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1. Introduction

As a natural generalization of random walks on an integer lattice, the theory of
infinite convolutions of probability measures on topological semigroups has been
extensively studied and widely applied to various problems. For this theory,
there are celebrated textbooks Rosenblatt [42], Mukherjea–Tserpes [33] and
Högnäs–Mukherjea [16], which include a lot of applications of the theory; see
also Mukherjea’s lecture notes [30] for applications to random matrices, and
Ito–Sera–Yano [17] for applications to the problem of resolution of σ-fields.

The aim of this paper is to help the reader to gain the basic knowledge of
this thoery conveniently. We mainly follow [16] and we make some modifications
on the proofs. For a potential application, we develop the theory for topological
semigroups equipped with a Polish topology, while the textbooks [42, 33, 16] deal
with semigroups equipped with a locally compact Hausdorff second countable
topology.

The goal of this paper is the convolution factorization theorem of cluster
points of infinite convolutions, which will be stated as Theorem 4.9. The key to
the proof is the convolution factorization theorem of convolution idempotents,
which will be stated as Theorem 4.6, and the study of probability measures
with convolution invariance, which will be stated as Proposition 4.5. Theorems
4.6 and 4.9 are based on the product decomposition theorem for completely
simple semigroups, which will be called the Rees decomposition and stated as
Theorem 2.10. To show that the algebraic decomposition is compatible with
a Polish topology, we need the Ellis–Żelazko theorem, which will be stated as
Theorem 3.2.

The Ellis theorem [11](1957) asserts that an algebraic group where the prod-
uct mapping is separately continuous is a topological group, where the topology
is locally compact Hausdorff second countable. It was extended to completely
metrizable topologies by Żelazko [52](1960).

The study of infinite convolutions on compact groups was initiated by Kawada–
Itô [19](1940), It was investigated further by Urbanik [50](1957), Kloss [23](1959),
and Stromberg [46](1960), and extended to the context of locally compact
groups by Tortrat [49](1964) and Csiszár [7](1966). The convolution invari-
ance Proposition 4.5 is due to Mukherjea [27](1972), which originates from
the Choquet–Deny equation [2](1960); for later studies, see [51, 39, 9, 8, 38,
24, 48]. Theorem 4.6 for convolution idempotents is due to Mukherjea–Tserpes
[32] (1971); for ealier studies, see Collins [6](1962), Pym [37](1962), Heble–
Rosenblatt [14](1963), Schwarz [45](1964), Choy [3](1970), Duncan [10](1970),
and Sun–Tserpes [47](1970); see also [12]. Theorem 4.9 for cluster points of
infinite convolutions is due to Rosenblatt [40](1960) in the compact case and
to Mukherjea [29](1979) in the locally compact case; for studies earlier than
[29], see Glicksberg [13](1959), Collins [5](1962), Schwarz [44](1964), Rosenblatt
[41](1965), Lin [25](1966), Mukherjea [28](1977), and Mukherjea–Sun [31](1978);
for related papers, see [34, 43, 26, 1].

This paper is organized as follows. In Section 2 we review the theory of
algebraic semigroups. In Section 3 we study the theory of Polish semigroups,
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where the Ellis–Żelazko theorem is proved and utilized. Section 4 is devoted
to the convolution factorization theorems of convolution idempotents and of
cluster points of infinite convolutions. In Section 5, we give two examples for
the theorem of infinite convolutions.
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2. Algebraic semigroup

We say that a non-empty set S is a semigroup if it is endowed with multiplication

S × S � (a, b) �→ ab ∈ S (2.1)

which is associative, i.e.,

(ab)c = a(bc), a, b, c ∈ S. (2.2)

For two subsets A and B of S, we denote their product by

AB = {ab : a ∈ A, b ∈ B}. (2.3)

We write A1 = A and An = An−1A for n ≥ 2. We sometimes identify an
element a ∈ S with the singleton {a}; for instance, aS = {a}S = {ab : b ∈ S}.
An element e ∈ S is called identity if

xe = ex = x, x ∈ S. (2.4)

It is obvious that the identity is unique if it exists. For a semigroup S with
identity e, we say that y ∈ S is the inverse of x ∈ S if xy = yx = e. It is
obvious that the inverse of an element x ∈ S is unique if it exists. A group is a
semigroup S with identity such that every element has an inverse.

2.1. Left and right simplicity

Let S be a semigroup. A non-empty subset I is called a left ideal [right ideal ]
(of S) if SI ⊂ I [IS ⊂ I]. If S contains no proper left ideal [right ideal], then
it is called left simple [right simple]. A non-empty subset I is called an ideal if
it is both a left and a right ideal, i.e., SI ∪ IS ⊂ I. If S contains no proper
ideal, then it is called simple. Note that being left or right simple implies being
simple, but the converse statement is not true. We say that I is a minimal left
ideal of S if I is a left ideal of S and does not contain a proper left ideal of S.
We also define a minimal right ideal and a minimal ideal similarly.
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Example 2.1. Let V = {1, 2} and let S denote the set of mappings from V into
itself. We equip S with the semigroup structure with respect to composition:
(fg)(v) = f(g(v)) for f, g ∈ S and v ∈ V . We write ι1, ι2 for the constant
mappings: ι1(v) = 1 and ι2(v) = 2 for all v ∈ V . Then the following claims are
obvious:

(i) The sets {ι1} and {ι2} are both minimal right ideals of S, but are not left
ideals.

(ii) The set {ι1, ι2} is a minimal left ideal of S and is a right ideal, but is not
a minimal right ideal.

Lemma 2.2. For a subsemigroup S of a semigroup S0, the following are equiv-
alent:

(i) S is a minimal left ideal of S0.
(ii) S = S0a for all a ∈ S.

Proof. Suppose S is a minimal left ideal. Since S0a for a ∈ S is a left ideal of
S0 contained in S, we have S = S0a by minimality.

Suppose S = S0a for all a ∈ S. Let I be a left ideal of S0 such that I ⊂ S.
For any a ∈ I, we have S = S0a ⊂ S0I ⊂ I, which shows that S is a minimal
left ideal of S0.

Lemma 2.3. For a subsemigroup S of a semigroup S0, the following are equiv-
alent:

(i) S is a minimal ideal of S0.
(ii) S = S0aS0 for all a ∈ S.

The proof of Lemma 2.3 is almost the same as that of Lemma 2.2, and so we
omit it.

Lemma 2.4. For a semigroup S, the following are equivalent:

(i) For any semigroup S0 of which S is a left ideal, S is a minimal left ideal
of S0.

(ii) S is left simple, or in other words, S is a minimal left ideal of S itself (if
and only if S = Sa for all a ∈ S by Lemma 2.2).

(iii) There exists a semigroup S0 such that S is a minimal left ideal of S0.
(iv) For any a, b ∈ S, the equation xa = b has at least one solution x ∈ S.

Proof. [(i) ⇒ (ii) ⇒ (iii)] These are obvious.
[(iii) ⇒ (ii)] Suppose that S is a minimal left ideal of S0 and let I be a left

ideal of S. Since S0SI ⊂ SI ⊂ I ⊂ S, we see that SI is a left ideal of S0 with
SI ⊂ S. Hence SI = S by minimality. Since I ⊂ S = SI ⊂ I, we have I = S,
which implies that S is a minimal left ideal of S.

[(ii) ⇒ (i)] Suppose that S is a left ideal of a semigroup S0 and let I be a
left iedal of S0 such that I ⊂ S. Then SI ⊂ S0I ⊂ I, and so I is a left ideal
of S. By the minimality assumption, we have I = S, which shows that S is a
minimal left ideal of S0.

[(ii) ⇒ (iv)] This is obvious by S ⊂ Sa.
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[(iv) ⇒ (ii)] Let a ∈ S. Then we have S ⊂ Sa by the assumption. Since S is
a semigroup, we have Sa ⊂ S. Hence we have S = Sa.

The next lemma treats simplicity. The proof is similar and is omitted.

Lemma 2.5. For a semigroup S, the following are equivalent:

(i) For any semigroup S0 of which S is an ideal, S is a minimal ideal of S0.
(ii) S is simple, or in other words, S is a minimal ideal of S itself (if and only

if S = SaS for all a ∈ S by Lemma 2.3).
(iii) There exists a semigroup S0 such that S is a minimal ideal of S0.
(iv) For any a, b ∈ S, the equation xay = b has at least one solution (x, y) ∈

S × S.

Proposition 2.6. A semigroup S which is both left and right simple is a group.

Proof. Let a ∈ S. By Lemma 2.4, we have ea = a for some e ∈ S. For any x ∈ S,
we have x = ay for some y ∈ S, and so we have ex = eay = ay = x. Similarly,
there exists e′ ∈ S such that xe′ = x for all x ∈ S. Then we obtain e′ = ee′ = e,
and thus e is identity of S.

Let x ∈ S. By Lemma 2.4, we have xy = e and y′x = e for some y, y′ ∈ S.
Since y′ = y′e = y′xy = ey = y, we see that y is the inverse of x.

2.2. Left and right groups

Let S be a semigroup. An element e ∈ S is called an idempotent if e2 = e. We
denote the set of all idempotents of S by

E(S) = {e ∈ S : e2 = e}. (2.5)

Note that, if e is an idempotent, then any element of Se is invariant under right
multiplication by e, i.e., x ∈ Se implies xe = x. A semigroup S is called a left
group [right group] if S is left simple [right simple] and contains at least one
idempotent.

Example 2.7. Let us keep the notation of Example 2.1. Then {ι1, ι2} is a left
group. In fact, both ι1 and ι2 are idempotents, and {ι1, ι2} is left simple by
Lemma 2.4, because {ι1, ι2} is a minimal left ideal of S.

A semigroup S is called left cancellative [right cancellative] if, for any a, x, y ∈
S with ax = ay [xa = ya], we have x = y. An element e ∈ S is called a left
identity [right identity ] if ex = x [xe = x] for all x ∈ S.

Lemma 2.8. Let S be a semigroup. If S is either right cancellative or left
simple, then any idempotent of S is a right identity.

Proof. Suppose S is right cancellative and let e ∈ E(S). Then xee = xe implies
xe = x.

Suppose S is left simple and let e ∈ E(S). By Lemma 2.4, we have S = Se,
which yields that xe = x for all x ∈ S.
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Proposition 2.9. For a semigroup S, the following are equivalent:

(i) S is a left group.
(ii) S is left simple and right cancellative.
(iii) For any a, b ∈ S, the equation xa = b has a unique solution x ∈ S.

Proof. [(i) ⇒ (ii)] Let e ∈ E(S) be fixed. By Lemma 2.8, we see that e is a right
identity.

Suppose xa = ya. By Lemma 2.4, we have ba = e for some b ∈ S. We then
have abab = aeb = ab, so that ab ∈ E(S) and ab is a right identity. We then
obtain x = xab = yab = y.

[(ii)⇒ (iii)] Existence follows from left simplicity and Lemma 2.4. Uniqueness
follows from right cancellativity.

[(iii) ⇒ (i)] By (iii), we have S = Sa for all a ∈ S, which shows by Lemma
2.4 that S is left simple.

Let a ∈ S and take e ∈ S such that ea = a by (iii). Then we have e2a = ea =
a, which leads to e2 = e by right cancellativity.

2.3. Rees decomposition

Let S be a semigroup. An idempotent e ∈ E(S) is called primitive if

ex = xe = x ∈ E(S) implies x = e. (2.6)

We say that S is completely simple if S is simple and contains a primitive
idempotent.

Theorem 2.10 (Rees decomposition). Let S be a completely simple semigroup
and let e be a primitive idempotent of S. Set

L := E(Se), G := eSe, R := E(eS). (2.7)

Then the following assertions hold:

(i) LG = Se is a left group and GR = eS is a right group.
(ii) RL ⊂ G and eL = Re = {e}.
(iii) G = Se ∩ eS is a group where e is its identity.
(iv) S = LGR (This factorization will be called the Rees decomposition of S

at e, and G will be called the group factor at e).
(v) The product mapping

ψ : L×G×R � (x, g, y) �→ (xgy) ∈ LGR (2.8)

is bijective with its inverse given as

ψ−1 : LGR � z �→ (ze(eze)−1, eze, (eze)−1ez) ∈ L×G×R. (2.9)

Proof. (i) It is obvious that Se is a left ideal of S. Let I be a left ideal of S such
that I ⊂ Se. Let a ∈ I. Note that ae = a since a ∈ Se. By simplicity of S and
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Lemma 2.5, we have uav = e for some u, v ∈ S. Set r = eu and s = eve. We
then have

ras = eu(ae)ve = euave = e, er = r, es = se = s. (2.10)

If we set t = sra, then et = te = t and

t2 = s(ras)ra = sera = sra = t, (2.11)

which yields t = e by primitivity. Since e = t = sra ∈ srI ⊂ I, we have
Se ⊂ SI ⊂ I, which shows I = Se and that Se is a minimal left ideal of S. By
Lemma 2.4, we see that Se is left simple. Since Se contains an idempotent e,
we see that Se is a left group. By a similar argument we see that eS is a right
group.

Let us show LG = Se. It is obvious that LG ⊂ Se. Let a ∈ Se. Set g := ea ∈
eSe = G and set b = ag−1 ∈ Se. Since g−1 = g−1e, we have

b2 = ag−1ag−1 = ag−1(ea)g−1 = ag−1 = b. (2.12)

Hence we have b ∈ E(Se) = L and a = ae = ag−1g = bg ∈ LG. We now have
LG = Se. We also have GR = eS similarly.

(ii) RL ⊂ (eS)(Se) ⊂ eSe = G.
Let x ∈ L = E(Se). Since (ex)2 = e(xe)x = exx = ex and e(ex) = (ex)e =

ex, we have ex = e by primitivity. We thus see that eL = {e}. We have Re = {e}
similarly.

(iii) It is obvious that G = eSe = eS ∩ Se, since x ∈ eS ∩ Se implies
x = ex = xe = exe. It is also obvious that e is identity of G. Let g ∈ G. Since
G ⊂ eSe, we have g = ea for some a ∈ Se. By the left simplicity of Se and by
Lemma 2.4, we have ba = e for some b ∈ Se. Since (ab)2 = a(ba)b = aeb = ab,
we see by Lemma 2.8 that ab is right identity. Hence ab = abe = e, which shows
that b is the inverse of a.

(iv) LGR = LGGR = SeeS = SeS = S by Lemma 2.5.
(v) Let z = xgy with (x, g, y) ∈ L × G × R. Since x = xx = xex and since

exgye ∈ eSe = G, we have

x = xe = x(exgye)(exgye)−1 = ze(eze)−1. (2.13)

We have y = (eze)−1ez similarly. Since ex = ye = e by (ii), we obtain

g = ege = (ex)g(ye) = eze. (2.14)

The proof is now complete.

Corollary 2.11. Under the same assumptions and notation as Theorem 2.10,
it holds that {Sy = LGy : y ∈ R} is the family of all minimal left ideals of S.

Proof. Any minimal left ideal of S is of the form Sz for some z ∈ S. We represent
z = xgy and then we obtain Sz = LG(Rx)gy = LGy, since RL ⊂ G.

Conversely, for any z ∈ LGy, we have z = xgy for some (x, g) ∈ L × G, so
that we have LGyz = LG(yx)gy = LGy, which shows by Lemma 2.2 that LGy
is a minimal left ideal.
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Corollary 2.12. Under the same assumptions and notation as Theorem 2.10,
the following assertions hold:

(i) For z = xgy with (x, g, y) ∈ L × G × R, z is idempotent if and only if
g = (yx)−1.

(ii) All idempotents of S are primitive.
(iii) Let e′ be another idempotent of S and represent it as e′ = a(ba)−1b for

(a, b) ∈ L×R. Let S = L′G′R′ denote the Rees decomposition of S at e′.
Then

L′G′ = LGb, G′ = aGb, G′R′ = aGR. (2.15)

Proof. (i) Suppose z2 = z. Then xgyxgy = xgy. Since eL = Re = {e}, we have
gyxg = g, which shows g = (yx)−1.

Conversely, suppose g = (yx)−1. Then z2 = x(gyxg)y = xgy = z.
(ii) Let e1, e2 ∈ S be two idempotents of S and represent them as ei =

ai(biai)
−1bi for (ai, bi) ∈ L × R, i = 1, 2. Suppose e1e2 = e2e1 = e2. Then

a1((b1a1)
−1(b1a2)(b2a2)

−1)b2 = a2((b2a2)
−1(b2a1)(b1a1)

−1)b1 = a2(b2a2)
−1b2,

which shows a1 = a2 and b1 = b2 by the injectivity of the product mapping ψ.
Hence we have e1 = e2, which shows that e1 is a primitive idempotent.

(iii) We have L′G′ = Se′ = LG(Ra)(ba)−1b = LGb and G′R′ = aGR simi-
larly. We also have G′ = e′Se′ = a(ba)−1(bL)G(Ra)(ba)−1b = aGb.

Corollary 2.13. A left group S is completely simple. The Rees decomposition
of S at e ∈ E(S) is given as S = LG with R = {e}.

Proof. Suppose ex = xe = x ∈ E(S). By Lemma 2.4, we have yx = e for some
y ∈ S. Hence x = ex = yxx = yx = e, which shows that e is an primitive
idempotent. Hence S is completely simple. Let S = LGR denote the Rees
decomposition of S at e. Since S = Se by Lemma 2.4 and since Re = {e}, we
obtain S = Se = LGRe = LG.

For later use we prove the following proposition.

Proposition 2.14. Suppose that a semigroup S contains a minimal left ideal
A and a minimal right ideal B as well. Then BA is a group and its identity is
a primitive idempotent of S. If, in addition, S is simple, then S is completely
simple.

Proof. Since (BA)(BA) = (BAB)A ⊂ BA, we see that BA is a subsemigroup
of S. To prove right simplicity of BA, let I be a right ideal of BA. Since IB is a
right ideal of S and IB ⊂ BAB ⊂ B, we see that IB = B by minimality. Hence
BA = IBA ⊂ I, which shows right simplicity of BA. By a similar argument we
obtain left simplicity of BA. We thus conclude by Proposition 2.6 that BA is a
group.

Let e be the identity of BA and suppose ex = xe = x ∈ E(S). Then x =
xx = exxe ∈ (BAS)(SBA) ⊂ BA. Since BA is a group and since x2 = x, we
have x = xx−1 = e, which shows that e is a primitive idempotent of S.
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2.4. Kernel

A minimal ideal of a semigroup S will be called a kernel of S.

Theorem 2.15. Let S be a semigroup. Then the following assertions hold:

(i) If S contains a minimal left ideal, then S contains a unique kernel K, and
SzS = K for all z ∈ K.

(ii) If S contains a minimal left ideal and a minimal right ideal as well, then
the unique kernel of S is completely simple.

(iii) If S contains a completely simple kernel K, then it is the unique kernel of
S. Let K = LGR denote the Rees decomposition at e. Then Sz = Kz =
LGz for all z ∈ K.

Proof. (i) Let A denote the family of all minimal left ideals of S and suppose
A is not empty. We shall prove that K :=

⋃
A is a unique kernel of S.

Let z ∈ K and take A ∈ A such that z ∈ A. Then Sz = A by Lemma 2.2. For
x ∈ S, we see that Ax ∈ A; in fact, for any left ideal I of S such that I ⊂ Ax,
we see that J = {a ∈ A : ax ∈ I} ⊂ A is a left ideal of S, so that J = A by
minimality and thus I = Ax. Hence SzS = AS =

⋃
x∈S Ax ⊂

⋃
A = K, which

shows by Lemma 2.3 that K is a kernel of S.
Let K ′ be another kernel of S. Since K ∩ K ′ contains KK ′ which is not

empty, we see that K ∩ K ′ is an ideal contained both in K and in K ′. Thus
K ∩K ′ = K = K ′ by minimality.

(ii) By (i) and Lemma 2.3, we see that the unique kernel K of S is both a
minimal left ideal of K and a minimal right ideal of K. By Proposition 2.14, we
see that K is completely simple.

(iii) SupposeK is a completely simple kernel of S with a primitive idempotent
e. By Theorem 2.10, K contains a left group Ke. By Lemma 2.4, we see that
Ke is a minimal left idal of S. Hence by (i) the kernel of S is unique.

For z ∈ K, we represent z = xgy ∈ LGR. Then by (i) Sz is a minimal left
ideal of K containing y. By Corollary 2.11, we see that Sz = LGy = LGz = Kz.

3. Topological semigroup

A semigroup S is called topological if S is endowed with a topology such that the
product mapping S×S � (x, y) �→ xy ∈ S is jointly continuous. A semigroup S
is called Polish if S is a topological semigroup with respect to a Polish topology,
i.e. a separable and completely metrizable topology.

For a topological space, it is well-known (see, e.g. [20, Theorem 1.5.3]) that
being locally compact Polish is equivalent to being locally compact Hausdorff
with a countable base. It is elementary that being compact Polish is equivalent
to being compact metrizable.

For a ∈ S and A ⊂ S, we write

a−1A = {x ∈ S : ax ∈ A}, Aa−1 = {x ∈ S : xa ∈ A}. (3.1)



138 K. Yano

If S contains identity e and a ∈ S has its inverse a−1 ∈ S, then (a−1)A = a−1A;
in fact,

(a−1)A = {a−1x ∈ S : x ∈ A} = {y ∈ S : ay ∈ A} = a−1A. (3.2)

Lemma 3.1. Let S be a Polish semigroup. Then the following assertions hold:

(i) For a ∈ S and for a closed [open, Borel] subset A, both a−1A and Aa−1

are also closed [open, Borel].
(ii) If A is a subsemigroup of S, then so is its closure A.
(iii) Let A be a closed subsemigroup of S. Then E(A), eA, Ae and eAe are

closed for all e ∈ E(A).
(iv) For two compact subsets K and K ′, the product KK ′ is also compact.

Proof. (i) If we write ψa : S → S for the translation ψa(x) = ax, then a−1A =
ψ−1
a (A). Since ψa is continuous, we obtain the desired results.
(ii) Let a, b ∈ A and take {an}, {bn} ⊂ A such that an → a and bn → b. Then

we have ab = lim anbn ∈ A.
(iii) Let {en} ⊂ E(A) such that en → e ∈ S. Since A is closed, we have e ∈ A.

Since e2n = en for all n, we have e2 = e, which shows e ∈ E(A).
Let {xn} ⊂ eA such that xn → x ∈ S. Since eA ⊂ A and since A is closed,

we have x ∈ A. Then ex = lim exn = limxn = x, which shows x = ex ∈ eA.
(iv) Let ψ : S × S → S denote the jointly continuous product mapping:

ψ(x, y) = xy. Since KK ′ = ψ(K × K ′) and K × K ′ is compact, we see that
KK ′ is compact.

3.1. Topological group

A group S is called topological if G is a topological semigroup and the inverse
mapping G � g �→ g−1 ∈ G is continuous.

Theorem 3.2 (Ellis [11] and Żelazko [52]). If a group G is a topological semi-
group with respect to a completely metrizable topology, then it is a topological
group.

Proof. We borrow the proof from Pfister [36]. Let e denote the identity of G
and let d be a complete metric of G.

Let U0 be a open neighborhood of e. By the joint continuity of the product
mapping, we can construct a sequence {Un}∞n=1 of open balls of e such that the
radius of Un decreases to 0 and UnUn ⊂ Un−1 for n = 1, 2, . . ., where Un stands
for the closure of Un.

Let {xn}∞n=1 be a subsequence of an arbitrary sequence of G which converges
to e. It then suffices to construct a subsequence {n(k)}∞k=1 of {1, 2, . . .} such
that x−1

n(k) → e. We write yk := xn(1) · · ·xn(k).

Set n(0) = 0 and y0 = x0 = e. If we have n(0), n(1), . . . , n(k − 1), then we
can take n(k) > n(k − 1) such that xn(k) ∈ Uk and d(yk, yk−1) < 2−k, since
yk−1xn → yk−1 as n → ∞. By completeness of d, we see that yk converges to a
limit y ∈ G. Let n be fixed for a while. Since yUn+1 is a neighborhood of y, we
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see that yk−1 ∈ yUn+1 for large k. For j > k, we have Uj−1Uj ⊂ UjUj ⊂ Uj−1,
and hence

y−1
k yj = xn(k+1) · · ·xn(j−1)xn(j) ∈ Uk+1 · · ·Uj ⊂ Uk, (3.3)

which implies y−1
k y ∈ Uk ⊂ Uk−1. We now obtain

x−1
n(k) = (y−1

k−1yk)
−1 = y−1

k yk−1 ∈ y−1
k yUn+1 ⊂ Uk−1Un+1 ⊂ Un+1Un+1 ⊂ Un

(3.4)

for large k. Thus we obtain x−1
n(k) → e.

Corollary 3.3. Suppose that a Polish semigroup S contains a completely simple
kernel K. Let K = LGR denote the Rees decomposition of K at e ∈ E(K). Then
it holds that L, G, R and K are closed subsets, and that the product mapping

ψ : L×G×R � (x, g, y) �→ xgy ∈ LGR (3.5)

is a homeomorphism.

Proof. By Corollary 2.15, we have Ke = Se, eK = eS and eKe = eSe. By
Lemma 3.1, we see that L = E(Ke), G = eKe and R = E(eK) are all closed.
By Theorem 3.2, we see that G is a Polish group. We now see that the inverse

ψ−1 : LGR � z �→ (ze(eze)−1, eze, (eze)−1ez) ∈ L×G×R (3.6)

is continuous. Consequently, we see that K is closed.

3.2. Compact semigroup

Theorem 3.4. A compact Polish semigroup S contains a compact completely
simple kernel.

Proof. Let I denote the family of all closed left ideals of S. The family I contains
S and is endowed with a partial order by the usual inclusion. For any linearly
ordered subfamily J of I has a lower bound in I; in fact, the intersection

⋂
J

is not empty by compactness of S and is a closed left ideal of S such that⋂
J ⊂ J for all J ∈ J . Hence, by Zorn’s lemma, we see that I contains a

minimal element, say A.

Let us prove that A is a minimal left ideal of S. Let I be a left ideal of S
such that I ⊂ A. For a ∈ I, we have Sa ∈ I and Sa ⊂ SI ⊂ I ⊂ A, which yields
Sa = I = A by the minimality of A in I. This shows that A is a minimal left
ideal of S.

Similarly we see that S contains a minimal right ideal. By Theorem 2.15, we
see that S contains a completely simple kernel K. By Corollary 3.3, we see that
K is a closed subset of S, and hence K is compact.
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Proposition 3.5. Let S be a Polish semigroup and let a ∈ S. Suppose that
any subsequence of {an}∞n=1 has a convergent further subsequence. Then the set
C of all cluster points of {an}∞n=1 is a compact abelian group. If we denote the
identity of C by e, then C = {e, ae, a2e, . . .}.
Proof. Let C denote the set of all cluster points of {an}∞n=1. By the assumption,
we see that C is a compact abelian semigroup. By Theorem 3.4, we see that C
contains a compact completely simple kernel K. Since the Rees decomposition
of K is LGR = GRL = G by commutativity, we see that K is a compact
abelian group. Let e denote the identity of K. Then, for any x ∈ C, we can
find a subsequence {n(k)} of {1, 2, . . .} such that x = e limk→∞ an(k) ∈ eC ⊂
KC ⊂ K ⊂ C, which shows K = eC = C. It is now easy to see that C =
{e, ae, a2e, . . .}.
Remark 3.6. In the settings of Proposition 3.5, suppose that the sequence
{an}∞n=1 has multiple points. Let p and q be the smallest positive integers such
that aq+p = aq. Then we have {an : n = 1, 2, . . .} = {a, a2, . . . , aq+p−1} and

K = {aq, aq+1, . . . , aq+p−1} = {e, ae, . . . , ap−1e} (3.7)

with e = arp, where r is the unique integer such that q ≤ rp ≤ q + p− 1.

4. Convolutions of probability measures on Polish semigroups

4.1. Convolutions

Let S be a Polish semigroup. Let B(S) denote the family of all Borel sets of S
and P(S) the family of all probability measures on (S,B(S)).

For μ, ν ∈ P(S), we define the convolution μ ∗ ν ∈ P(S) of μ and ν by

μ ∗ ν(B) =

∫∫
1B(xy)μ(dx)ν(dy), B ∈ B(S). (4.1)

Since 1B(xy) = 1By−1(x) = 1x−1B(y), we have

μ ∗ ν(B) =

∫
μ(By−1)ν(dy) =

∫
ν(x−1B)μ(dx), B ∈ B(S). (4.2)

For a ∈ S, we write δa for the Dirac mass at a: δa(B) = 1B(a). It is obvious
that

μ ∗ δx(B) = μ(Bx−1), δx ∗ μ(B) = μ(x−1B), B ∈ B(S), (4.3)

which will be called translations of μ.
For μ ∈ P(S), we denote its topological support by

S(μ) = {x ∈ S : μ(U) > 0 for all open neighborhood U of x}. (4.4)

It is obvious that S(μ) is closed and μ(S(μ)c) = 0.
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Lemma 4.1. For μ, ν ∈ P(S), it holds that

S(μ ∗ ν) = S(μ)S(ν). (4.5)

Proof. Let a ∈ S(μ) and b ∈ S(ν). For any open neighborhood U of ab, the joint
continuity of the product mapping allows us to take open neighborhoods U1 of
a and U2 of b such that U1U2 ⊂ U , so that

μ ∗ ν(U) ≥
∫∫

1U1U2(xy)μ(dx)ν(dy) ≥ μ(U1)ν(U2) > 0, (4.6)

which yields ab ∈ S(μ ∗ ν) and hence S(μ)S(ν) ⊂ S(μ ∗ ν).
Let a ∈ S(μ)S(ν)c. Then we can take an open neighborhood U of a such that

U ⊂{S(μ)S(ν)}c, so that

μ ∗ ν(U) ≤
∫∫

1{S(μ)S(ν)}c(xy)μ(dx)ν(dy) ≤ μ(S(μ)c) + ν(S(ν)c) = 0, (4.7)

which shows a ∈ S(μ ∗ ν)c and hence S(μ ∗ ν) ⊂ S(μ)S(ν).
Proposition 4.2. Let S be a completely simple Polish semigroup. Let S = LGR
denote the Rees decomposotion at e ∈ E(S). For the inverse of the product
mapping ψ : L×G×R → LGR, we denote

(zL, zG, zR) := ψ−1(z) = (ze(eze)−1, eze, (eze)−1ez) ∈ L×G×R, z ∈ LGR.
(4.8)

For μ ∈ P(S), we define

μL(B) = μ(z : zL ∈ B), μG(B) = μ(z : zG ∈ B), μR(B) = μ(z : zR ∈ B)
(4.9)

for B ∈ B(S). Then, for μ, ν ∈ P(S), it holds that

(μ ∗ ν)L = μL, (μ ∗ ν)R = νR. (4.10)

Proof. This is obvious by noting that (z1z2)
L = zL1 and (z1z2)

R = zR2 .

We equip P(S) with the topology of weak convergence: μn → μ if and only if∫
fdμn →

∫
fdμ for all f ∈ Cb(S), the class of all bounded continuous functions

on S. It is well-known (see, e.g. [35, Theorems 6.2 and 6.5 of Chapter 2]) that
P(S) is a Polish space.

Proposition 4.3. Let S be a Polish semigroup. Then the convolution mapping
P(S)×P(S) � (μ, ν) �→ μ ∗ ν ∈ P(S) is jointly continuous. Consequently, P(S)
is a Polish semigroup.

Proof. Note that, if we take independent random variables X and Y taking

values in S such that X
d
= μ and Y

d
= ν, then μ ∗ ν coincides with the law of

the product XY . The desired result now follows from the Skorokhod coupling
thoerem (see, e.g. [18, Theorem 4.30]), which asserts that μn → μ implies that

we can take random variables {Xn}, X taking values in S such that Xn
d
= μn,

X
d
= μ and Xn → X a.s.
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4.2. Translation invariance

Let S be a Polish semigroup. A probability measure μ ∈ P(S) is called �∗-
invariant [r∗-invariant ] if δx ∗ μ = μ [μ ∗ δx = μ] for all x ∈ S.

Theorem 4.4. Let S be a Polish semigroup and let μ ∈ P(S). Suppose that μ
is both �∗-invariant and r∗-invariant. Then S(μ) is a compact Polish group, and
μ coincides with the normalized unimodular Haar measure on S(μ) (see e.g. [4,
Chapter 9] for the Haar measure).

Proof. Note that

S(μ) = S(δx ∗ μ) = xS(μ), x ∈ S, (4.11)

which implies that S(μ) is a left ideal of S. Similarly S(μ) is a right ideal of S,
and hence S(μ) is an ideal of S.

Let us prove that, for any x ∈ S(μ), the subsemigroup xS is left-cancellative.
Let y, a, b ∈ S be such that (xy)(xa) = (xy)(xb). Since S(μ) = S(μ ∗ δxyx) =

S(μ)xyx, we can take {zn} ⊂ S(μ) such that znxyx → x, and hence

xa = lim znxyxa = lim znxyxb = xb, (4.12)

which shows that xS is left-cancellative. Similarly Sx is right-cancellative.
Let a, b ∈ S(μ) be fixed. We shall prove that the subsemigroup D := aS(μ)b

contains an idempotent. Note that

μ(D) = (δa ∗ μ ∗ δb)(D) = μ(a−1Db−1) ≥ μ(S(μ)) = μ(S) = 1, (4.13)

which shows μ(D) = 1. For x ∈ D, we have

μ(D) ≤ μ(x−1(xD)) = (μ ∗ δx)(xD) = μ(xD) ≤ μ(D), (4.14)

which shows μ(xD) = μ(D) = 1. We define two mappings θ, β : S × S → S × S
by

θ(x, y) = (x, xy), β(x, y) = (y, x). (4.15)

Since (x, y) ∈ θ(D ×D) if and only if x ∈ D and y ∈ xD, we have

(μ⊗ μ)(β ◦ θ(D ×D)) = (μ⊗ μ)(θ(D ×D)) =

∫
D

μ(xD)μ(dx) = μ(D)2 = 1.

(4.16)

This shows that β ◦ θ(D×D)∩ θ(D×D) is not empty, so that (vw, v) = (x, xy)
for some v, w, x, y ∈ D. We now have x(yw) = vwyw = x(yw)2, which implies
yw = (yw)2 by left-cancellativity of D.

Let e := yw ∈ E(D) = E(aS(μ)b). By the left- and right-cancellativity of
aS(μ)b and by Lemma 2.8, we see that e is identity of aS(μ)b. By Lemma 3.1,
we see that

S(μ) = eaS(μ)b = e (aS(μ)b) = eS(μ) ⊂ aS(μ)bS(μ) ⊂ aS(μ) ⊂ S(μ), (4.17)
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which shows aS(μ) = S(μ). Similarly we have S(μ)b = S(μ). By Lemma 2.4,
Proposition 2.6 and Theorem 3.2, we see that S(μ) is a Polish group.

By the �∗-invariance, we have μ ∗ μ = μ. We now apply [35, Theorem 3.1 of
Chapter 3] to obtain the desired result.

4.3. Convolution invariance

Proposition 4.5 (Mukherjea [27]). Let S be a Polish semigroup and let μ, ν ∈
P(S). Suppose

ν = μ ∗ ν = ν ∗ μ. (4.18)

Then, for any x ∈ S(μ) and any a ∈ S(ν), it holds that

ν ∗ δxa = ν ∗ δa, δax ∗ ν = δa ∗ ν. (4.19)

Proof. Let a ∈ S(ν), f ∈ Cb(S) and ε > 0 be fixed for a while, and set

g(x) = max

{∫
fd(ν ∗ δx)−

∫
fd(ν ∗ δa)− ε, 0

}
, x ∈ S. (4.20)

It is obvious that g ∈ Cb(S), g is non-negative and g(a) = 0. By ν = ν ∗ μ, we
have ∫

fd(ν ∗ δx)−
∫

fd(ν ∗ δa)− ε (4.21)

=

∫ {∫
fd(ν ∗ δyx)−

∫
fd(ν ∗ δa)− ε

}
μ(dy) ≤

∫
g(yx)μ(dy), (4.22)

so that we have

g(x) ≤
∫

g(yx)μ(dy), x ∈ S. (4.23)

In addition, by ν = μ ∗ ν, we have∫ {
g(x)−

∫
g(yx)μ(dy)

}
ν(dx) =

∫
gdν −

∫
gd(μ ∗ ν) = 0, (4.24)

which shows that the equality in (4.23) holds for ν-a.e. x ∈ S. Since g is contin-
uous, we see that the equality in (4.23) holds for all x ∈ S(ν). Since a ∈ S(ν)
and g(a) = 0, we see, again by continuity of g, that

g(ya) = 0, y ∈ S(μ). (4.25)

Since ε > 0 is arbitrary, we obtain∫
fd(ν ∗ δya) ≤

∫
fd(ν ∗ δa), a ∈ S(ν), y ∈ S(μ). (4.26)
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Since ν = ν ∗ μ, we have
∫ {∫

fd(ν ∗ δya)−
∫
fd(ν ∗ δa)

}
μ(dy) = 0, which

implies∫
fd(ν ∗ δya) =

∫
fd(ν ∗ δa), a ∈ S(ν), y ∈ S(μ), f ∈ Cb(S). (4.27)

Since f ∈ Cb(S) is arbitrary, we obtain ν ∗ δya = ν ∗ δa for all a ∈ S(ν) and
y ∈ S(μ). We obtain δay ∗ ν = δa ∗ ν similarly.

4.4. Convolution idempotent

We denote the n-fold convolution by μn, i.e. μ1 = μ and μn = μn−1 ∗ μ for
n = 2, 3, . . ..

Theorem 4.6 (Mukherjea–Tserpes [32]). Let S be a Polish semigroup and
let μ ∈ P(S). Suppose that μ2 = μ. Then S(μ) is completely simple and its
group factor is compact. Let S(μ) = LGR denote the Rees decomposition at
e ∈ E(S(μ)). Then μ admits the convolution factorization

μ = μL ∗ ωG ∗ μR, (4.28)

where μL and μR have been introduced in (4.9) and ωG stands for the normalized
unimodular Haar measure on the compact Polish group G.

Remark 4.7. The convolution factorization (4.28) is equivalent to the following
assertion: If we let Z be a random variable whose law is μ, then

ZL, ZG and ZR are independent and the law of ZG is ωG. (4.29)

Here (ZL, ZG, ZR) = ψ−1(Z) with ψ : L×G×R → LGR denoting the product
mapping; see Proposition 4.2.

Proof of Theorem 4.6. Since S(μ) = S(μ)S(μ), we see that S(μ) is a closed
subsemigroup of S. By Proposition 4.5, we see that, for any a ∈ S(μ),

μ ∗ δxa = μ ∗ δa, δax ∗ μ = δa ∗ μ, x ∈ S(μ). (4.30)

Then, for a ∈ S(μ), we have

μ ∗ δay = μ ∗ δa (y ∈ S(μ ∗ δa))., δza ∗ μ = δa ∗ μ (z ∈ S(δa ∗ μ)) (4.31)

In fact, for y ∈ S(μ∗δa) = S(μ)a, we may take {xn} ⊂ S(μ) such that xna → y,
so that μ ∗ δa = μ ∗ δaxna → μ ∗ δay.

Let a ∈ S(μ) be fixed and set ν = δa ∗μ ∗ δa. Then S(ν) = aS(μ)a is a closed
subsemigroup of S. For any y ∈ S(ν) = aS(μ)a, we may take {xn} ⊂ S(μ) such
that axna → y, so that, using (4.30), we have

ν = δa ∗ μ ∗ δa = δaxna2 ∗ μ ∗ δa = δaxna ∗ ν → δy ∗ ν, (4.32)
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which shows that ν|S(ν) is �∗-invariant. We see similarly that ν|S(ν) is r∗-

invariant. We may now apply Theorem 4.4 to see that S(ν) = aS(μ)a is a
compact Polish group. Its identity is an idempotent of S(μ).

Let e ∈ E(S(μ)). By the above argument with a = e, we see that G := eS(μ)e
is a compact Polish group (note that eS(μ)e is closed by Lemma 3.1). Set
A := S(μ)e. For y ∈ A, using (4.31), we have

Ay = S(μ)ey = S(μ ∗ δey) = S(μ ∗ δe) = S(μ)e = A. (4.33)

Since Ay∩ eS(μ)e is a left ideal of the group eS(μ)e, we see that Ay∩ eS(μ)e =
eS(μ)e, i.e. eS(μ)e ⊂ Ay, which shows e ∈ Ay. Hence

A = Ae ⊂ AAy ⊂ Ay ⊂ Ay = A, (4.34)

which yields Ay = A for all y ∈ A. By Lemma 2.4, we see that A is a left group.
We see similarly that B := eS(μ) is a right group. By Theorem 2.15, we see
that S(μ) contains a completely simple kernel K, which is closed by Corollary
3.3.

By (4.30), we have

μ ∗ δe ∗ μ =

∫
(μ ∗ δe ∗ δa)μ(da) =

∫
(μ ∗ δa)μ(da) = μ ∗ μ = μ. (4.35)

By Lemma 2.5, we have K = S(μ)eS(μ), and hence we obtain

K = K = S(μ)eS(μ) = S(μ ∗ δe ∗ μ) = S(μ), (4.36)

which shows that S(μ) is completely simple.
By (4.31), we see that μ ∗ δe is r∗-invariant on A = S(μ)e = LG, so that

μ ∗ δe = μ ∗ δe ∗ ωG. Hence, for any B ∈ B(S(μ)),

μ(B) =(μ ∗ δe ∗ μ)(B) = (μ ∗ δe ∗ ωG ∗ μ)(B) (4.37)

=

∫
μ(dz1)

∫
μ(dz2)

∫
ωG(dg)1B(z1egz2) (4.38)

=

∫
μ(dz1)

∫
μ(dz2)

∫
ωG(dg)1B(z

L
1 gz

R
2 ) = (μL ∗ ωG ∗ μR)(B), (4.39)

which completes the proof.

The following proposition is a converse to Theorem 4.6.

Proposition 4.8. Let S be a Polish semigroup and let μ1, μ2 ∈ P(S). Let G
be a compact Polish subgroup of S and suppose that S(μ2 ∗ μ1) ⊂ G. Then
μ := μ1 ∗ ωG ∗ μ2 satisfies μ2 = μ.

Proof. For any B ∈ B(S), we have

μ2(B) = (μ1 ∗ ωG ∗ μ2 ∗ μ1 ∗ ωG ∗ μ2)(B) (4.40)
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=

∫
μ1(dz1)

∫
ωG(dg1)

∫
(μ2 ∗ μ1)(dg2)

∫
ωG(dg3)

∫
μ2(dz2)1B(z1g1g2g3z2)

(4.41)

=

∫
μ1(dz1)

∫
ωG(dg1)

∫
μ2(dz2)1B(z1g1z2) = (μ1 ∗ ωG ∗ μ2)(B) = μ(B),

(4.42)

which completes the proof.

4.5. Infinite convolutions

Theorem 4.9 (Rosenblatt [40] and Mukherjea [29]). Let S0 be a Polish semi-
group and let μ ∈ P(S0). Suppose that the sequence {μn}∞n=1 is tight. Let S
denote the closure of the semigroup generated by S(μ), i.e.

S :=

∞⋃
n=1

S(μ)n. (4.43)

Then the following assertions hold:

(i) There exists ν ∈ P(S) such that ν2 = ν, μ ∗ ν = ν ∗ μ = ν and

μn :=
1

n

n∑
k=1

μk −→
n→∞

ν. (4.44)

(ii) The family K of cluster points of {μn : n = 1, 2, . . .} is a compact abelian
group such that

S(ν) =
⋃
λ∈K

S(λ). (4.45)

(iii) Let η denote the identity of K. Then S(η) is a completely simple semigroup.
Let S(η) = LHR denote the Rees decomposition at e ∈ E(S(η)). Then H
is a compact group and η admits the convolution factorization

η = ηL ∗ ωH ∗ ηR. (4.46)

(iv) S(ν) is a completely simple kernel of S containing the idempotent e. The
Rees decomposition of S(ν) at e is of the form S(ν) = LGR, where G is a
compact group containing H, and ν admits the convolution factorization

ν = ηL ∗ ωG ∗ ηR. (4.47)

(v) For g ∈ G, we write ωgH := δg ∗ ωH . It holds that H is a closed normal
subgroup of G and that there exists a Polish group isomorphism F : K →
G/H such that

λ = ηL ∗ ωF (λ) ∗ ηR, (4.48)
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Consequently, there exists γ ∈ G such that μk ∗ η admits the convolution
factorization

μk ∗ η = ηL ∗ ωγkH ∗ ηR, k = 1, 2, . . . , (4.49)

and furthermore, K and G/H may be represented as

K = {η, μ ∗ η, μ2 ∗ η, . . .}, G/H = {H, γH, γ2H, . . .}. (4.50)

Remark 4.10. Note that the factors L and R in the Rees decompositions at e
of S(η) and S(ν) are common. By (i) of Corollary 2.12, we see that

E(S(ν)) = {x(yx)−1y : x ∈ L, y ∈ R} = E(S(η)). (4.51)

Remark 4.11. If the order of the group K or G/H is finite, say p, then

K = {η, μ ∗ η, . . . , μp−1 ∗ η}, G/H = {H, γH, . . . , γp−1H} (4.52)

with γp ∈ H. It is now obvious that limn→∞ μn converges if and only if p = 1.

Proof of Theorem 4.9. (i) Let ‖ · ‖ denote the total variation norm. For j =
1, 2, . . ., we have

∥∥μn − μj ∗ μn

∥∥ ≤ 1

n

∥∥∥∥∥
n∑

k=1

μk −
n∑

k=1

μk+j

∥∥∥∥∥ =
1

n

∥∥∥∥∥
j∑

k=1

μk −
n+j∑

k=n+1

μk

∥∥∥∥∥ ≤ 2j

n
−→
n→∞

0.

(4.53)

Since {μn} is tight, we see that {μn} is also tight. Let ν1, ν2 be cluster points
of {μn}. For i = 1, 2, we see by (4.53) that μj ∗ νi = νi ∗μj = νi for j = 1, 2, . . .,
so that μn ∗ νi = νi ∗ μn = νi for n = 1, 2, . . ., which implies ν1 = ν1 ∗ ν2 =
ν2 ∗ ν1 = ν2. Hence we see that {μn} converges to some ν ∈ P(S0) and we have
ν2 = ν and μ ∗ ν = ν ∗ μ = ν. We may apply Theorem 4.6 to see that S(ν) is a
completely simple semigroup and its group factor is compact.

(ii) Let us prove that S(ν) and S(K) :=
⋃

λ∈K S(λ) are ideals of S. Let a ∈ S,

x ∈ S(ν) and y ∈ S(K). Then we may take {an} ⊂ S(μ)m(n) ⊂ S(μm(n)) and
{yn} ⊂ S(λn) such that an → a and yn → y. Since

anx ∈S(μm(n))S(ν) ⊂ S(μm(n) ∗ ν) = S(ν), (4.54)

anyn ∈S(μm(n))S(λn) ⊂ S(μm(n) ∗ λn) ⊂ S(K), (4.55)

we obtain ax = lim anx ∈ S(ν) and ay = lim anyn ∈ S(K), which shows that
S(ν) and S(K) are both left ideals of S. Similarly we see that they are also right
ideals of S.

Let U be an open subset containing S(ν). We shall prove that μn(U) → 1. Let
ε > 0. By tightness, we may take a compact subset K1 such that infn μ

n(K1) >
1− ε. We may take a compact subset K2 ⊂ S(ν) such that ν(K2) > 1− ε. Since

K1K2 ⊂ SS(ν) ⊂ S(ν) ⊂ U , we have K1 ×K2 ⊂ Ũ := {(x, y) ∈ S0 × S0 : xy ∈
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U}. By the Wallace theorem (see, e.g., [21, Theorem 12 of Chapter 5]), we may

take open subsets V1 and V2 such that K1 ⊂ V1, K2 ⊂ V2 and V1 × V2 ⊂ Ũ ,
which implies V1V2 ⊂ U . Since μn → ν, we have lim infn μn(V2) ≥ ν(V2) ≥
ν(K2) > 1 − ε. We may then take some n0 such that μn0(V ) > 1 − ε. We now
have

μn+n0(U) =

∫∫
1U (xy)μ

n(dx)μn0(dy) ≥ μn(V1)μ
n0(V2) > (1− ε)2, (4.56)

which leads to μn(U) → 1.
By the tightness assumption, we may apply Proposition 3.5 to see that K is

a compact abelian group. Let λ ∈ K and let x ∈ S(λ). Suppose that x /∈ S(ν).
We could then take disjoint open sets U and V such that S(ν) ⊂ U and x ∈ V .
If we let δ := λ(V )/2 > 0, then μn(V ) > δ for infinitely many n, and then
lim infn μ

n(U) ≤ lim infn μ
n(V c) ≤ 1 − δ, which would contradict μn(U) → 1.

Hence we obtain S(K) ⊂ S(ν). Since S(ν) is a minimal ideal of S by Lemma
2.5 and since S(K) is an ideal of S, we see that S(K) = S(ν).

(iii) By Theorem 4.6, we see that S(η) is a completely simple semigroup. Let
S(η) = LHR denote the Rees decomposition at e ∈ E(S(η)) (hence RL ⊂ H).
Then the group factor H is compact and η admits the convolution factorization
(4.46).

(iv) We have already seen in (i) that S(ν) is a completely simple kernel of
S. Since S(η) ⊂ S(K) = S(ν), we have e ∈ E(S(ν)). Let S(ν) = L′GR′ denote
the Rees decomposition at e. As a consequence of Theorem 4.6, we see that ν
admits the convolution factorization ν = ηL

′ ∗ ωG ∗ ηR′
. Since S(η) ⊂ S(ν) and

L = E(S(η)e)) etc., we see that L ⊂ L′, H ⊂ G and R ⊂ R′.
Let us prove that L′ = L and R′ = R. Let z = xgy ∈ L′GR′. Since S(ν) =

S(K), we may take zn ∈ S(λn) such that zn → z. Since K is abelian, we have
λn ∗ λ−1

n = λ−1
n ∗ λn = η, and by Proposition 4.2 we have λL′

n = ηL
′
= ηL

and λR′

n = ηR
′
= ηR. Hence we obtain xn := zL

′

n ∈ S(λL′

n ) = S(ηL) = L and
yn := zR

′
n ∈ S(λR′

n ) = S(ηR) = R, and thus x = limxn ∈ L and y = lim yn ∈ R,
which shows L′ = L and R′ = R.

(v) Let λ ∈ K. For z = xgy ∈ S(λ) ⊂ S(ν) = LGR, since RL ⊂ H, we have

xgy ∈ LgHR ⊂ LHRxgyLHR ⊂ S(η)S(λ)S(η) ⊂ S(η ∗ λ ∗ η) = S(λ). (4.57)

Hence we have S(λ) = LGλR for Gλ :=
⋃
{gH : z = xgy ∈ S(λ)} ⊂ G, and we

also have Gλ =
⋃
{Hg : z = xgy ∈ S(λ)} similarly. Note that GλH = HGλ =

Gλ. Take gλ ∈ G such that Hg−1
λ ⊂ Gλ−1 . Then we obtain

LHg−1
λ GλR ⊂ LGλ−1RLGλR ⊂ S(λ−1)S(λ) ⊂ S(λ−1 ∗ λ) ⊂ S(η) = LHR,

(4.58)

which yields that Hg−1
λ Gλ ⊂ H and hence Gλ = gλH. Similarly, we obtain

Gλ = Hgλ.
For any h ∈ H and g ∈ G ⊂ S(ν) = S(K), we may take zn = xngnyn ∈ S(λn)

such that zn → g and consequently gn → g. In a similar way to (4.58), we have

gnhg
−1
n ∈ (gnH)(Hg−1

n ) = GλnGλ−1
n

⊂ S(η) = LHR, (4.59)
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which shows gnhg
−1
n ∈ eLHRe = H. Letting n → ∞, we obtain ghg−1 ∈ H,

which shows thatH is a normal subgroup ofG. SinceG andH are both compact,
we see by [15, Theorem 5.22] that the quotient group G/H = {gH : g ∈ G} is
also compact. Let π : G → G/H denote the natural projection.

Since

S(ηR ∗ λ ∗ ηL) = S(ηR)S(λ)S(ηL) = RLGλRL ⊂ HgλHH = gλH, (4.60)

we obtain the convolution factorization

λ = ηλη = ηL ∗ ωH ∗ (ηR ∗ λ ∗ ηL) ∗ ωH ∗ ηR = ηL ∗ ωgλH ∗ ηR. (4.61)

We now define the mapping F : K → G/H by F (λ) := gλH. For λ1, λ2 ∈ K,
then

λ1 ∗ λ2 = ηL ∗ ωgλ1
H ∗ (ηR ∗ ηL) ∗ ωgλ2

H ∗ ηR = ηL ∗ ω(gλ1
gλ2

H) ∗ ηR, (4.62)

since RL ⊂ H, which shows that F is a group homomorphism. Injectivity of
F is obvious by (4.61). Let g ∈ G. As we have seen it above, we may take
zn = xngnyn ∈ S(λn) such that gn → g and gnH = gλnH. Then, by (4.61), we
have

λn = ηL ∗ ωgλnH ∗ ηR → ηL ∗ ωgH ∗ ηR =: λ. (4.63)

This shows that λ ∈ K and F (λ) = gH, which yields surjectivity of F . Suppose
K � λn → λ ∈ K. By (4.61), we have

ωF (λn) = δe ∗ λn ∗ δe → δe ∗ λ ∗ δe = ωF (λ) in P(G), (4.64)

which shows by the continuity of the natural projection π that

δF (λn) = ωF (λn) ◦ π−1 → ωF (λ) ◦ π−1 = δF (λ) in P(G/H), (4.65)

which implies F (λn) → F (λ) and we have seen continuity of F . Since K is
compact and G/H is Hausdorff, we see by [21, Theorem 9 of Chapter 5] that
F is a homeomorphism. Since F (μ ∗ η) ∈ G/H, we may take γ ∈ G such that
F (μ ∗ η) = γH, and then we obtain (4.49) since (μ ∗ η)k = μk = μk ∗ η and F
is a group homomorphism.

Finally, let us prove the representations (4.50). Since any λ ∈ K can be
represented as λ = λ ∗ η = limμn(k) ∗ η, we see that K = {η, μ ∗ η, μ2 ∗ η, . . .}.
Since for any g ∈ G we have F (λ) = gH for some λ = limμn(k) ∗ η ∈ K,
we obtain gH = F (λ) = limF (μn(k) ∗ η) = lim γn(k)H in G/H, which yields
G/H = {H, γH, γ2H, . . .}.

5. Two examples

5.1. First example

Let V = {1, 2} and B = {−1, 0, 1}. Let S0 denote the composition semigroup
of mappings from V ×B into itself. We define e, f, g, h ∈ S0 as

e((v, b)) =

{
(1, 1) (b = 0, 1),

(1,−1) (b = −1),
f((v, b)) =

{
(2, 1) (b = 0, 1),

(2,−1) (b = −1),
(5.1)
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g((v, b)) =

{
(1,−1) (b = 0, 1),

(1, 1) (b = −1),
h((v, b)) =

{
(1, 1) (b = 1),

(1,−1) (b = 0,−1).
(5.2)

Let p, q, r ∈ (0, 1) such that p+ q + r < 1. We define μ ∈ P(S0) as

μ = pδe + qδf + rδg + (1− p− q − r)δh. (5.3)

Since S0 is a finite semigroup, we see that P(S0) is compact, so that {μn}∞n=1

is tight. We may now apply Theorem 4.9 to investigate the cluster points of
{μn : n = 1, 2, . . .}.
Proposition 5.1. The following assertions hold:

(i) The Rees decomposition at e of S(ν) is given as

L = {e, f}, G = {e, g}, R = {e, h}. (5.4)

(ii) ηL = (1− q)δe + qδf .
(iii) ηR = (1− r)δe + rδh.
(iv) H = G.

Proof. (i) Note that S(μ) = {e, f, g, h}. We set

L̃ = {e, f}, G̃ = {e, g}, R̃ = {e, h} (5.5)

and we shall prove that e ∈ E(S(η)) and L = L̃, G = G̃ and R = R̃. We
have the following multiplication table (the table of ab for a and b varying over
{e, f, g, h}):

a\b e f g h
e e e g h
f f f fg fh
g g g e gh
h e e g h

(5.6)

It follows from this table that S :=
⋃

n S(μ)n = {e, f, g, h, fg, fh, gh, fgh}, and
that SeS = L̃G̃R̃ = S. Since we have{

ef = e

fe = f

{
g2 = e

eg = ge = g

{
he = e

eh = h
(5.7)

we have SaS = SeS = S for all a ∈ S. By Lemma 2.3, we see that S is a
kernel of S itself. By Theorem 2.15, the kernel of S is unique, so that we obtain
S(ν) = S. Note that e ∈ E(S(ν)) = E(S(η)) = E(S) by Remark 4.10. We thus
obtain

L =E(S(ν)e) = E(Se) = E(L̃G̃) = L̃, (5.8)

G =eS(ν)e = eSe = G̃, (5.9)
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R =E(eS(ν)) = E(eS) = E(G̃R̃) = R̃. (5.10)

(ii) By L = {e, f} and by the multiplication table, we have

μ ∗ ηL = (1− q − r)δe + qδf + rδg. (5.11)

Since G = {e, g}, we have

μ ∗ ηL ∗ ωG = ((1− q)δe + qδf ) ∗ ωG. (5.12)

Since ν = ηL ∗ ωG ∗ ηR, we have

ηL ∗ ωG ∗ ηR = ν = μ ∗ ν = μ ∗ ηL ∗ ωG ∗ ηR = ((1− q)δe + qδf ) ∗ ωG ∗ ηR.
(5.13)

By the bijectivity of the product mapping, we obtain ηL = (1− q)δe + qδf .
(iii) The proof is similar to (ii), and so we omit it.
(iv) Since H is a subgroup of G = {e, g}, we have either H = {e} or H = G.

Suppose H = {e}. Then γ = g. By (5.11), we have

ηL ∗ ωγH ∗ ηR = μ ∗ ηL ∗ ωH ∗ ηR = ((1− q − r)δe + qδf + rδg) ∗ ωH ∗ ηR.
(5.14)

By (ii) and by the bijectivity of the product mapping, we have

((1− q)δe + qδf ) ∗ ωγH = ((1− q − r)δe + qδf + rδg) ∗ ωH . (5.15)

Since ωH = δe and ωγH = δg, we have

(1− q)δg + qδfg = (1− q − r)δe + qδf + rδg, (5.16)

which leads to a contradiction. Therefore we obtain H = G.

5.2. Second example

Let V = {1, 2, 3} and consider the set of sequences of V :

V ∞ ={v = (v(1), v(2), . . .) : v(i) ∈ V, i = 1, 2, . . .} . (5.17)

For a = 1, 2, 3, we define φa : V ∞ → V ∞ as

φa((v(1), v(2), . . .)) = (a, v(1), v(2), . . .). (5.18)

Note that the set V ∞ realizes the Sierpiński gasket so that {φa : a = 1, 2, 3}
can be regarded as the generating system of contraction mappings; see, e.g., [22,
Section 1.2]. Let σ : V ∞ → V ∞ denote the shift mapping:

σ((v(1), v(2), . . .)) = (v(2), v(3), . . .). (5.19)
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Let B = {−1, 0, 1} and C = {eiθ : θ ∈ R} and set

W = V ∞ ×B × C. (5.20)

We define χ±1 : B → B as

χ+1(b) =

{
1 (b = 0, 1),

−1 (b = −1),
χ−1(b) =

{
1 (b = 1),

−1 (b = −1, 0).
(5.21)

For a = 1, 2, 3 and ρ ∈ C, we define φρ
a : W → W and σρ : W → W as

φρ
a((v, b, c)) = (φa(v), χ+1(b), ρc), σρ((v, b, c)) = (σ(v), χ+1(b), ρc) (5.22)

and define τρ : W → W as

τρ((v, b, c)) = (v,−χ−1(b), ρc). (5.23)

Note that V ∞ is a compact Polish space with respect to the product topology
of the discrete space V , and hence W is also a compact Polish space. Let S0

denote the composition semigroup of mappings from W into itself. Then S0 is
a Polish semigroup with respect to the topology of uniform convergence (see,
e.g., [20, Theorem 4.19]).

Let p, q ∈ (0, 1) be such that p + q < 1. Let ρ0 ∈ C be a fixed element such
that ρ0 = e2πit0 for some irrational real t0. We define μ ∈ P(S0) as

μ =
p

3

∑
a=1,2,3

δφρ0
a

+ qδσρ0 + (1− p− q)δτρ0 . (5.24)

We want to investigate the cluster points of {μn : n = 1, 2, . . .}.
Proposition 5.2. Suppose p > q. Then the sequence {μn}∞n=1 is tight.

Proof. Let W̃ := V ∞ × B and let S̃0 denote the composition semigroup of
mappings from W̃ into itself. We define φ̃a, σ̃, τ̃ : W̃ → W̃ as

φ̃a((v, b)) = (φa(v), χ+1(b)), σ̃((v, b)) = (σ(v), χ+1(b)) (5.25)

and

τ̃((v, b)) = (v,−χ−1(b)). (5.26)

We define μ̃ ∈ P(S̃0) as

μ̃ =
p

3

∑
a=1,2,3

δφ̃a
+ qδσ̃ + (1− p− q)δτ̃ . (5.27)

We notice that, if Z is a random variable whose law is μ̃n, then the law of the
random map (v, b, c) �→ (Z(v, b), ρn0 c) is μn. Since C is compact, the sequence
{ρn0} is trivially relatively compact. Consequently, for tightness of the sequence
{μn}∞n=1, it suffices to prove tightness of the sequence {μ̃n}∞n=1.
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Let 0 < κ < 1, whose value will be specified later, and set

d((v, b), (v′, b′)) =κ1+sup{i≥1: v(i)=v′(i)} + 1{b �=b′} (5.28)

for (v, b), (v′, b′) ∈ W̃ , where we understand that sup ∅ = 0. It is easy to see that

the metric d is compatible with the topology of W̃ . We write

Δ(f) = sup

{
d(f(w), f(w′))

d(w,w′)
: w,w′ ∈ W̃ , 0 < d(w,w′) < 1

}
(f ∈ S̃0).

(5.29)

Note that

d((v, b), (v′, b′)) < 1 if and only if b = b′. (5.30)

By this fact, we easily see that

Δ(φ̃a) = κ, Δ(σ̃) =
1

κ
, Δ(τ̃) = 1. (5.31)

For 0 < ε < 1 and f ∈ S̃0, we set

of (ε) = sup{d(f(w), f(w′)) : w,w′ ∈ W̃ , d(w,w′) ≤ ε}. (5.32)

Note that, if d(w,w′) < 1, then

d(f(w), f(w′)) < 1 and d(f(w), f(w′)) ≤ Δ(f) d(w,w′) for all f ∈ S̃0. (5.33)

This yields∫
of (ε) μ̃

n(df) =

∫
· · ·

∫
of1···fn(ε) μ̃(df1) · · · μ̃(dfn) (5.34)

≤
∫

· · ·
∫

Δ(f1) · · ·Δ(fn) ε μ̃(df1) · · · μ̃(dfn) (5.35)

= ε

(∫
Δ(f) μ̃(df)

)n

. (5.36)

By (5.31), we have ∫
Δ(f) μ̃(df) = pκ+

q

κ
+ 1− p− q. (5.37)

Since p > q, we may and do choose 0 < κ < 1 so that (5.37) is less than 1, say
κ = (p+ q)/(2p). Hence we obtain, for any δ > 0,

μ̃n(f ∈ S : of (ε) > δ) ≤ 1

δ

∫
of (ε) μ̃

n(df) ≤ ε

δ
, (5.38)

which implies

lim
ε↓0

sup
n

μ̃n(f ∈ S : of (ε) > δ) = 0. (5.39)

With a slight modification thanks to compactness of W̃ , we can apply Theorem
VII.2.2 of [35] and obtain the tightness of {μ̃n}∞n=1.
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We may now apply Theorem 4.9. For v0 ∈ V ∞, we define ιv0 : W → W as

ιv0((v, b, c)) = (v0, χ+1(b), c). (5.40)

We write 1 = (1, 1, . . .) ∈ V ∞ and define h, r : W → W as

h(v, b, c) = (1,−χ+1(b), c), r(v, b, c) = (1, χ−1(b), c). (5.41)

For ρ ∈ C, we define kρ : W → W as

kρ(v, b, c) = (1, χ+1(b), ρc). (5.42)

Proposition 5.3. Suppose p > q. Then the following assertions hold:

(i) We may take e = ι1. The Rees decomposition at e of S(ν) is given as

L = {ιv0 : v0 ∈ V ∞}, G = {kρ, kρh : ρ ∈ C}, R = {e, r}. (5.43)

(ii) ηR = (p+ q)δe + (1− p− q)δr.
(iii) ηL is the law of ι(U1,U2,...), where {U1, U2, . . .} is a sequence of independent

random variables which are uniformly distributed on V = {1, 2, 3}.
(iv) H = {e, h} and we may take γ = kρ0 .

Proof. (i) Note that S(μ) = {φρ0

1 , φρ0

2 , φρ0

3 , σρ0 , τρ0}. Let us prove that

ιv0 , h, r, k
ρ ∈ S :=

⋃
n S(μ)n. (5.44)

Note that

(τρ0)2n((v, b, c)) = (v, χ−1(b), ρ
2n
0 c),

(τρ0)2n−2σρ0φρ0

1 ((v, b, c)) = (v, χ+1(b), ρ
2n
0 c). (5.45)

Since ρ0 is an irrational rotation of the circle C, we see that for any ρ ∈ C we

can find a subsequence {n(k)} of positive integers such that ρ
2n(k)
0 → ρ. This

shows that the mappings χρ
±1 : W → W defined as

χρ
±1((v, b, c)) = (v, χ±1(b), ρc) (5.46)

both belong to S. We now obtain

ιv0 = lim
n→∞

φρ0

v0(1)
φρ0

v0(2)
· · ·φρ0

v0(n)
χ
ρ−n
0

+1 ∈ S (5.47)

and

h = ι1τ
ρ0χ

ρ−1
0

+1 ∈ S, r = ι1τ
ρ0χ

ρ−1
0

−1 ∈ S, kρ = ι1χ
ρ
+1 ∈ S. (5.48)

We set

L̃ = {ιv0 : v0 ∈ V ∞}, G̃ = {kρ, kρh : ρ ∈ C}, R̃ = {ι1, r}. (5.49)
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We then have Sι1S = K := L̃G̃R̃; In fact, we have Sι1S ⊂ K by checking
S(μ)ι1S(μ) ⊂ K, and we have K ⊂ Sι1S by kρ = ι1χ

ρ
+1. Since we have{

ι1ιv0 = ι1

ιv0ι1 = ιv0

{
kρkρ

−1

= kρ
−1

kρ = ι1

kρι1 = ι1k
ρ = kρ

{
h2 = ι1

hι1 = ι1h = h

{
rι1 = ι1

ι1r = r

(5.50)

we have SfS = Sι1S = K for all f ∈ K. By Lemma 2.3, we see that K is
a kernel of S. By Theorem 2.15, the kernel of S is unique, so that we obtain
K = S(ν).

We now take e = ι1 ∈ E(K) = E(S(ν)) = E(S(η)) by Remark 4.10. We thus
obtain

L =E(S(ν)e) = E(Kι1) = L̃, (5.51)

G =eS(ν)e = ι1Kι1 = G̃, (5.52)

R =E(eS(ν)) = E(ι1K) = R̃. (5.53)

(ii) Since eφρ0
a = rφρ0

a = eσρ0 = rσρ0 = kρ0 and eτρ0 = rτρ0 = kρ0hr, we
have

ηR ∗ μ = (p+ q)δkρ0 + (1− p− q)δkρ0hr. (5.54)

Since G = {kρ, kρh : ρ ∈ C}, we have

ωG ∗ ηR ∗ μ = ωG ∗((p+ q)δe + (1− p− q)δr) . (5.55)

Since ν = ηL ∗ ωG ∗ ηR, we have

ηL ∗ ωG ∗ ηR =ν = ν ∗ μ = ηL ∗ ωG ∗ ηR ∗ μ (5.56)

=ηL ∗ ωG ∗((p+ q)δe + (1− p− q)δr) . (5.57)

By the bijectivity of the product mapping, we obtain ηR = (p+q)δe+(1−p−q)δr.
(iii) Note that

ξ :=
1

3

∑
a=1,2,3

δφ1
a
= Eδφ1

U
(5.58)

for an S̃-valued random variable U which is uniformly distributed on V . For a
sequence {U1, U2, . . .} of independent random variables which are uniformly dis-
tributed on V = {1, 2, 3}, we have φ1

U1
· · ·φ1

Un
→ ι(U1,U2,...) a.s. and δφ1

U1
···φ1

Un
→

δι(U1,U2,...)
a.s., which shows

ξn = E
[
δφ1

U1
···φ1

Un

]
−→
n→∞

E[δι(U1,U2,...)
]. (5.59)

Note that φρ0
a ιv0 = φ1

aιv0k
ρ0 , that σρ0ιv0 = σ1ιv0k

ρ0 and that τρ0ιv0 =
ιv0k

ρ0hr. We then have

μ ∗ ηL = pξ ∗ ηL ∗ δkρ0 + qδσ1 ∗ ηL ∗ δkρ0 + (1− p− q)ηL ∗ δkρ0hr. (5.60)
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Since μ ∗ ν = ν and ν = ηL ∗ ωG ∗ ηR and by the bijectivity of the product
mapping, we have

ηL =

(
p

p+ q
ξ +

q

p+ q
δσ1

)
∗ ηL (5.61)

Let {Xn}∞n=1 be an asymmetric random walk independent of {Un}∞n=1 such
that

X0 = 0, P (Xn −Xn−1 = 1) =
p

p+ q
, P (Xn −Xn−1 = −1) =

q

p+ q
.

(5.62)

Set Xn = max{X0, X1, . . . , Xn}. Since (δσ1 ∗ ξ)(v, b, c) = (v, χ+1(b), c), we have(
p

p+ q
ξ +

q

p+ q
δσ1

)n

= E
[
ξXn ∗ (δσ1)Xn−Xn

]
. (5.63)

By the assumption p > q, we have Xn → ∞ a.s. By (5.59), we see that the
right-hand side of (5.63) converges to E[δι(U1,U2,...)

]. By (5.61), we obtain

ηL =

(
p

p+ q
ξ +

q

p+ q
δσ1

)n

∗ ηL −→
n→∞

E[δι(U1,U2,...)
] ∗ ηL = E[δι(U1,U2,...)

].

(5.64)

(iv) Let α = p + q and β = 1 − p − q, so that α + β = 1 and α − β =
2(p+ q)− 1 ∈ (−1, 1). Note that

δe ∗ μn ∗ δe = δ
kρn0

∗(αδe + βδh)
n
. (5.65)

Since h2 = e and he = eh = h, we have

(αδe + βδh)
n
=

∑
j=0,...,n
j: even

(
n

j

)
αn−jβj δe +

∑
j=0,...,n
j: odd

(
n

j

)
αn−jβj δh (5.66)

=
(α+ β)n + (α− β)n

2
δe +

(α+ β)n − (α− β)n

2
δh −→

n→∞
1

2
δe +

1

2
δh = ω{e,h}.

(5.67)

Let λ ∈ K, so that λ = limμn(m) for some subsequence {n(m)}. Since ρ0 is an

irrational rotation, we may find a further subsequence {n′(m)} such that ρ
n′(m)
0

converges to some ρ ∈ C. This shows that

δe ∗ λ ∗ δe = lim δe ∗ μn′(m) ∗ δe = δkρ ∗ ω{e,h}. (5.68)

This shows that H = {e, h} and we may take γ = kρ0 .
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