix theory an

eigenvalue PDF interpolating between the CUE and Poisson functional forms,
(2.18) and (2.26) respectively,

αN(N−1)/2

QN

∏
1≤j<k≤N

∣∣∣∣ eixj − eixk

eixj − αeixk

∣∣∣∣
2

= 1
QN

∏
1≤j<k≤N

(
1 + sinh2 γ

sin2(xj − xk)/2

)−1
,

(2.29)
with 0 < xl < 2π (l = 1, . . . , N), α := e−2γ and

QN = (2π)NN !αN(N−1)/2
N∏

k=1

1 − α

1 − αk
. (2.30)

Thus taking the limit α → 1, or equivalently γ → 0 reclaims (2.26), while taking
α → 0, or equivalently γ → ∞ reclaims (2.18). We will refer to this ensemble as
the CUEα. In [72] the CUEα was related to the theory of parametric eigenvalue
motion due to Pechukas [145] and Yukawa [169], and most recently it was placed
within the theory of circulant L-ensembles [79].
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As an interpolation between (2.22) and (2.27) it was found in [93, §4.3] that

ρT(2)(x1, x2;α) = − N

(2π)2 − 2
(2π)2 Re

∑
0≤μ1<μ2≤N

μ2−1∏
k=μ1

1 − αk

ei(x1−x2) − αk
. (2.31)

Thus from this we see that

lim
α→0

ρT(2)(x1, x2;α) = − N

(2π)2 − 1
(2π)2

∑
μ1,μ2=0
μ1 �=μ2

ei(μ1−μ2)(x1−x2)(N − |μ1 − μ2|),

(2.32)
which is equivalent to the Fourier expansion (2.12). We read off too the limiting
behaviour

lim
α→1

ρT(2)(x1, x2;α) = − N

(2π)2 , (2.33)

in agreement with (2.27).
Of interest is the analogue of (2.14) for 0 < α < 1. In relation to this, and

with [w−p]f(w) denoting the coefficient of w−p in the Laurent expansion of
f(w), for p ∈ Z+ set

m(α)
p = m

(α)
−p = lim

N→∞
[w−p]

(
N −

∑
0≤μ1<μ2≤N

μ2−1∏
k=μ1

1 − αk

w − αk

)
. (2.34)

Consideration of the small α expansion of this quantity shows it to be well
defined. While the Laurent expansion of the quantity in brackets in (2.34) is
complicated for finite N and general p, the coefficients greatly simplify in the
limit N → ∞. The mechanism is that the terms for which it is difficult to
predict their coefficients do not occur until the order of αO(N) in the small α
expansion, and thus vanish in the limit. The terms before that have a regular
pattern, allowing us to conclude

m(α)
p = |p|

∞∑
j=0

α|p|j = |p|
1 − α|p| . (2.35)

Consequently, with f and g in the class of functions specified in the statement
of (2.14), the latter generalises to read

lim
N→∞

CovCUEα

( N∑
l=1

f(xl),
N∑
l=1

g(xl)
)

=
∞∑

l=−∞
l �=0

|l|
1 − α|l| flg−l. (2.36)

Let C
(α)
(2),N be specified by (2.11) as it applies to the CUEα. It follows from

(2.31), (2.34) and (2.35) that we have

C
(α)
(2),∞(x, x′) := lim

N→∞
C

(α)
(2),N (x, x′) = 1

(2π)2
∞∑

p=−∞
p �=0

|p|
1 − α|p| e

ip(x−x′). (2.37)
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This functional form permits the alternative expression

C
(α)
(2),∞(x, x′) = − 1

(2π)2
∂2

∂x2 log
( ∞∏

l=0

(1 − αlei(x−x′))(1 − αle−i(x−x′))
)

= − 1
(2π)2

∂2

∂x2 log |θ1(x− x′;α1/2)|, (2.38)

where

θ1(z; q) := i
∞∑

n=−∞
(−1)nq(n+1/2)2e(2n+1)iz.

Here the first equality can be seen to agree with (2.37) by a direct calculation,
while the second equality requires knowledge of the product formula for the Ja-
cobi theta function θ1. Hence, analogous to the second line of (2.23), in addition
to (2.36) we have

lim
N→∞

CovCUEα

( N∑
l=1

f(xl),
N∑
l=1

g(xl)
)

= − 1
2π2

∫ 2π

0
dx

∫ 2π

0
dx′

( d

dx
f(x)

)( d

dx′ g(x
′)
)

log |θ1(x− x′;α1/2)|. (2.39)

2.4. Bulk scaling limit of CUE and CUEα random matrices

The bulk scaled limit is a rescaling of the coordinates of the particles in the
point process so that they have an order unity density (taken to be unity for
convenience). For the CUE, which has N eigenvalues with coordinates xj be-
tween 0 and 2π, this is done by changing variables xj −π → 2πXj/N . Applying
the corresponding change of variables to (2.5) with f(2πX/N + π) = F (X),
g(2πX/N + π) = G(X) shows

lim
N→∞

CovCUE
( N∑

l=1
F (Xl),

N∑
l=1

G(Xl)
)

=
∫ ∞

−∞
dX

∫ ∞

−∞
dX ′ F (X)G(X ′)

(
ρT(2),∞(X,X ′) + δ(X −X ′)

)
, (2.40)

where, from (2.22),

ρT(2),∞(X,X ′) = −sin2 π(X −X ′)
(π(X −X ′))2 . (2.41)

The convergence of the double integral in (2.40) requires that both F (X) and
G(X) be integrable at infinity. Noting that (2.41) is a function of the difference
X − X ′ allows the double integral in (2.40) to be reduced to a single integral
involving Fourier transforms. And associating with F (X) and G(X) a length
scale L, an analogue of (2.14) can be deduced, as first made explicit by Dyson
and Mehta [67].
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Proposition 2.4. Introduce the structure function (also referred to as the spec-
tral form factor)

SCUE
∞ (k) :=

∫ ∞

−∞
C(2),∞(X, 0)eikX dX =

⎧⎨
⎩

|k|
2π , 0 < k < 2π
1, |k| ≥ 2π,

(2.42)

where the equality follows from the definition (2.11) of C(2),∞ and the functional
form (2.41). We have

lim
N→∞

CovCUE
( N∑

l=1
F (Xl),

N∑
l=1

G(Xl)
)

= 1
2π

∫ ∞

−∞
F̂ (k)Ĝ(−k)SCUE

∞ (k) dk,

(2.43)
where F̂ (k) denotes the Fourier transform of F (X), and similarly the meaning
of Ĝ(−k). Furthermore, replacing F (X) by FL(X) = F (X/L), and similarly
replacing G(X), we have that

lim
L→∞

lim
N→∞

CovCUE
( N∑

l=1

FL(Xl),
N∑
l=1

GL(Xl)
)

= 1
(2π)2

∫ ∞

−∞
F̂ (k)Ĝ(−k)|k| dk,

(2.44)
assuming F̂ (k)Ĝ(−k) decays sufficiently fast for the integral to converge.

Proof. It remains to justify (2.44), starting from (2.43) with F,G replaced by
FL, GL. From the definitions we have F̂L(k) = LF̂ (Lk), and similarly ĜL(k) =
LĜ(Lk). Changing variables k → k/L and taking into consideration (2.42)
shows that for large L the RHS of (2.43) reduces to the RHS of (2.44).

It was noted in [67] that choosing FL(X) = GL(X) = χX∈[0,L] gives F̂L(k) =
1
ik (1 − eikL), which does not permit the passage from (2.43) to (2.44). By con-
sidering the functional form of (2.43) in this case, it was shown instead that for
large L

lim
N→∞

CovCUE
( N∑

l=1

χXl∈[0,L]

)
∼

L→∞

1
π2 logL + B2, (2.45)

where, with C denoting Euler’s constant,

B2 = 1
π2C + 1

π2 (1 + log 2π). (2.46)

The essential step in obtaining the leading term is to consider the contribution to
the integral (2.43) in the range |k| < 1. Making use of (2.42) and the functional
form of F̂L(k) as noted above, then changing variables in the integrand kL/2 →
k gives for the leading large L form

2
π2

∫ L/2

0

sin2 k

k
dk ∼ 1

π2 logL, (2.47)

in agreement with (2.45).
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Remark 2.5. 1. An alternative functional form to the RHS of (2.44) is [67]

− 1
2π2

∫ ∞

−∞
dX

∫ ∞

−∞
dY F ′(X)G′(Y ) log |X − Y |, (2.48)

which at a formal level follows from the generalised Fourier transform

−
∫ ∞

−∞
log(|x|)eikx dx = π

|k| . (2.49)

Furthermore, noting ∂2

∂X∂Y log |X − Y | = 1/(X − Y )2, integration by parts of
the expression

1
4π2

∫ ∞

−∞
dX

∫ ∞

−∞
dY

(F (X) − F (Y ))(G(X) −G(Y ))
(X − Y )2 (2.50)

shows it is equal to (2.48); cf. the equality in (2.23).
2. In the case FL = GL (2.44) specifies the large L form of the bulk scaled vari-

ance of the linear statistic
∑N

l=1 FL(Xl). It was established by Soshnikov [157]
that the distribution of the centred linear statistic

∑N
l=1 FL(Xl)−L

∫∞
−∞ F (X) dX

converges to a zero mean Gaussian with this bulk scaled variance; see also [36].
In the case of the bulk scaling of Gaudin’s deformation of the CUE as specified

by the probability density function (PDF) (2.29), taking the place of (2.41) is
the functional form [93]

lim
N→∞

(N

2π

)2
ρT(2),N (2πX/N, 2πX ′/N ;α)

∣∣∣
α=e−2πa/N

:= ρT(2),∞(X,X ′; a)

= −
( 1

2πa

)2
∣∣∣∣
∫ ∞

ν

e−iω(X−X′)/a

eω + 1

∣∣∣∣
2

dω, (2.51)

where ν = − log(e2πa − 1). Changing variables ω/a = ω′, we note that for
a → ∞ only the integration region from ω′ = −2π to 0 contributes, and (2.41)
is reclaimed.

It was shown in [93] that the Fourier transform of (2.51) can be computed ex-
plicitly. Forming from this the structure function (recall the definition in (2.42))
gives

S∞(k; a) = 1 − 1
2

1
sinh(|k|a/2)

(
e|k|a/2

2πa log
(
1 + e−|k|a(e2πa − 1)

)
− e−|k|a/2

)
.

(2.52)
Most significant in the context of fluctuation formulas with a scale parameter
L is that the small k limit results in a constant [93]

S∞(k; a) ∼
k→0

1
2πa (1 − e−2πa), (2.53)

in distinction to the behaviour of the functional form in (2.42). Hence, the
analogue of (2.44) is now
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lim
N→∞

CovCUEα

( N∑
l=1

FL(Xl),
N∑
l=1

GL(Xl)
)∣∣∣∣

α=e−2πa/N

∼
L→∞

L

2πS∞(0; a)
∫ ∞

−∞
F̂ (k)Ĝ(−k) dk, (2.54)

telling us in particular that the fluctuations are now of order L. This contrasts
with the order unity fluctuation for the bulk scaled CUE seen in (2.44), and
the order logL of (2.45). It contrasts too with the order unity fluctuation for
the global scaled limit fluctuation of the CUEα seen in (2.36). With regards to
this latter point, note that setting α = e−2πa/N for N large, as done in the bulk
scaling limit (2.51), would lead to all the coefficients in the formula of (2.36)
diverging. We observe too that taking a → ∞ in (2.53), when we know (2.51)
limits to the bulk scaled CUE result, gives that S∞(k; a) tends to zero as k
tends to zero, and so (2.54) breaks down.
Remark 2.6. 1. A behaviour analogous to (2.54) can be obtained in the context
of the bulk scaled CUE, modified so that a fraction (1 − ζ), 0 < ζ < 1 of the
eigenvalues have been deleted uniformly at random. We will denote this ensemble
by ĈUEζ . Such a model was first considered in detail in [26]; for applications to
Odlyzko’s data set for the Riemann zeros see [85, 28]. Generally in this setting
the density is multiplied by ζ and the two-point function by ζ2. Hence in place
of (2.40) we have

lim
N→∞

CovĈUEζ

( N∑
l=1

F (Xl),
N∑
l=1

G(Xl)
)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dx′ F (x)G(x′)

(
ζ2ρT(2),∞(X,X ′) + ζδ(X −X ′)

)
. (2.55)

Furthermore
S

ĈUEζ
∞ (k) = ζ2SCUE

∞ (k) + (ζ − ζ2),

telling us in particular that S
ĈUEζ
∞ (0) = ζ − ζ2 	= 0. Thus the analogue of

(2.54) holds in this setting. A detailed analysis is given in [24], which includes
consideration of the critical setting specified by ζ = 1 − c/L, (c > 0), for which
the analogue of the RHS of (2.54) is again of order unity but the corresponding
distribution is no longer Gaussian.

2. The structure function taking a non-zero value at k = 0 as in (2.53) is also
a feature of the statistics of the real eigenvalues in the ensemble of N ×N real
Gaussian matrices. For such matrices the eigenvalues occur in complex conjugate
pairs and moreover there are O(

√
N) real eigenvalues which to leading order

have uniform density in the interval (−
√
N,

√
N) [70]. Results from [87], [33]

give that in the bulk scaled limit the truncated two-point correlation has the
explicit form

ρT(2),∞(x, x′) = − 1
2πe

−(x−x′)2 + 1
2

1√
2π

|x− x′|e−(x−x′)2/2erfc(|x− x′|/
√

2).

(2.56)
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Defining the structure function as in (2.42), a computer algebra assisted calcu-
lation gives S∞(0) = (

√
2 − 1)/

√
π. Hence the covariance of the scaled linear

statistics FL, GL is proportional to L as specified by (2.54).

2.5. Dyson Brownian motion for the CUE

Haar distributed matrices U ∈ U(N) admit a generalisation involving a param-
eter τ , relating to the heat equation on the corresponding symmetric space; see
e.g. [121, §2]. We will refer to this ensemble as U(N ; τ). As first determined
by Dyson [65], the eigenvalues {eiθj(τ)}Nj=1 then execute a particular Brownian
dynamics with corresponding PDF obeying the Fokker-Planck equation

∂pt
∂τ

= Lpt, L =
N∑
j=1

∂

∂θj

(
∂W

∂θj
+ 1

β

∂

∂θj

)
, (2.57)

with β = 2, W = −
∑

1≤j<k≤N log |eiθk −eiθj | and subject to a prescribed initial
condition. Moreover, as a consequence of an observation of Sutherland [159]
that provides a similarity transformation of L with β = 2 to a free quantum
Hamiltonian, (2.57) can be exactly solved in a determinant form [141]. And
moreover, there are a number of initial conditions for which the corresponding
dynamical correlations can be written in a structured way.

One such initial condition is the equilibrium solution of (2.57), p0 = pt|t→∞ ∝
e−βW . In particular, the truncated two-point correlation for two different pa-
rameters, ρT(1,1)((x, τx), (y, τy)) say, then has the explicit functional form

ρT(1,1)((x, τx), (y, τy))

=
( 1

2π

)2
( ∑

|n|≤N/2

(w
z

)n

eγn(τy−τx)
)( ∑

|n|≥N/2+1

( z

w

)n

e−γn(τy−τx)
)
. (2.58)

Here N is assumed even for convenience, w = eiy, z = eix and γn = (n −
(1/2)2)/2. In the setting of two distinct parameters, replacing (2.5) is the co-
variance formula

〈 N∑
j=1

f(xj),
N∑
j=1

g(yj)
〉(τx,τy)

=
∫ 2π

0
dx f(x)

∫ 2π

0
dy g(y)ρT(1,1)((x, τx), (y, τy)).

(2.59)
According to (2.58) we have for the limiting Fourier series form of the truncated
two-point correlation

lim
N→∞

ρT(1,1)((x, τx), (x, τy))
∣∣∣
τy−τx=t/N

=
( 1

2π

)2 ∞∑
n=−∞

( z

w

)n
|n|−1∑
q=0

e−(|n|−2q)t

(2.60)
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(cf. the N → ∞ form of (2.12)), and consequently

lim
N→∞

〈 N∑
j=1

f(xj),
N∑
j=1

g(xj)
〉U(N ;τ)∣∣∣

τy−τx=t/N
=

∞∑
n=−∞

( |n|−1∑
q=0

e−(|n|−2q)t
)
fng−n,

(2.61)
which we see reduces to (2.14) for t = 0. The work [121, §9] contains an analo-
gous, but less explicit, formula to (2.61) in the case that Dyson Brownian motion
is initialised from the identity.

Also of interest is the bulk scaling limit. In relation to the truncated two-point
correlation it follows from (2.58) that [132]

ρT,bulk
(1,1) ((X, 0), (Y, t)) := lim

N→∞
(2π/N)2ρT,bulk

(1,1) ((2πX/N, 0), (2πY/N, 4π2t/N2))

=
(∫ 1

0
et(πu)2/2 cosπ(Y −X)u du

)(∫ ∞

1
e−t(πu)2/2 cosπ(Y −X)u du

)
.

(2.62)

Defining the Fourier transform

S(k; t) :=
∫ ∞

−∞
ρT,bulk
(1,1) ((X, 0), (Y, t))ei(X−Y )k dt

we can calculate from (2.62) that for small |k| [158], [75, Eq. (13.228)]

S(k; t) ∼ |k|
2π e

−π|k|t, (2.63)

and hence for the parameter dependent extension of (2.44) one obtains

lim
L→∞

lim
N→∞

CovU(N ;τ)
( N∑

l=1

FL(Xl),
N∑
l=1

GL(Xl)
)∣∣∣

t=LT

= 1
(2π)2

∫ ∞

−∞
F̂ (k)Ĝ(−k)|k|e−π|k|T dk. (2.64)

2.6. Global scaling of Haar distributed real orthogonal random
matrices

Closely related to the CUE is the ensemble of real orthogonal matrices — further
distinguished by the determinant equalling plus 1 or minus 1, and the parity
of N — chosen with Haar measure. Here the eigenvalues occur in complex
conjugate pairs, so the eigenvalues on the unit circle in the lower half plane are
not independent. The corresponding point process can then be considered as
being restricted to the upper half plane. For the ensemble obtained by taking N
even and the determinant to equal plus one for definiteness to give the matrix
group O+(N) we have (see e.g. [75, §5.5.2])
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ρT(2),N (x, x′) + ρ(1),N (x)δ(x− x′)

= −
( 1
π

+ 2
π

N/2∑
l=1

cos lx cos lx′
)2

+ δ(x− x′)
( 1
π

+ 2
π

N/2∑
l=1

cos2 lx
)
. (2.65)

Direct calculation reveals that for p, q non-negative integers less than or equal
to N/2,∫ π

0
dx

∫ π

0
dx′

(
ρT(2),N (x, x′)+ρ(1),N (x)δ(x−x′)

)
cos px cos qx′ = p

4δp,q. (2.66)

Outside this range, the integral always vanishes if p, q are of distinct parity;
it gives the value 1/4 for p, q of the same parity and not equal, and the value
min {(p + 1)/4, (N + 2)/4} for p = q. In keeping with the derivation of (2.14),
this implies a simple expression for the limiting covariance.

Proposition 2.7. Let

f(x) = f c
0 + 2

∞∑
n=1

f c
n cos(nx), f c

n = 1
π

∫ π

0
f(x) cos(nx) dx, (2.67)

and similarly for g(x). If f and g are differentiable on [0, π] with f ′, g′ Hölder
continuous of order α > 0, then for N even

lim
N→∞

CovO+(N)
(N/2∑

l=1

f(xl),
N/2∑
l=1

g(xl)
)

=
∞∑

n=1
nf c

ng
c
n. (2.68)

Furthermore, if f = g = χ[L0,L1] (0 < L0 < L1 < π) and N[L0,L1] =
∑

l χxl∈[L0,L1],
then

lim
N→∞

1
logN VarO

+(N) (N[L0,L1]) = 1
π2 . (2.69)

Proof. The reasoning relating to (2.68) has already been given. In relation to
(2.69), with f = g = χ[L0,L1], 0 < L0 < L1 < π, we compute that for n 	= 0,
f c
n = (sin(L1n) − sin(L0n))/(πn). Substituting in the RHS of (2.68), with the

sum truncated at n equals order N as is justified by (2.66) and surrounding
text, gives (2.69).

Remark 2.8. 1. The centred characteristic function associated with the linear
statistic

∑N/2
l=1 f(xl), 0 < xl < π, for the ensemble of random real orthogonal

matrices O+(N/2) has the limiting Gaussian form

lim
N→∞

〈N/2∏
l=1

eit(f(xl)−fc
0)
〉O+(N)

= exp
(
− t2

2

∞∑
n=1

n(f c
n)2

)
(2.70)

(cf. (2.21)). This was first established by Johansson [110] for f polynomial; [49]
extends the validity to f = eV (eix) = eV (e−ix) for V analytic in a neighbourhood
of the unit circle.
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2. For R ∈ O+(N/2) we have TrRk =
∑N/2

p=1 cos kpx. This linear statistic has
a property analogous to that of |TrUk|2 for U ∈ CUE noted in Remark 2.3.2.
Thus the first N/2 moments coincide with those of

√
k times a standard real

Gaussian random variable [56], a fact which is related to the RHS of (2.66) being
independent of N for all non-negative integers p, q ≤ N/2.

2.7. The COE and CSE

Starting with matrices UN ∈ U(N) chosen with Haar measure, then forming
symmetric unitary matrices UT

NUN gives Dyson’s circular orthogonal ensemble
(COE). A variation is to begin with matrices U2N ∈ U(2N) chosen with Haar
measure. Forming the self dual quaternion unitary matrices Z−1

2NUT
2NZ2NU2N ,

where Z2N = IN ⊗
[

0 1
−1 0

]
, gives Dyson’s circular symplectic ensemble (CSE).

Define

SN (θ) = 1
2π

sin(Nθ/2)
sin(θ/2) , DN (θ) = d

dθ
SN (θ),

IN (θ) =
∫ θ

0
SN (θ′) dθ′, JN (θ) = IN (θ) − 1

2sgn(θ). (2.71)

In terms of these quantities the corresponding two-point correlation functions
read [68, 162]

ρCOE
(2),N (θ, θ′) =

(
(SN (θ − θ′))2 −DN (θ − θ′)JN (θ − θ′)

)
, (2.72)

ρCSE
(2),N (θ, θ′) = 1

4

(
(S2N (θ − θ′))2 −D2N (θ − θ′)I2N (θ − θ′)

)
. (2.73)

Starting from these expressions and defining the Fourier coefficients mCOE
l and

mCSE
l as in (2.12), we know from [140, 168] that

mCOE
l = N − (N − |l|)χN−|l|>0 + min(|l|, N) − 2l

( M+∑
s=M−

1
2s− 1

)
(2.74)

mCSE
l =

⎧⎨
⎩

|l|
2 + |l|

2

(
1

2N − 1 + 1
2N − 3 + · · · + 1

2N − (2|l| − 1)

)
, |l| ≤ 2N − 2

N, |l| > 2N − 2,
(2.75)

where M− := 1
2 (N + 1) + max (0, |l| −N) + 1, M+ := 1

2 (N + 1) + |l|. For l > 0
the quantity mCOE

l monotonically increases to the value N , while mCSE
l has a

single maximum at l = N , which to leading order in N is equal to (N/4) logN .
From the exact results (2.74) we can deduce the analogues of (2.14) and

(2.15).
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Proposition 2.9. Label the COE and CSE by β = 1 and β = 4 respectively.
We have

lim
N→∞

Cov(β)
( N∑

l=1

f(xl),
N∑
l=1

g(xl)
)

= 2
β

∞∑
l=−∞

|l|flg−l, (2.76)

while if f = g = χ[0,L] (0 < L < 2π) and NL is specified by (1.1) then

lim
N→∞

1
logN Var(β) (NL) = 1

βπ2 . (2.77)

Proof. We consider (2.76) only; the working required in relation to (2.77) uses
the same arguments with fl = gl the explicit functional form noted in the proof
of Proposition 2.2. We see from the above results that the Fourier coefficients
have the functional form

m
(β)
l = 2l

β
+ r

(β)
l,N , |l| ≤ N, (2.78)

where limN→∞
∑N

l=1 flg−lr
(β)
l,N = 0 provided flg−l = O(1/l2+ε), ε > 0. We see

too that outside this range, and with the same assumed decay of flg−l, we have
limN→∞

∑∞
l=N+1 flg−lm

(β)
l = 0. The limit formula (2.76) now follows.

The bulk scaled limit is also of interest. For this we introduce the appropriate
bulk scaling of the quantities (2.71),

S∞(X) = sin πX

πX
, D∞(X) = d

dX
S∞(X),

I∞(X) =
∫ X

0
S∞(X ′) dX ′, J∞(X) = I∞(X) − 1

2sgn(X). (2.79)

We then see from (2.72), (2.73)

lim
N→∞

(2π
N

)2
ρCOE
(2),N (2πX/N, 2πX ′/N) =: ρCOE

(2),∞(X,X ′)

= (S∞(X −X ′))2 −D∞(X −X ′)J∞(X −X ′), (2.80)

lim
N→∞

(2π
N

)2
ρCSE
(2),N (2πX/N, 2πX ′/N) =: ρCSE

(2),∞(X,X ′)

= (S∞(2(X −X ′)))2 −D∞(2(X −X ′))1
2I∞(2(X −X ′)), (2.81)

as first deduced in the work of Dyson [64] and Mehta–Dyson [127] respectively,
although the functional form (2.81) is also contained in [64]. It results there
from the computation of the bulk scaled two-point correlation function of ev-
ery second eigenvalue in the COE; see [75, §4.2.3] for more on the implied
inter-relationship. The work [64] also contains the computation of the Fourier
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transform of the corresponding truncated two-point correlations, which gives for
the corresponding structure functions

SCOE
∞ (k) =

⎧⎨
⎩

|k|
π − |k|

2π log
(
1 + |k|

π

)
, |k| ≤ 2π,

2 − |k|
2π log |k|/π+1

|k|/π−1 , |k| ≥ 2π.
(2.82)

SCSE
∞ (k) =

{ |k|
4π − |k|

8π log |1 − |k|
2π |, |k| ≤ 4π,

1, |k| ≥ 4π.
(2.83)

Consequently, as made explicit in [67] in the case of the bulk scaled COE, the
leading small |k| term from these functional forms implies that the limiting
variance formula (2.44) as obtained for the bulk scaled CUE is modified only
by a simple proportionality,

lim
L→∞

lim
N→∞

Cov(β)
( N∑

l=1
FL(Xl),

N∑
l=1

GL(Xl)
)

= 2
β

1
(2π)2

∫ ∞

−∞
F̂ (k)Ĝ(−k)|k| dk,

(2.84)
where the meaning of β is as in Proposition 2.9.

In relation to the bulk scaled linear statistic
∑N

l=1 χXl∈[0,L], following the
strategy outlined in [64] it has been noted in [75, §14.5.1] that for the COE and
CSE (and too the CUE upon identifying β = 2)

lim
N→∞

Var
( N∑

l=1
χXl∈[0,L]

)
∼ 2

π2β
logL + Bβ , (2.85)

where, with C denoting Euler’s constant,

Bβ = 2
π2β

C + 2
π

∫ 1

0

1
y2

(
S(β)
∞ (y) − y

πβ

)
dy + 2

π

∫ ∞

1

1
y2S

(β)
∞ (y) dy. (2.86)

Substituting (2.82) gives [64]

B1 = 2
π2C + 2

π2

(
1 + log 2π

)
− 1

4 , (2.87)

while substituting (2.82) leads to the formula [126, Eq. (16.1.4)]

B4 = 1
2π2C + 1

2π2

(
1 + log 4π

)
+ 1

16 . (2.88)

Remark 2.10. A recent result [1] gives that for a one-dimensional point process,
in the limit L → ∞

lim
N→∞

Var
( N∑

l=1

χXl∈[0,L]

)
�

(
L2

∫
|x|<c/L

S∞(x) dx +
∫
|x|>c/L

S∞(x)
x2 dx

)
,

(2.89)
which is consistent with (2.85) and furthermore gives some insight into the
structure of (2.86). In fact [1] gives an analogous asymptotic bound in the d-
dimensional case for

∑N
l=1 χ|rl|<L.
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2.8. Bulk scaling of the circular β-ensemble

Unitary random matrices with eigenvalue PDF proportional to∏
1≤j<k≤N

|eiθk − eiθj |β (2.90)

are said to form the circular β-ensemble. The cases β = 1, 2 and 4 are realised
by the COE, CUE and CSE respectively. For general β > 0 there is a realisation
in terms of certain unitary Hessenberg random matrices [114]. As emphasised
by Dyson [63], upon writing (2.90) in the form

e−β
∑

1≤j<k≤N φ(eiθj ,eiθk ), φ(zj , zk) = − log |zk − zj |, (2.91)

there is analogy with the equilibrium statistical mechanics of particles repelling
pairwise via the logarithmic potential and confined to a circle. The interpretation
of β is then as the inverse temperature.

For β = p/q a positive rational number in reduced form, the bulk scaled
structure function S∞(k;β) is known explicitly [83]. This functional form shows
that the quantity

F (k;β) = πβ

k
S(k;β) (2.92)

in the range 0 < k < min(2π, πβ) extends to an analytic function of k about
the origin with radius of convergence min(2π, πβ). The leading terms of the
corresponding power series in k — in this the coefficient of kj is a polynomial
of degree j in (2/β) which has particular palindromic properties — are known
up to an including j = 10 [84, 78], with the first two being

f(k;β) = 1 + 1
2π (1 − 2/β)k + · · · (2.93)

Hence
S(k;β) = |k|

πβ
+ 1

2π2β
(1 − 2/β)k2 + · · · (2.94)

Since the derivation of (2.84) is determined entirely by the leading term in this
expansion, we see that this same expression, derived previously for β = 1, 2 and
4, holds for all β > 0.

The derivation of (2.45) for β = 2 and (2.85) in the cases β = 1, 4, when used
in conjunction with the knowledge (2.94) affirms the formula (2.85) as valid
for general β > 0. Moreover the recent work [92], using a β-generalisation of
the Fisher-Hartwig conjecture from the theory of Toeplitz determinants [80] has
computed for the constant Bβ in (2.85)

Bβ = 2
π2β

(
C + log β +

∞∑
q=1

( 2
β
ψ(1)(2q/β) − 1

q

))
, (2.95)

where ψ(1)(z) := d2

dz2 log Γ(z). The work [156] shows that the constant Bβ also
occurs in the next order term of the global scaling of Var (NL) for 0 < L < 2π,
with the leading term being proportional to logN .



Fluctuation formulas in random matrix theory 191

Remark 2.11. Setting β = 2α/N , then taking the limit N → ∞ corresponds to
a scaled high temperature limit. This is known to give a well defined statistical
state for α > −1. In particular, we have from [103] that

lim
N→∞

1
N

Var(2α/N)
( N∑

j=1
f(xj)

)
= 2

∞∑
k=1

1
1 + α/k

|fl|2. (2.96)

Note that when viewed as a large N statement, substituting for α in terms of
β and N reclaims (2.84) with f = g.

2.9. Two-dimensional support

In the mid 1960’s Ginibre introduced into random matrix theory the study of
the eigenvalue statistics of, among other ensembles, N × N standard complex
Gaussian random matrices [95]. For this ensemble, to be denoted GinUE, all the
eigenvalues are in the complex plane. It was shown in [95] that the statistical
state of the eigenvalues forms a determinantal point process, with the N → ∞
bulk correlation kernel

KGinUE
∞ (w, z) = 1

π
e−(|w|2+|z|2)/2ewz (2.97)

(in distinction to the derivation of (2.41), no scaling of the eigenvalues is required
as part of the limit). Consequently the corresponding two-point correlation func-
tion has the simple functional form

ρGinUE
(2),∞ (w, z) = 1

π2

(
1 − exp(−|w − z|2)

)
. (2.98)

This in turn implies that up to a constant the structure function, defined by the
two-dimensional version of the integral in (2.42), is also a Gaussian

SGinUE
∞ (k) = 1

π

(
1 − e−|k|2/4

)
. (2.99)

The analogue of (2.44) can now readily be deduced.
Proposition 2.12. Let zl = xl + iyl. We have [75, Exercises 15.4]

lim
L→∞

lim
N→∞

CovGinUE
( N∑

l=1

f(xl/L, yl/L),
N∑
l=1

g(xl/L, yl/L)
)

= 1
(2π)2

1
4π

∫
R2

f̂(k)ĝ(−k)|k|2 dk, (2.100)

valid provided the integral converges.
Proof. Starting with the two-dimensional version of (2.43), the essential point
in the derivation of (2.100) is the small |k| form of SGinUE

∞ (k). Thus, we read
off from (2.99) that

SGinUE
∞ (k) ∼ |k|2

4π . (2.101)
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As is consistent with (2.11) set

CGinUE
∞ (r − r′) := ρGinUE

(2),∞ (r − r′,0) − 1
π2 + 1

π
δ(r − r′), (2.102)

so that ∫
R2

CGinUE
∞ (r)eik·r dr = SGinUE

∞ (k). (2.103)

For a general region Λ ∈ C, the two-dimensional analogue of (2.43) then gives

lim
N→∞

VarGinUE
( N∑

l=1
χzl∈Λ

)
=

∫
R2

dr
∫
R2

dr′ CGinUE
∞ (r− r′)χr∈Λχr′∈Λ. (2.104)

Simple manipulation of (2.104) gives

lim
N→∞

VarGinUE
( N∑

l=1

χzl∈Λ

)

=
∫
R2

dr
∫
R2

dr′ CGinUE
∞ (r)(χr+r′∈Λ − 1)χr′∈Λ + |Λ|

∫
R2

CGinUE
∞ (r) dr.

According to (2.103) the final term in this expression is equal to SGinUE
∞ (0),

which from (2.98) is equal to 0. On the other hand, as the region Λ is scaled
to infinity in a self similar manner, Λ → λΛ, with λ → ∞, the quantity in the
first term

∫
R2 dr′ (χr+r′∈Λ − 1)χr′∈Λ for fixed r is to leading order proportional

to the surface area of λΛ, |∂(λΛ)| say [124]. Hence in this limit

lim
N→∞

VarGinUE
( N∑

l=1

χzl∈λΛ

)
∼ cΛ|∂(λΛ)| (2.105)

for some proportionality cΛ. An illustration for Λ a square centred at the origin
and rotated at random is given in Figure 2.2. Generally in two or more di-
mensions point processes with the property that the variance of the number of
particles in a region scales with the surface area of the region have been termed
hyperuniform [161, 160, 94].

The quantity
1
|Λ|

∫
R2

χr+r′∈Λχr′∈Λ dr′ (2.106)

relevant to a direct computation of (2.104) has been evaluated in [161] for the
case of Λ = ΛR a disk of radius R centred at the origin. Then (2.106) is rotation-
ally invariant and thus a function of r/R, where r := |r|, to be denoted α(r/R)
say. We see from the definition that α(r/R) = 0 for r ≥ 2R. For 0 < r < 2R
the result of [161] gives

α(r/R) = 2
π

(
Arcosx− x(1 − x2)1/2

)
, x = r/2R,
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Fig 2.2. Plot of values of the random variable (
∑N

j=1(χ|xj |<L/2χ|yj |<L/2)◦−L2/π) for zj =
xj+iyj the eigenvalues of a single N = 1, 600 GinUE matrix, as a function of L = 1, 2, . . . , 56;
the values of the random variable have been joined for visual clarity. The symbol ◦ indicates
that for each L the square has been rotated by some uniformly chosen angle. Note that the
growth is approximately of the order of

√
L.

which has the large R form

α(r/R) = 1 − 2
π

r

R
+ O

( r

R

)2
.

This substituted in (2.104) implies that for large R

lim
N→∞

VarGinUE
( N∑

l=1

χzl∈ΛR

)
∼ −2R

∫
R2

|r|CGinUE
∞ (r) dr = R√

π
, (2.107)

where the equality follows upon recalling the definition (2.102) and the exact
result (2.98). Note that this is consistent with (2.105).

One feature of the GinUE eigenvalues is that to leading order their density
is uniform in the disk |z| < 1. This feature is shared by zeros of the random
polynomial [101, 102]

pN (z) = a0 + a1z + · · · + aNzN ,

where each coefficient aj is a zero mean complex random variable with variance
σ2
j = 1/j!. The bulk large N limiting form of the zeros two-point correlation

function is known from [102] to be given by

ρ(2)(z1, z2) = 1
π2 f(|z1 − z2|2/2), (2.108)

where

f(x) := (sinh2 x + x2) cosh x− 2x sinh x

sinh3 x
= 1

2
d2

dx2 (x2 coth x); (2.109)
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for the equality in (2.109) see [81]. The asymptotic relation in (2.107) applies
equally as well to the two-dimensional point process for the zeros of this complex
Gaussian polynomial (to be denoted cGP), and gives [81]

lim
R→∞

1
|∂ΛR|

VarcGP
( N∑

l=1

χzl∈ΛR

)
= 1

8π3/2 ζ(3/2), (2.110)

where ζ(s) denotes the Riemann zeta function, and use has been made of (2.109)
to compute the integral in (2.107).

With regards to the analogue of (2.100), we know the driving feature is the
small |k| form of the structure function (2.101). Defining ScGP

∞ (k) by the ana-
logue of (2.103) and expanding for small |k| shows

ScGP
∞ (k) = c0 + c2|k|2 + c4|k|4 + · · · , c2j ∝

∫ ∞

0
r2j+1CcGP

∞ (r) dr.

It follows from (2.108) and (2.109) that c0 = c2 = 0. The first nonzero coefficient
is c4, which is readily computed giving

ScGP
∞ (k) ∼ c4|k|4, c4 = ζ(3)/8π. (2.111)

This implies that for L → ∞ [81]

lim
N→∞

CovcGP
( N∑

l=1
f(xl/L, yl/L),

N∑
l=1

g(xl/L, yl/L)
)

∼ c4
(2π)2

1
L2

∫
R2

f̂(k)ĝ(−k)|k|4 dk, (2.112)

assuming the integral converges, or in words the covariance goes to zero at a
rate proportional to 1/L2.

2.10. Summarising remarks and heuristics

2.10.1. The two classes of large N limits

The results of this Section have been based on the double integral formula for
the covariance (2.5). Starting from this generic formula, the aim has been to
give its limiting form in two distinct large N settings. One is a global scaling
limit, in which for N → ∞ the eigenvalue support is a finite integral. In the
analysis of this Section, which has relied on explicit Fourier analysis of the two-
point correlation function, analytic results for the global scaling limit of (2.5)
were obtained for Dyson’s circular ensembles, a deformation of the CUE due to
Gaudin, and the ensemble of real orthogonal matrices with Haar measure. The
latter is distinct as translation invariance is broken. In all these cases it has been
possible to reduce the double integral to a single integral with a simple integrand
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involving the Fourier transform of the linear statistics. The mechanism for this
is that by direct calculation the Fourier transform of the structure function for
these ensembles could be shown to have a simple form. For all the ensembles
analysed in this limit, it was found that for large N the covariance is of order
unity for smooth linear statistics, This behaviour contrasts with that of a gas of
noninteracting eigenvalues, for which the covariance is proportional to N ; recall
(2.28). For the linear statistic counting the number of eigenvalues in an interval,
the linear statistic is a step function and so not smooth. Exact calculation leads
to the conclusion that the variance, in the global scaling limit of the same
ensembles analysed in the case of a smooth statistic, is then proportional to
logN .

The other large N setting of interest is to first compute what in statistical
mechanics is referred to as the thermodynamic limit, and termed above as the
bulk scaling limit. Thus the coordinates are scaled so that the mean density
is of order unity and the limit N → ∞ then performed. Next a length scale
L is introduced into the linear statistics so that they vary on this scale, and
finally the large L limit is considered. Direct analysis of this limit is simpler
than for the global scaling limit. In addition to the ensembles already analysed,
it is possible to study the covariance of two linear statistics for the eigenvalues
of the circular β ensemble, for the real eigenvalues of the ensemble of N × N
real Gaussian matrices, and the eigenvalues of complex Ginibre ensemble. In the
case of real Gaussian matrices the covariance is proportional to L, which is a
characteristic property of the structure function being nonzero at the origin. A
feature of the eigenvalues of the complex Ginibre ensemble is that the variance
of the counting function for the number of eigenvalues in a region scales with
the length of the boundary of that region.

2.10.2. Consistency with log-gas predictions

The log-gas analogy for the eigenvalue PDF for the circular β ensemble (2.90)
leads to predictions for both the smoothed bulk and global scaled forms of the
quantity C(2),N (x, x′), as required for the determination of the corresponding
fluctuation formulas [21, 107, 73]. The fluctuation formulas obtained using this
heuristic are consistent with the exact results obtained in the case of the circular
β ensemble and moreover the working can be extended to apply to other random
matrix ensembles. This is possible because of log-gas analogies for those random
matrix ensembles too.

When the eigenvalue PDF permits a Bolzmann factor interpretation e−βU ,
it is possible to take the viewpoint that a linear statistic Uu :=

∑N
j=1 u(xj) is a

perturbing external one body potential, so that the perturbed Boltzmann factor
becomes e−β(Uu+U). Expanding the factor e−βUu to first order in u, e−βUu ≈
1 − β

∑N
j=1 u(xj) we can check from the definitions that

qu(x′) := 〈n(1),N (x′)〉u − 〈n(1),N (x′)〉u=0 = −β

∫
I

u(x)C(2),N (x, x′) dx, (2.113)
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where C(2),N (x, x′) is the quantity (2.11) computed in the absence of Uu and
n(1),N (x′) :=

∑N
j=1 δ(x′ − xj). The key hypothesis is that for large N , the LHS

of (2.113) is determined by the macroscopic electrostatics implied by the pair
potential φ(z, z′) in (2.91), and thus satisfies the integral equation

−
∫ 2π

0
log | sin(x− x′)/2|qu(x′) dx′ = u(x) + C. (2.114)

Here the constant C is determined by the particle conservation condition∫ 2π

0
qu(x′) dx′ = 0. (2.115)

The functional form of qu(x) can readily be determined [75, Prop. 14.3.4].

Proposition 2.13. With u(x) =
∑∞

p=−∞ upe
ipθ specified, the solution qu(x) of

the integral equation (2.114), subject to the constraint (2.115), is given by the
Fourier series

qu(x) = − 1
π

∞∑
p=−∞

|p|upe
ipθ. (2.116)

Proof. Substituting the Fourier series implicit in (2.24) for log | sin(x−x′)/2| in
(2.114) together with the Fourier series of u(x) gives

∞∑
p=−∞

αpe
ipθ

∫ 2π

0
qu(x′)e−ipx′

dx′ =
∞∑

p=−∞
|p|upe

ipθ + C,

where αp is defined in (2.25). Equating coefficients of eipθ and requiring (2.115)
gives the value of the Fourier coefficients of qu(x) and (2.116) follows.

Now it follows from (2.113), the definition of C(2),N (x, x′) (2.11) and (2.5)
that

Cov
( N∑

l=1

f(xl),
N∑
l=1

g(xl)
)

= − 1
β

∫
I

f(x)qg(x) dx. (2.117)

In the case of the circular-β ensemble, assuming the validity of the hypothesis
that for large N , qu is determined by (2.114) and we see by substituting (2.116)
that the fluctuation formula (2.76) results, now predicted to be valid for general
β > 0.

We know from Proposition 2.7 that the limiting covariance formula in the
case of the independent eigenvalues for random O+(N) matrices takes the simple
form (2.68) involving the cosine transform. The joint PDF for the independent
eigenvalues for Haar distributed O+(N) matrices is proportional to (see e.g. [75,
Eq. (2.62)]) ∏

1≤j<k≤N/2

| cosxk − cosxj |β , 0 ≤ xl ≤ π, (2.118)

with β = 2. Writing this in Boltzmann factor form the corresponding pair poten-
tial is φc(xj , xk) = − log | cosxk − cosxj | (here the superscipt “c” indicates the
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involvement of cosine). Hence from the viewpoint of macroscopic electrostatics
the task is to solve the integral equation

−
∫ π

0
log | cosx− cosx′|qc

u(x′) dx′ = u(x) +C, subject to
∫ π

0
qc
u(x′) dx′ = 0.

(2.119)
Knowledge of the expansion (see e.g. [75, Exercises 1.4 q.4])

log(2| cosx− cos t|) = −
∞∑

n=1

2
n

cosnx cosnt

shows that with u(x) given in terms of its cosine expansion as in (2.67), the
solution of (2.119) is given by

qc
u(x) = − 2

π

∞∑
p=1

puc
p cos px. (2.120)

Substituting this in the RHS of (2.117) with β = 2 reclaims (2.36) and moreover
predicts that its generalisation for β > 0 in the sense of (2.118) is to multiply
the RHS therein by 2/β.
Remark 2.14. Gaudin’s eigenvalue PDF (2.29) can be written in Boltzmann
factor form involving a pair potential. However this pair potential, as seen in
the second expression of (2.29), is not long range in an appropriate scaling limit.
Due to this, it is not expected that the hypothesis of an analogue of (2.114) will
be valid. Indeed, assuming it is leads to a result for the covariance which is in
contradiction to the exact result (2.36).

3. Other structures leading to explicit formulas

3.1. The Gaussian β-ensemble

Under the change of variables yj = cosxj and with N/2 replaced by N (this for
convenience) the PDF (2.118) becomes proportional to

N∏
l=1

(1 − y2
l )−1/2

∏
1≤j<k≤N

|yk − yj |β , |yl| < 1. (3.1)

This is an example of a Jacobi β-ensemble (see e.g. [75, §3.11] and Section 3.2
below). It follows from the derivation of (2.120) that the macroscopic log-gas
viewpoint predicts for the corresponding fluctuation formula,

lim
N→∞

CovJ
( N∑

j=1
f(xj),

N∑
j=1

g(xj)
)

= 2
β

∞∑
n=1

nf c
ng

c
n (3.2)

independent of the details of the one body term
∏N

l=1(1−y2
l )−1/2. The important

point is that the eigenvalue support is the interval (−1, 1), or more generally a
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single interval (a, b), and that the underlying pair potential in the Boltzmann
factor analogy is − log |yj − yk|.

The leading order eigenvalue support being a single interval is shared by a
number of random matrix ensembles with an eigenvalue PDF of the form

N∏
l=1

e−βNV (xl)
∏

1≤j<k≤N

|xk − xj |β , (3.3)

and thus also having an underlying logarithmic pair potential. Our interest in
this section is in the Gaussian β-ensemble, specified by setting V (x) = x2 in
(3.3). Even though for finite N the eigenvalues may be located anywhere on the
real line, as N → ∞ their support is the single interval, (−1, 1) say. The log-gas
argument of subsection 2.10.2 then predicts an identical expression to (3.2) for
the covariance,

lim
N→∞

CovG
( N∑

j=1
f(xj),

N∑
j=1

g(xj)
)

= 2
β

∞∑
n=1

nf c
ng

c
n

= 2
β

1
8π2

∫ π

−π

dθ

∫ π

−π

dφ
(f(cos θ) − f(cosφ))(g(cos θ) − g(cosφ))

|eiθ − eiφ|2

= 2
β

1
4π2

∫ 1

−1
dx

∫ 1

−1
dy

(f(x) − f(y))(g(x) − g(y))
(x− y)2

1 − xy

(1 − x2)1/2(1 − y2)1/2
.

(3.4)

Here the second equality can be seen to imply the first upon using the identity
(2.25) and integrating by parts. In the second equality the integration domain
can be reduced to [0, π]2 by replacing the denominator by

1
|eiθ − eiφ|2 + 1

|eiθ − e−iφ|2

and multiplying by 2. A simple change of variables then gives the third equality
[117]. The reference [41] gives a different perspective on the first equality starting
from the third equality.

The identity

(1 − xy)
(1 − x2)1/2(1 − y2)1/2(x− y)2

= 1
(1 − x2)1/2

∂2

∂x∂y

(
(1 − y2)1/2 log |x− y|

)
(3.5)

allows for the rewrite of (3.2) in the case f = g [111, 44]

lim
N→∞

VarG
( N∑

j=1
f(xj)

)
= 2

β

1
π2

∫ 1

−1
dy

f(y)√
1 − y2

∫ 1

−1
dx

f ′(x)
√

1 − x2

x− y
. (3.6)

One can check too that the LHS of (3.5) can be written as [13]

−1
2

∂2

∂x∂y
log

(
1 − xy +

√
(1 − x2)(1 − y2)

1 − xy −
√

(1 − x2)(1 − y2)

)
. (3.7)
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This substituted in (3.2) gives, upon integration by parts,

lim
N→∞

CovG
( N∑

j=1
f(xj),

N∑
j=1

g(xj)
)

= 2
β

1
4π2

∫ 1

−1
dx f ′(x)

∫ 1

−1
dy g′(y) log

(
1 − xy +

√
(1 − x2)(1 − y2)

1 − xy −
√

(1 − x2)(1 − y2)

)

= 2
β

1
4π2

∮
|z|=1
y>0

dz

∮
|w|=1
v>0

dw f ′(x)g′(u) log
∣∣∣1 − zw

1 − zw̄

∣∣∣ yv
zw

, (3.8)

where in the final expression z = x+ iy, w = u+ iv; see [142] for details relating
to the second equality, which provides a link with the Gaussian free field [29].
According to (2.6) a corollary of the third form in (3.2) is that for the Gaussian
(and Jacobi) β-ensembles,

lim
N→∞

ρT(2),N (x, y) .= − 1
β

1
π2

(1 − xy)
(1 − x2)1/2(1 − y2)1/2(x− y)2

, (3.9)

supported on |x|, |y| < 1. Here the symbol .= is used to indicate the limiting
functional form has been smoothed with respect to test functions; as seen in
(2.22) the pointwise limit is not expected to exist.

The density of eigenvalues for the Gaussian β-ensemble in the large N limit
on their support (−1, 1) is the Wigner semi-circle law ρW

(1)(x) = 2
π (1−x2)1/2; see

e.g. [75, §1.4]. The case β = 2 — referred to as the Gaussian unitary ensemble
(GUE) — is realised by the complex Hermitian random matrices Hc = 1

2 (X +
X†), where X is an N × N complex standard Gaussian matrix; scaling these
matrices by 1/

√
2N gives rise to (3.3) with β = 2. Analogously, the case β = 1

— known as the Gaussian orthogonal ensemble (GOE) — is realised by the
real symmetric random matrices Hr = 1

2 (X + XT ), where X is an N × N

real standard Gaussian matrix. Scaling these matrices by 1/
√

2N as for the
GUE gives (3.3) with β = 1 as the eigenvalue PDF. A realisation in terms of
Gaussian random matrices is known in the case β = 4 too (see e.g. [75, §1.3.2]),
which is referred to as the Gaussian symplectic ensemble (GSE). Together the
values β = 1, 2 and 4 are referred to as the classical cases, with their underlying
symmetries isolated by Dyson [66]

For the GOE case β = 1 the functional form (3.9) was first derived in the
1978 work of French, Mello and Pandey [90]. This was done through an analysis
of the covariance formula for the pair of linear statistics

∑N
j=1 x

p
j = TrHp,∑N

j=1 x
q
j = TrHq. As such the strategy used was a generalisation of the method

of moments as introduced by Wigner to study the eigenvalue density [166].
Soon after Pandey [139] realised that this polynomial covariance could usefully
be encoded by considering instead

Cov
( N∑

j=1

1
x− xj

,

N∑
j=1

1
y − xj

)
= Cov

(
Tr(xIN−H)−1,Tr(yIN−H)−1

)
. (3.10)
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Studying the mean value of one such linear statistic, i.e.

〈 N∑
j=1

1
x− xj

〉
, (3.11)

corresponds to the Steiltjes transform of the eigenvalue density, the analysis of
which was introduced into random matrix theory by Pastur [143]; see also the
text [144]. A number of derivations of (3.9) additional to those those of [90, 139]
have been listed in the recent work [149].

Here we will focus on a method of derivation of (3.9) based on the loop
equation formalism, first made use of in this context in relation to the GUE
[6], and generalised to the Gaussian β-ensemble for general β > 0 in [39, 131,
167]. Denote the covariance (3.10) by W

G
2 (x, y;N,κ) and the mean (3.11) by

W 1(x;N,κ), where κ := β/2. An integration by parts procedure gives that these
quantities for the Gaussian β-ensemble are related by the first loop equation

(κ− 1
2N

∂

∂x1
− 2κx1

)
W

G
1 (x1;N,κ)

+ 2Nκ + κ

2N

(
W

G
2 (x1, x1;N,κ) + (WG

1 (x1;N,κ))2
)

= 0. (3.12)

To progress further, the 1/N expansions

W
G
1 (x;N,κ) = NWG

1,0(x;κ) + WG
1,1(x;κ) + 1

N
WG

2,1(x;κ) + · · · ,

W
G
2 (x, y;N,κ) = WG

2,0(x, y;κ) + 1
N

WG
2,1(x, y;κ) + · · · , (3.13)

rigorously justified in [34], are introduced into (3.12). Equating like powers of
N gives a quadratic equation for WG

1,0(x;κ) with solution

WG
1,0(x;κ) = 2(x−

√
x2 − 1) (3.14)

independent of κ. With this established, equating terms independent of N gives
a linear equation for WG

1,1(x;κ) with solution

WG
1,1(x;κ) = 1

2

(
1 − 1

κ

)( 1√
x2 − 1

− x

x2 − 1

)
. (3.15)

However, at order 1/N in (3.13), the two quantities WG
1,2(x;κ) and WG

2,0(x, y;κ),
both of which are unknown are involved. To separate these unknowns the second
equation of the loop hierarchy is needed. As well as involving W

G
1 and W

G
2 , this

second equation involves the three point quantity W
G
3 = W

G
3 (x1, x2, x3;N,κ);

see e.g. [167] for its precise definition. For large N , continuing the pattern from
(3.13), WG

3 = O(1/N) and so does not contribute to leading order in the second
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loop equation. In fact the only unknown to leading order is WG
2,0(x, y;κ), with

the equation linear in this quantity and having solution

WG
2,0(x, y;κ) = 2

β

(
xy − 1

2(x− y)2
√

(x2 − 1)(y2 − 1)
− 1

2(x− y)2

)
. (3.16)

Now generally for I an open interval, α(t) continuous on I and

f(z) =
∫
I

α(t)
z − t

dt, z /∈ I,

the inverse formula for the Stieltjes transform gives

α(t) = 1
π

lim
ε→0+

Im f(t− iε), t ∈ I.

Applying this with respect to both the x and y variable in (3.16) the functional
form in (3.9) is obtained. By noting that for γ a simple contour enclosing (−1, 1)
in the complex plane, and f analytic on and within γ, we have by Cauchy’s
integral formula the representation

f(x) = 1
2πi

∮
f(z)
z − x

dz (3.17)

shows

( 1
2πi

)2 ∮
dw f(w)

∮
dz g(z)Cov

( N∑
j=1

1
w − xj

,

N∑
j=1

1
z − xj

)

= Cov
( N∑

j=1
f(xj),

N∑
j=1

g(xj)
)
. (3.18)

This fact, together with certain large deviation bounds, enables the rigorous
deduction of (3.2) for f, g analytic in a neighbourhood of (−1, 1) from knowledge
of (3.16); see e.g. [34]. Replacing the Cauchy integral formula by the Helffer-
Sjöstrand formula [71, 138, 133, 104] allows for the conditions on f and g to be
further weakened.
Remark 3.1. 1. Consider the linear statistics

∑N
j=1 x

p
j , (p = 1, 2). As noted in

[11], in the case of the Gaussian β-ensemble the corresponding characteristic
functions (2.17) are simple to evaluate,

P̂N,f=x(t) = e−t2/4β , P̂N,f=x2(t) = (1 − it/βN)−(1/2)(N+βN(N−1)/2).
(3.19)

Recalling (2.21), it follows

lim
N→∞

VarG
( N∑

j=1
xj

)
= 1

2β , lim
N→∞

VarG
( N∑

j=1
x2
j

)
= 1

4β , (3.20)
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as is consistent with (3.2). We note too that in the limit N → ∞ the sec-
ond characteristic function in (3.36) becomes a Gaussian like the first upon the
recentring P̂N,f=x2(t) → P̂N,f=x2(t)e−it〈

∑N
j=1 x2

j〉. That the rescaled limiting dis-
tribution of the polynomial linear statistics

∑N
j=1 x

k
j (k ∈ Z+) is a Gaussian

with variance as implied by (3.2) was first established by Johansson [111]. In
[34] this result was extended to a wider class of linear statistics using a loop
equation analysis; see also [22], [118] and [35].

2. With f = xk1 , g = xk2 it is a known corollary of (3.2) (see e.g. [129, 61,
37, 51]) that

2p+q lim
N→∞

CovG
( N∑

j=1
xp
j ,

N∑
j=1

xq
j

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
β

(2k1)!(2k2)!
(k1!)2(k2!)2

k1k2

k1 + k2
, p = 2k1, q = 2k2

2
β

(2k1 + 1)!(2k2 + 1)!
(k1!)2(k2!)2

k1k2

k1 + k2 + 1 , p = 2k1 + 1, q = 2k2 + 1
(3.21)

It is pointed out in [130, 51] that from a particular combinatorial viewpoint,
equivalent enumeration formulas are contained in the work of Tutte [164].
3. (Variance for number of particles in an interval) As in Proposition 2.2, an
example of a linear statistic for which (3.2) breaks down in f = g = χ(a,b),
for (a, b) ⊂ (−1, 1). Let N(a,b) :=

∑N
j=1 χxj∈(a,b). It is proved in [16] that for

(a, b) = (0, 1)
lim

N→∞

1
logN VarG(N(a,b)) = 1

π2β
(3.22)

(cf. (2.15)). This was conjectured to hold true in the general case, a fact which
has been established in the special cases β = 1, 2 and 4 [153].

A half line scaling is possible. Suppose in (3.2) that f(−1 + x) = F (X/L),
g(−1 + x) = G(X/L), where F (X), G(X) are assumed to decay at infinity. In
the second equality of (3.2) change variables −1 + x = X/L, −1 + y = Y/L.
This shows

lim
L→∞

lim
N→∞

CovG
( N∑

j=1
f(xj),

N∑
j=1

g(xj)
)∣∣∣∣

f(−1+x)=F (X/L)
g(−1+x)=G(X/L)

= 1
β

1
4π2

∫ ∞

0
dX

∫ ∞

0
dY

(F (X) − F (Y ))(G(X) −G(Y ))
(X − Y )2

X + Y

(XY )1/2
. (3.23)

The identity,

1
2

1√
XY

X + Y

(X − Y )2 = ∂2

∂X∂Y
log

∣∣∣∣
√
X −

√
Y√

X +
√
Y

∣∣∣∣
substituted in (3.23) gives, upon integration by parts, the rewrite of the RHS
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of (3.23),

− 1
βπ2

∫ ∞

0
dX F ′(X)

∫ ∞

0
dY G′(Y ) log

∣∣∣∣
√
X −

√
Y√

X +
√
Y

∣∣∣∣. (3.24)

Furthermore, making use of the Fourier transform

− log
∣∣∣ tanh πy

4π

∣∣∣ = 1
2

∫ ∞

−∞

tanh πx

x
eixy dx,

shows that an alternative form to (3.24) is [21, 52]

1
βπ2

∫ ∞

−∞
F̂ e(k)Ĝe(−k)k tanh(πk) dk, âe(k) :=

∫ ∞

−∞
eikxa(ex) dx. (3.25)

The change of variables X = u2, Y = v2 shows that (3.23) permits the further
rewrites [20, 128]

1
β

1
(2π)2

∫ ∞

−∞
du

∫ ∞

−∞
dv

(F (u2) − F (v2))(G(u2) −G(v2))
(u− v)2

= 1
β

1
(2π)2

∫ ∞

−∞
|k|F̂ s(k)Ĝs(−k) dk, (3.26)

where ĥs(k) :=
∫∞
−∞ h(x2)eikx dk.

Both the GOE and GUE allow for extensions to involve what historically has
been termed an external source. With G a GOE matrix (β = 1) or GUE matrix
(β = 2) the corresponding ensembles with an external source (to be denoted
G�) are specified by the sum

A + G, (3.27)

where it is assumed that A is real symmetric (β = 1) or complex Hermitian
(β = 2). Suppose furthermore that as N → ∞ the eigenvalue density of 1√

2NA

has a compactly supported limiting density with corresponding measure dμ(x).
Let m̃(z) be the solution of the Pastur equation

m̃(z) =
∫ ∞

−∞

1
t− 2z − m̃(z) dμ(t) (3.28)

which has positive imaginary part for z in the upper half complex plane. The
quantity m̃(z) then corresponds to the Stieltjes transform of the limiting scaled
eigenvalue density of (3.27); see e.g. [144]. We have from [53, 108, 123]

WG�
2,0 (x, y) = − 2

β

∂2

∂x∂y
log

(
1−

∫ ∞

−∞

dμ(t)
(t− 2x− m̃(z))(t− 2y − m̃(z))

)
. (3.29)

Note that in the special case that dμ(t) = δ(t)dt corresponding to A = 0
in (3.27), it follows from (3.28) that 1/(2z + m̃(z)) = −m̃(z). Using this in
(3.29) in this same special case reclaims the form of WG

2,0(x, y) given in (3.52)
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below. A formula of a different type for the variance of a polynomial linear
statistic in the case of the GUE with a source has been given in [60], which
comes about through its relation to multiple orthogonal polynomials. Another
point of interest is that the external source model (3.27) can be viewed in terms
of Dyson Brownian motion; see e.g. [75, §11.1] for β = 1, 2 and 4, and [76]
for general β > 0. A study of the corresponding fluctuation formulas for linear
statistics from this perspective can be found in [23].

Linear statistics ranging over a restriction of the full set of eigenvalues are
of interest [15, 99, 98]. With the eigenvalues ordered x1 > x2 > · · · > xN ,
considered is the fluctuation of

∑K
j=1 f(xj), where K/N → γ as N → ∞.

Define c = c(γ) by

γ = 2
π

∫ 1

c

√
1 − x2 dx, (3.30)

so that the fraction of eigenvalues in the interval (c, 1) of the Wigner semi-circle
is γ. With fc(x) = (f(x) − f(c))χ1>x>c it is proved in [15] that for the GUE

lim
N→∞

VarGUE
( K∑

j=1
f(xj)

)
= lim

N→∞
VarGUE

( N∑
j=1

fc(xj)
)
, (3.31)

with the RHS in turn being given by any of the formulas (3.2) and (3.8). A
case of particular interest is f(x) = x2. Use of the first formula in (3.8) and
evaluating the integral via computer algebra shows

lim
N→∞

VarGUE
( K∑

j=1
x2
j

)
=

1
π2

1
8

(
3c4−4c3

√
1 − c2Arccos c+c2(−7+2c

√
1 − c2Arccos c)+4+(Arccos c)2

)
.

(3.32)

Up to a simple scaling of c, this formula was first derived in the recent paper
[98, Eq. (70)], from a large deviations viewpoint. Setting c = 0 and using (3.30)
and (3.31) implies

VarGUE
( N∑

j=1
x2
jχxj>0

)
= 1

16

(
1 + 16

π2

)
. (3.33)

The analogue of this result in the GOE case is known from [125, §6.2], where
it was shown to have relevance to the distribution of intrinsic volumes for the
cone of positive semidefinite matrices.

Also of interest are linear statistics associated with submatrices. For an N×N
matrix H and I ⊂ {1, . . . , N}, |I| ≤ N , denote by H(I) the |I| × |I| Hermitian
matrix formed by the intersection of the rows and columns labelled by I of H.
Let H be chosen from the GOE (β = 1) or the GUE (β = 2). Motivated by the
relevance of submatrices of random Hermitian matrices to models admitting a
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stepped surfaces interpretation — see the overview [30] — and moreover relating
to the Gaussian free field, Borodin [29], using methods from [9, Ch. 2], took
up the problem of computing the covariance for the pair of linear statistics
Tr(H(Ip))kp ,Tr(H(Iq))kq ), under the assumption that

lim
N→∞

|Ip|
N

=: bp > 0, lim
N→∞

|Iq|
N

=: bq > 0, lim
N→∞

|Ip ∩ Iq|
N

=: cpq > 0.

Let Tn(x) denote the n-th Chebyshev polynomial of the first kind, Tn(cos θ) =
cosnθ. Let H̃(Ip) denote H(Ip) scale so that its limiting eigenvalue support is
the interval (−1, 1). From [29] we have

lim
N→∞

Cov
(
Tr(Tkp(H̃(Ip)),Tr(Tkq (H̃(Iq))

)
= δkp,kq

kp
2β

( cpq√
bpbq

)kp

. (3.34)

Note that this is consistent with the first line of (2.6) in the case bp = bq = cpq =
1. This theme, with emphasis placed on the form of the covariance written in a
form relating to the Gaussian free field — recall the final expression in (3.8) —
has been followed up in [31, 62, 59, 40, 46], amongst other works.

As our final point specifically in relation to the Gaussian β-ensemble, we will
review fluctuation formulas associated with a particular high temperature limit,
analogous to that introduced in Remark 2.11 for the circular β-ensemble. This
high temperature limit is specified by replacing e−βNV (xl) in (3.3) by e−x2

l /2,
setting β = 2α/N and taking N → ∞. It is known that the corresponding
normalised density, ρ(1)(x;α) say, has the exact functional form [4] (see [86] for
a derivation via loop equations)

ρ(1)(x;α) = 1√
2πΓ(1 + α)

1
|D−α(ix)|2 ,

where Dμ(z) denotes the parabolic cylinder function. Introduce now the orthog-
onal polynomials with respect to ρ(1)(x;α). These are the so called associated
Hermite polynomials {pH

n (x;α)}, which can be generate through the three term
recurrence

pH
n+1(x;α) = xpH

n (x;α) − (n + α)pH
n−1(x;α),

with pH
0 (x;α) = 1, pH

1 (x;α) = x. The case α = 0 corresponds to the classical
Hermite polynomials. In relation to a fluctuation formula, the recent work of
Nakano, Trihn and Trinh [134] has shown that with PH

n (x;α) :=
∫ x

pH
n (t;α) dt,

lim
N→∞

1
N

CovG(PH
m, PH

n )
∣∣∣
w(x)=e−x2/2

β=2α/N

= δm,n
(α + 1) · · · (α + n)

n + 1 . (3.35)

3.2. The Laguerre and Jacobi β-ensembles

The potential V (x) = −(α log x−x)/2, x ∈ R+ substituted in (3.3) corresponds
to the Laguerre β-ensemble. In the limit N → ∞ the normalised density limits
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to the Marčenko–Pastur functional form√
(x− c)(d− x)
2π(1 + α)x ,

where (c, d) is the interval of support with c = (1−
√

1 + α)2, d = (1+
√

1 + α)2.
Although this is distinct from the Wigner semi-circle functional form for the nor-
malised eigenvalue density as holds for the Gaussian β-ensemble, a loop equation
analysis [88] gives for WL

2,0 a functional form which includes the corresponding
result (3.16) for the Gaussian β-ensemble. Thus it is found

WL
2,0(x, y;κ = β/2)= 2

β

(
xy − (c + d)(x + y)/2 + cd

2(x− y)2
√

((x− c)(x− d)(y − c)(y − d))
− 1

2(x− y)2

)
,

(3.36)
supported on x, y ∈ (c, d) (to reclaim (3.16) set c = −1, d = 1) as first identified
in [6]. Consequently, by applying the inverse Stieltjes transform,

lim
N→∞

ρT(2),N (x, y) .= − 1
β

1
π2

(−cd + (c + d)(x + y)/2 − xy)
(c− x)(d− x)(c− y)(d− y) . (3.37)

Substituting (3.37) in (2.6) gives one particular functional form of the limiting
covariance. More revealing is to change variables in the linear statistic f(x) by
writing f(α1 + α2 cos θ) with α1 = (c + d)/2, α2 = (d − c)/2, and similarly
for g(x). In this new variable, performing a cosine expansion as on the RHS of
(2.67) then gives the simplified expression

lim
N→∞

CovL
( N∑

j=1
f(xj),

N∑
j=1

g(xj)
)

= 2
β

∞∑
n=1

nf c
ng

c
n; (3.38)

cf. the first expression in (3.3).
Remark 3.2. 1. As observed in [11], for the Laguerre β-ensemble it is simple to
compute the characteristic function for the linear statistic

∑N
j=1 xj ,

P̂L
N,f=x(t) = (1 − 2it/Nβ)−N(1+Nβ/2)−βN(N−1)/2. (3.39)

This implies

lim
N→∞

VarL
( N∑

j=1
xj

)
= 2

β
(α + 1), (3.40)

which is readily checked to be consistent with (3.38). Upon the recentring of
replacing P̂L

N,f=x(t) by P̂L
N,f=x(t)e−it

∑N
j=1 xj , we see that the N → ∞ form of

(3.39) is a Gaussian. For linear statistics analytic in the neighbourhood of the
eigenvalue support, the loop equation analysis of [34] gives that the limiting
recentred distribution is a Gaussian with variance determined by (3.38).

2. Denote the limiting covariance for the monomial linear statistics
∑N

j=1 x
k1
j ,∑N

j=1 x
k2
j in the Laguerre (Gaussian) cases by μL

k1,k2
(μG

k1,k2
). Thus for k1, k2
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of the same parity μG
k1,k2

is given by (3.21), while for k1, k2 of different par-
ity μG

k1,k2
= 0. It is shown in [51] that the covariance formula as obtained by

substituting (3.37) in (2.6) implies

μL
k1,k2

= αk1+k2
1

k1∑
p=0

k2∑
q=0

(
k1

p

)(
k2

q

)(α2

α1

)p+q

μG
p,q. (3.41)

Also, in the special case α = 0 so that c = 0, d = 4, α1 = α2 = 2 there is the
simplification [51]

μL
k1,k2

∣∣∣
α=0

= 1
β

2k1+k2+2 1
k1 + k2

(
2k1 − 1

k1

)(
2k2 − 1

k2

)
. (3.42)

The Laguerre β-ensemble has been specified in terms of the eigenvalue PDF
(3.3) with potential V (x) = −(α log x + x)/2, x > 0. It is a standard result in
random matrix theory (see e.g. [75, §3.2]) that with αN = (n − N) + 1 − 2/β
this eigenvalue PDF is realised by Wishart matrices W = 1

NX†X, where X is
an n×N (n ≥ N) standard real (β = 1) or complex (β = 2) Gaussian random
matrix. In a statistical setting the matrix X is the centred data matrix and W is
proportional to the sample covariance. More generally the Wishart class involves
the centred data matrix having the form XΣ1/2, where X is as above and Σ is
an N ×N positive definite matrix. We will use the symbol L� to indicate this
setting. Let 1+α∞ = limM,N→∞ M/N and suppose Σ has a limiting eigenvalue
density with compact support specified by the measure dν(x). Specify m̃(z) —
the Stieltjes transform of the limiting eigenvalue density of 1

N Σ1/2X†XΣ1/2 —
as the solution of

α∞ − zm̃(z) = (1 + α∞)
∫ ∞

−∞

1
1 + tm̃(z)dν(t),

which has Im m̃(z) > 0 for z in the upper half complex plane; see e.g. the text
[144] in relation to this result. Results of Bai and Silverstein [12], and further
developed in [122, 151, 133, 123], give

WL�
2,0 = 1

β

∂2

∂x∂y
log

(
m̃(x) − m̃(y)

x− y

)
(3.43)

and, with I denoting the interval of support of the density,

CovL�
(f, g) = 1

βπ2

∫
I

dx

∫
I

dy f ′(x)g′(y) log
∣∣∣∣m̃(x) − m̃(y)
m̃(x) − m̃(y)

∣∣∣∣. (3.44)

As for the Gaussian β-ensemble, the Laguerre β-ensemble admits a scaled
high temperature limit. This is specified by replacing e−βNV (xl) in (3.3) by
xα1
l e−xl , setting β = 2α/N and taking N → ∞. The normalised density,

ρ(1)(x;α1, α) say, is then given in terms of the Whittaker function Wζ,μ(z) by
[5]

ρ(1)(x;α1, α) = 1
Γ(α + 1)Γ(α + α1)

1
|W−α−α1/2,(1+α1)/2(−x)|2 , x > 0. (3.45)
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The PDF for the corresponding mean xρ(1)(x;α1, α)/(α1 +α) can be recognised
as the weight function for the associated Laguerre polynomials {pL

n(x;α1, α)},
defined by the three term recurrence

pL
n+1 = xpL

n − (α + 2α1 + 2n + 1)pL
n − (α + α1 + n)(α1 + n)pL

n−1,

with pL
0 = 1, pL

1 = x− (α + 2α1 + 1). A companion result to (3.35) obtained in
[134] gives that with PL

n (x;α1, α) :=
∫ x

pL
n(t;α1, α) dt,

lim
N→∞

1
N

CovL(PL
m, PL

n )
∣∣∣
w(x)=xα1 e−x

β=2α/N

= δm,n
α + α1

n + 1

n∏
j=1

(α1 + j)(α + α1 + j).

(3.46)
We turn now to the consideration of the Jacobi β-ensemble. An example of

a Jacobi β-ensemble is seen in (3.1). In this example the support is (−1, 1).
Note that when written in the form (3.3) this gives a V (x) proportional to
1/N , which is sub-leading. We will consider instead a version of the Jacobi β-
ensemble supported on (0, 1) with V (x) of order unity and given explicitly by
V (x) = γ1 log x + γ2 log(1 − x). The corresponding N → ∞ normalised density
is known to be given by a functional form first identified by Wachter [165],

(γ1 + γ2 + 2)
√

(x− cJ)(dJ − x)
2πx(1 − x) (3.47)

supported on (cJ, dJ) with these endpoints specified by
(√

γ1 + 1
γ1 + γ2 + 2

(
1 − 1

γ1 + γ2 + 2

)
±

√
1

γ1 + γ2 + 2

(
1 − γ1 + 1

γ1 + γ2 + 2

))2

.

(3.48)
In the present context the main point is that a loop equation analysis [88]

confirms that the limiting functional form (3.36) for the two-point quantity
W2,0 again holds true, as expected for all β-ensembles with density supported
on a single interval. Hence the covariance is given by (3.38). In the case of
monomial linear statistics, the formula (3.41) again holds, with α1 = (cJ+dJ)/2,
α2 = (dJ − cJ)/2. In the special case γ1 = γ2 = 0 the support is (cJ, dJ) = (0, 1)
and the covariance formula for monomial linear statistics simplifies to be related
to (3.42) [51],

μJ
k1,k2

∣∣∣
γ1=γ2=0

= 2−k1−k2μL
k1,k2

∣∣∣
α=0

. (3.49)

Remark 3.3. 1. For the Jacobi β-ensemble specified by (3.1) with
∏N

l=1(1 −
y2
l )−1/2 replaced by

∏N
l=1(1 − yl)λ1(1 + yl)λ2 , where λ1, λ2 > −1 and fixed, the

analogue of (3.22) has been proved by Killip [113], provided the interval (a, b)
has a = −1 or b = 1.

2. A loop equation analysis has been applied to various discretisation of the
classical β-ensembles [32, 58]. In the so-called one cut regime, the universal form
of W2,0 as given by the RHS of (3.36) is recovered.
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3. All convex potentials V (x) in (3.3) are known to lead to a one cut regime
for the corresponding eigenvalue density. However, without this assumption, the
eigenvalue density may consist of several intervals and the fluctuation formula
for a linear statistic typically involves quasi-periodic terms [152].

4. The scaled high temperature limit of the Jacobi β-ensemble is specified by
replacing e−βNV (xl) in (3.3) by xα1

l (1−xl)α2 , setting β = 2α/N and taking N →
∞. The normalised density is known in terms of Gauss hypergeometric functions
[163, 86]. Define polynomials {pJ

j (x;α, α1, α2)}j=0,1,... orthonormal with respect
to 1

Cx(1 − x) times the density, where C is a normalisation. It is shown in the
recent work [135] that with P J

j defined as the anti-derivative of pJ
j , the scaled

high temperature limit of 1
N CovJ(P J

m, P J
n) is diagonal and of order unity, and

an explicit formula is obtained for the diagonal entries.

3.3. Wigner matrices

In the paragraph below (3.3) the GOE and GUE were defined in terms of real
symmetric and complex Hermitian matrices, with elements on, and elements
above, the diagonal independently and identically distributed as particular zero
mean Gaussians. If the requirement of a Gaussian distribution is weakened to
some other zero mean, finite variance distributions, the GOE and GUE gener-
alise to what is termed the real symmetric and complex Hermitian Wigner ma-
trices. Specifically, following [13] it is assumed the variances are such 〈|xij |2〉 = 1
(i < j) and 〈x2

ii〉 = σ2. In this setting, the celebrated Wigner semi-circle law (see
e.g. [144]) is equivalent to the result that, after scaling the matrices by 1/

√
2N ,

the limit of (3.11) which we denote by WW
1,0(x) is again given by (3.14) and thus

WW
1,0(x) = 2(x−

√
x2 − 1). (3.50)

Note the independence on σ2 and higher moments of the distribution of the
entries. Generalising results obtained earlier by D’Anna and Zee [54] and Kho-
runzhy et al. [112], Bai and Yao [13] have computed the scaled limit of the
two-point quantity (3.10) for Wigner matrices. As is consistent with the usage
in (3.13), we denote this limiting quantity by WW

2,0(x, y;κ), where κ = 1/2 (real
case), κ = 1 (complex case).

Proposition 3.4. Let 〈|xij |4〉 = 1 (i < j) be finite and independent of (i, j). In
the complex case, with xij = xr

ij + ixi
ij require that 〈|xr

ij |2〉 = 〈|xi
ij |2〉. Subject

only to a further technical condition on the decay of the tails of the distribution,
one has

WW
2,0(x, y;κ) =

( d

dx
WW

1,0(x)
)( d

dy
WW

1,0(y)
)

×
(
σ2 − 1/κ + 2β̃WW

1,0(x)WW
1,0(y) + (1/κ)

(1 −WW
1,0(x)WW

1,0(y))2

)
, (3.51)

where β̃ = 〈(|x12|2 − 1)2〉 − 1/κ.
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Remark 3.5. 1. In the special case of the GOE we have 1/κ = σ2 = 2 and β̃ = 0,
while for the GUE we have 1/κ = σ2 = 1 and β̃ = 0. This implies that as an
alternative to (3.16), for WG

2,0(x, y;κ) we have the functional forms

WG
2,0(x, y;κ) = 2

β

( d

dx
WW

1,0(x;κ)
)( d

dy
WW

1,0(y;κ)
) 1

(1 −WW
1,0(x;κ)WW

1,0(y;κ))2

= − 2
β

∂2

∂x∂y
log(1 −WW

1,0(x;κ)WW
1,0(y;κ)). (3.52)

The second of these is known earlier from the work of Brézin et al. [38].
2. The rewrite of one of the terms in (3.51) implied by (3.52) can be extended

to the remaining terms

( d

dx
WW

1,0(x)
)( d

dy
WW

1,0(y)
)(

σ2 − 1/κ + 2β̃WW
1,0(x)WW

1,0(y)
)

= ∂2

∂x∂y

(
(σ2 − 1/κ)WW

1,0(x)WW
1,0(y) + β̃

2

(
1− 2xWW

1,0(x)
)(

1− 2yWW
1,0(y)

))
,

(3.53)

where use has been made of the quadratic equation satisfied by WW
1,0. An ex-

tension of the functional form (3.7), obtained by taking the inverse Stieltjes
transform of WW

2,0(x, y;κ) so rewritten with respect to both x and y, is the
result

lim
N→∞

ρT,W
(2) (x, y) .= 1

4π2
∂2

∂x∂y

(
2
β

log
(

1 − xy +
√

(1 − x2)(1 − y2)
1 − xy −

√
(1 − x2)(1 − y2)

)

+ (σ2 − (2/β) + 2β̃xy)4(1 − x2)1/2(1 − y2)1/2
)
. (3.54)

Notice the separation of variables in the terms which differ from the Gaussian
result. This substituted in the limiting form of (2.6) implies [13]

lim
L→∞

lim
N→∞

CovW
( N∑

j=1
f(xj),

N∑
j=1

g(xj)
)

= 1
4π2

∫ 1

−1
dx f ′(x)

∫ 1

−1
dy g′(y)V (x, y),

(3.55)
where V (x, y) is the functional form in (3.54) after the partial derivatives. More-
over, with f c

n, g
c
n as in (3.2) it is shown in [13] that the RHS of (3.55) can be

rewritten in the form

(σ2 − (2/β))f c
1g

c
1 + 2β̃f c

2g
c
2 + 2

β

N∑
l=1

lf c
l g

c
l . (3.56)

We note too the work of Shcherbina [151] for an independent evaluation
of the limit in (3.55) in the real case for f = g, which gives a functional form
generalising the final equality in (3.4). A comprehensive study of conditions on f



Fluctuation formulas in random matrix theory 211

for which this formula is valid has recently been given by Landon and Sosoe [119];
this work also reviews earlier work along these lines as part of the Introduction
section. In the complex case Bao and Xie [17] remove the requirement of [13]
that 〈|xr

ij |2〉 = 〈|xi
ij |2〉; the covariance formula now depends on the parameter

Φ := 〈|xr
ij |2〉 − 〈|xi

ij |2〉,

σ2f c
1g

c
1 + 2(〈|xij |4〉 − Φ2 − 2)f c

2g
c
2 +

N∑
l=2

l(1 + Φl)f c
l g

c
l . (3.57)

Note that when Φ = 1, which corresponds to real Wigner matrices, this is
consistent with (3.56) for β = 1.

3. In relation to the proof of the central limit theorem associated with a
linear statistic for Wigner matrices, for which (3.55) implies the variance, the
recent work [14] highlights the strategy introduced in [112] as being particularly
influential. Denote G = (xI − H)−1 as the resolvent of the Wigner matrix H,
so that TrG is equal to (3.11). The corresponding matrix elements then satisfy
the simple identity

Gjm = −x−1δj,m + x−1
N∑

k=1

GjkHkm.

To average over the distribution of the entries of H, in the Gaussian case use
can be made of the identity

〈GjkHkm〉 = 〈H2
km〉

〈 ∂

∂Hkm
Gjk

〉

as follows from
〈ξf(ξ)〉 = 〈ξ2〉〈f ′(ξ)〉. (3.58)

As a replacement to (3.58) in the case of distributions outside the Gaussian
class, it is proposed in [112] to make use of the particular cumulant expansion

〈ξf(ξ)〉 =
p∑

l=0

κl+1

l! 〈f (p)(ξ)〉 + Rp+1. (3.59)

Here {κl+1}l=0,1,... refers to the cumulants of the distribution of ξ, f (l) denotes
the l-th derivative of f , and Rp+1 is a remainder term which can be bounded
in terms of f (l+1). In [14] (3.59) is attributed to Barbour [18].

4. The results for the covariance of linear statistics for the Gaussian external
source model of Remark 3.1.5, and the Gaussian sample covariance matrices of
Remark 3.2.3, have been generalised to Wigner matrices. In fact the references
cited to arrive at (3.29) and (3.43) are formulated in this more general setting.

5. Let the independent upper triangular diagonals of an Hermitian matrix be
labelled d = 1 (main diagonal), d = 2 (first diagonal above the main diagonal),
etc. A band Hermitian matrix has all such independent diagonals d > d∗ for
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some d∗ with all entries equal to zero. In the case that the entries in the diagonals
d = 1, . . . , d∗ are random and as for Wigner matrices, and d∗ is dependent on
N such that d∗ → ∞, d∗/N → 0 as N → ∞ a generalisation of the covariance
formula (3.55) has been derived in [154, 106].

3.4. Singular values of random matrix products

The singular values of an n×N (n ≥ N) matrix X are the eigenvalues of XX†.
In the case X = G1G2 with each Gi an independent GinUE matrix, a loop
equation analysis of the square singular values has been carried out in [55]. The
already known result [146] that the limiting resolvent satisfies the cubic equation

x2(WG2

1,0 (x))3 − xWG2

1,0 (x) + 1 = 0 (3.60)

was recovered, and the limiting second order resolvent WG2

2,0 was expressed in
terms of WG2

1,0 . Analogous to the results (3.21) and (3.42) it was found from this
that the corresponding limiting covariance of the monomial statistics

∑N
j=1 x

k1
j ,∑N

j=1 x
k2
j , to be denoted μG2

k1,k2
say, has the explicit evaluation

μG2

k1,k2
= 2k1k2

3(k1 + k2)

(
3k1

k1

)(
3k2

k2

)
. (3.61)

In the case of a product of M independent GinUE matrices, Gorin and Sun
[97] have given a double integral formula for Cov(pj(x), pk(x)) which however
appears to be difficult to evaluate. This is similarly true of the formula for the
variance of a more general, not necessarily polynomial, linear statistics in the
case of the product of two real Wigner matrices given in [96].

In the case of product of complex, rectangular Ginibre matrices the work of
Lambert [117] does provide an easy to evaluate single contour integral formula
for the variance of a polynomial linear statistics. This work is based on special
properties of the biorthogonal functions underpinning integrability of the sin-
gular values of the products [3]. To state the result, let Gj be an Nj × Nj−1
rectangular GinUE matrix and consider the squared singular values of the prod-
uct WN = GMGM−1 · · ·G1 where N0 = 1 and Nj = N + ηj with ηj ≥ 0. Divide
the squared singular values by

∏M
j=1 Nj . Reading off from [117, Th. 4.2], the

following fluctuation formula holds true.

Proposition 3.6. In terms of the above notation, suppose N/Nj → γj ∈ [0, 1]
and N → ∞. Then the variance of the polynomial linear statistic of the squared
singular values

∑N
j=1 p(xj) is given by

∞∑
k=1

kCkC−k, (3.62)

where

Ck = 1
2πi

∮
p
(
z−M

M∏
l=0

(z + γl)
)
z−k dz

z
. (3.63)
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Moreover, the limiting distribution of this linear statistic is a Gaussian.

Specifically, in the case of a product of two square GinUE matrices, and with
p(x) = xl we have that (3.62) reduces to

l∑
k=1

k

(
3l

2l + k

)(
3l

2l − k

)
= l

3

(
3l
l

)2

, (3.64)

where the value of the sum has been obtained using computer algebra. This is
in agreement with the case k1 = k2 of (3.61).

Closely related to the squared singular values of random complex GinUE ma-
trices is the Laguerre Muttalib–Borodin model eigenvalue PDF in the variables
xl → x

1/M
l , proportional to

N∏
l=1

xc
l e

−x
1/M
l

∏
1≤j<k≤N

(xk − xj)(x1/M
k − x

1/M
j ), xl > 0. (3.65)

For example, when M = 2 the scaled limiting resolvent satisfies (3.60) [89]. After
scaling xl → xl/N , it has been shown in [117] that the formula of Proposition 3.6
remains true with γ0 = γ1 = · · · = γM = 1.

3.5. Global scaling of Ginibre matrices and generalisations

The eigenvalue PDF for GinUE is proportional to

N∏
l=1

e−β|zl|2/2
∏

1≤j<k≤N

|zk − zj |β (3.66)

with β = 2; see e.g. [75, §15.1.1]. As in §2.8 the parameter β has the interpre-
tation of inverse temperature in a particular equilibrium statistical mechanics
analogy. The latter relates to a system of N particles in two-dimensions with
potential energy

U = 1
2

N∑
l=1

|zl|2/2 −
∑

1≤j<k≤N

log |zk − zj |,

which up to an additive constant is realised by the two-dimensional one-component
plasma model (2dOCP) of N log-potential unit charges in the presence of a disk
of radius

√
N containing a uniform smeared out neutralising background.

The global scaling limit corresponds to the replacement zl →
√
Nzl. Then,

for all β > 0, the density is the uniform distribution on the unit disk, as can
be established by potential theoretic considerations [150, 43]. From a random
matrix viewpoint, this latter feature is an example of the circular law [27], which
tells us that for non-Hermitian random matrices with identically distributed,
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zero mean and finite variance entries, the eigenvalue density in the global scaling
limit is uniform inside a disk.

In relation to fluctuation formulas, with

C2dOCP
N (r − r′) = ρ2dOCP

(2),N (r − r′,0) − N2

π2 + N

π
δ(r − r′) (3.67)

(cf. (2.102); here N/π corresponds to the density inside the unit disk, assuming
global scaling) write

S2dOCP
∞ (k) =

∫
R2

(
lim

N→∞
C2dOCP

N (r,0)
)
eik·r dr. (3.68)

Linear response arguments [107] predict that

S2dOCP
∞ (k) = |k|2

2πβ (3.69)

(note the consistency with (2.101) in the case β = 2), or equivalently

lim
N→∞

C2dOCP
N (r, r′) = − 1

2πβ∇
2δ(r − r′). (3.70)

The validity of (3.70) is restricted to r, r′ strictly inside of the unit disk. On the
boundary, different linear response arguments predict [107], [75, §15.4.3]

lim
N→∞

C2dOCP
N (r, r′) = − 1

2π2β

(
∂2

∂θ1∂θ2
log

∣∣∣ sin(θ1 − θ2)/2
∣∣∣)δ(r1 − 1)δ(r2 − 1).

(3.71)
The two results (3.70) and (3.71) together, substituted in (2.5), predict [74]

lim
N→∞

Cov2dOCP
( N∑

j=1
f(rj),

N∑
j=1

g(rj)
)

= 1
2πβ

∫
|r<1

∇f · ∇g dxdy + 1
β

∞∑
n=−∞

|n|fng−n, (3.72)

where fn, gn are the angular Fourier components of f(r)||r|=1, g(r)||r|=1 (cf. (2.13)).
In the case that f(r) = f(|r|) or g(r) = g(|r|) the second term in (3.72)

vanishes. Further setting f = g in the GinUE case β = 2 it is simple to compute
the limiting characteristic function for the linear statistic

∑N
j=1 f(|rj |) using the

Vandermonde determinant form of
∏

1≤j<k≤N (zk−zj); see e.g. [75, Eq. (1.173)].
This calculation shows [74]

lim
N→∞

VarGinUE
( N∑

j=1
f(|rj |)

)
= 1

2

∫ 1

0
r(f ′(|r|))2 dr, (3.73)

which is consistent with the appropriate specialisation of (3.72). Proofs of (3.72),
and the underlying Gaussian fluctuation formula, have been given in [148, 8] for
β = 2 and in [120] for general β > 0.
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A generalisation of (3.66) is the PDF proportional to

exp
(
− β

2

N∑
j=1

( x2
j

1 + τ
+

y2
j

1 − τ

)) ∏
1≤j<k≤N

|zk − zj |β , 0 ≤ τ < 1. (3.74)

After scaling zj →
√
Nzj the leading order support is an ellipse with semi-axes

A = 1 + τ , B = 1 − τ [57, 82]. In the case β = 2 (3.74) corresponds to the
eigenvalue PDF of the complex nonsymmetric random matrices J = H + ivA
[91]. Both H and A are Gaussian Hermitian random matrices, and with X =
H,A and τ = (1− v2)/(1+ v2), have joint PDFs for their elements proportional
to exp

(
− 1

1+τ TrX2
)
. Parametrising the boundary of the ellipse by

x + iy = cosh(ξb + iη), 0 ≤ η < 2π, tanh ξb = (1 − τ)/(1 + τ) (3.75)

the only modification of (3.72) required, beyond altering the integration domain
in the first term, is to replace fn, gn therein by the angular Fourier components
in η of f(r), g(r) on the boundary (3.75) [74]. For the particular linear statistic
f(r) = c10x + c01y, completing the square gives for the characteristic function

P̂N,f (t) = e−t2(c210(1+τ)+c201(1−τ))/(2β). (3.76)

Hence the variance is equal to (c210(1 + τ) + c201(1 − τ))/(2β), which indeed is
consistent with the specified modification of (3.72). In the case β = 2 a derivation
of the elliptic analogue of (3.71) is possible [82, 7, 2]. For general β > 0 the
validity of (3.72), with the RHS modified as noted, is covered by the results of
[120] which proves too that the linear statistic has Gaussian fluctuations.

Generalising GinUE matrices to N × N complex matrices having general
i.i.d. complex entries zij with 〈zij〉 = 〈z2

ij〉 = 0, 〈|zij |2〉 = 1 gives the analogue
of the Wigner class of complex Hermitian matrices. It is shown in the work
of Cipolloni, Erdös and Schröder [47] that the covariance formula (3.72) with
β = 2 is then extended to include the additional term

κ4

( 1
π

∫
|z|<1

f(r) dxdy− 1
2π

∫ 2π

0
f(θ) dθ

)( 1
π

∫
|z|<1

g(r) dxdy− 1
2π

∫ 2π

0
g(θ) dθ

)
,

(3.77)
where κ4 := 〈|zij |4〉− 2 is the fourth cumulant of the distribution of the entries.
Moreoever, the work [47] places particular emphasis on the class of test functions
for which the covariance formula has a rigorous proof, and provides an extensive
list, and discussion, of previous literature. The technical ideas underlying the
results of [47] have been reviewed in [45].

Modifying GinUE to have standard real rather than standard complex entries
gives what we will refer to as the Ginibre orthogonal ensemble (GinOE). Unlike
the circumstance for the GOE and GUE, where (3.3) with V (x) = x2 is the
functional form for the eigenvalue PDF of both, depending on the value of β,
this is not the case for GinOE in relation to (3.66). In fact the eigenvalue PDF
for GinOE is not absolutely continuous, and is naturally broken into sectors,
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depending on the number of real eigenvalues [69]. Furthermore, the complex
eigenvalues for GinOE must come in complex conjugate pairs. Despite these
differences, as first found in [115, 137], and earlier in the case of polynomial
test functions in [136], the fluctuation formula (3.72) with β = 1 does give the
correct form of the covariance, where it is being assumed that both f and g are
symmetric about the real axis. In the real analogue of the more general setting
discussed in the previous paragraph the same term (3.77) is to be added [48].
Remark 3.7. 1. The fluctuation formula (3.72) with β = 2 has been shown to
remain valid in the case of the eigenvalues of products of i.i.d. complex random
matrices in [116], albeit for a class of test function contained strictly inside the
eigenvalue support; see too [50].

2. The recent work [42] gives a generalisation of (3.73) to the case that f is
discontinuous.
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