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Abstract: In many areas of applied mathematics, decentralization of in-
formation is a ubiquitous attribute affecting how to approach a stochastic
optimization, decision and estimation, or control problem. In this review
article, we present a general formulation of information structures under
a probability theoretic and geometric formulation. We define information
structures, place various topologies on them, and study closedness, com-
pactness and convexity properties on the strategic measures induced by in-
formation structures and decentralized control/decision policies under vary-
ing degrees of relaxations with regard to access to private or common ran-
domness. Ultimately, we present existence and tight approximation results
for optimal decision/control policies. We discuss various lower bounding
techniques, through relaxations and convex programs ranging from classi-
cally realizable and classically non-realizable (such as quantum theoretic
and non-signaling) relaxations. For each of these, we establish closedness
and convexity properties and also a hierarchy of correlation structures.
As a further theme, we review and introduce various topologies on deci-
sion/control strategies defined independent of information structures, but
for which information structures determine whether the topologies entail
utility in arriving at existence, compactness, convexification or approxima-
tion results. These approaches, which we term as the strategic measures
approach and the control topology approach, lead to complementary re-
sults on existence, approximations and upper and lower bounds in optimal
decentralized stochastic decision, estimation, and control problems.
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Fig 1. An example of a (decentralized) information structure.

1. Introduction

In statistical decision theory, stochastic control theory, information theory, game
theory, economics, quantum physics and computer science; information struc-
tures determine which decision maker/agent/controller knows what information.
To help the reader gain an appreciation of what the paper entails, consider the
simple setup depicted in Figure 1.

Here, three decision makers have access to some local information (e.g. y2)
and each one selects an action (e.g., u2). This selection has to be based only
on the available information (and perhaps with some additional independent
randomization device).

One question of interest in many of the aforementioned disciplines is to study
the geometric and topological properties of sets of all possible correlation struc-
tures with regard to the random variables (ω0, y

1, y2, y3, u1, u2, u3) (which will
be termed as a strategic measure). This setup can also be generalized to dy-
namic interactions among the decision makers where, e.g., the action u1 can
affect the measurement of y2 and to setups where the decision makers have ac-
cess to common randomness. Further correlation structures include those that
are described by quantum mechanics (and, thus, with quantum entanglement).
Furthermore, one may wish to provide convex relaxations leading to what we
will study as non-signaling relaxations.

Suppose further that these decision makers wish to minimize a cost criterion
of the form E[c(ω0, u

1, u2, u3)]. What can be said about the optimal solutions,
their existence, approximations, convexity properties and convexifications, and
numerical methods for exact solutions or upper or lower bounds?

The operational goal in our article is, for setups including that depicted in
Figure 1 but also under much more general information structures, to develop
a probability theoretic and topological approach to information structures and
decision/control policies towards arriving at: (i) convexity properties, (ii) conti-
nuity and compactness properties, (iii) existence results, (iv) convex relaxations
to facilitate numerical and analytical methods, and (v) approximation results
for optimal policies under decentralized information structures.
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Different scientific communities have their own notation, terminology, and
machinery to study such problems. While in our analysis we will often have a
bias towards a stochastic control theoretic angle and language, we will be broadly
touching on ideas from various disciplines and often explain parallel contribu-
tions in the literature. Accordingly, the scope of our article entails results from a
very broad literature across a variety of disciplines (ranging from game theory,
quantum physics, information theory, probability, and control). Some of the re-
sults presented here have not been published elsewhere, some are based on the
authors’ prior work, but much of the material is a re-interpretation and uni-
fication of related results in the literature (both across various disciplines and
across time, meaning that classical results are re-interpreted with more modern
findings) whose connections have not previously been made explicit or reported,
to our knowledge.

1.1. Summary of results and outline of the article

The article has two main themes: In the first theme, we study topological and ge-
ometric properties of correlation structures induced on strategic measures under
decision/control policies and information structures. These strategic measures
are probability measures defined on the product spaces of local measurements
and actions, as well as external random variables; these will be made precise in
the following sections.

In Section 2 we introduce information structures in decentralized decision
making. In Section 3, we introduce probability measures (i.e., strategic mea-
sures) induced on the product spaces of state, measurements and actions under
admissible, and some relaxed, control policies. In Section 4, we study com-
pactness properties of the set of strategic measures and state existence results
on optimal policies. In Section 5, we introduce convex relaxations on strategic
measures, including those that are generated under non-signaling and quantum
information theoretic relaxations. In Section 6, we study finite measurement
information structures obtained via quantization of continuous-space measure-
ment spaces, and establish their near optimality.

With regard to these various strategic measures introduced in these sections,
we establish the hierarchies depicted, and also with a summary of the results
reported, in Figure 2. Here, the sets are generated subject to progressively more
relaxed informational or action-set constraints, as one progresses from the inner-
most correlation set to the outer-most set along the depictions presented in
Figure 2.

As our second main theme, we present a control topologies approach, where
we will review or introduce various topologies on decision/control strategies
(defined independently from information structures), but for which information
structures determine whether the topologies entail utility in arriving at exis-
tence, compactness, convexification or approximation results. These topologies
include those generated by the product metric of individual controllers viewed as
subsets of appropriate probability measures, relaxed control policies and wide-
sense admissible control policies, weak∗ topology on randomized policies, policies
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Fig 2. Hierarchies and a summary of the results reported in the paper on decentralized strate-
gic measures and correlations: (i) LA(q)(μ), quantized admissible strategic measures, is not
closed, not convex, dense in LA(μ). (ii) LA(μ), set of strategic measures induced by admissible
measurable functions, is not closed, not convex (under independent static reduction LA(μ)
is dense in LR(μ) under mild conditions). (iii) LR(μ), those generated with local private
(relaxed policies) randomness, is typically not closed (under independent static reduction:
LR(μ) is closed; which then leads to a general existence result on optimization problems with
lower semi-continuous cost functions), not convex. (iv) LC(μ), those with arbitrary common
randomness, convex, typically not closed but compact when LR(μ) is. (iv) LQ(μ), quantum
strategic measures, convex, not closed (but closed under dimension constraints). (v) LNS(μ),
non-signaling strategic measures, is closed and convex. (vi) LM (μ), those with local-Markov
conditional independence, is closed and convex.

satisfying conditional independence properties leading to a universal dynamic
program, and topologies that satisfy a closedness property under weak conver-
gence of finite dimensional marginals.

In Section 7, we study this alternative approach of placing topologies directly
on individual policies. Several examples and topologies are provided with various
complementary results on existence reported.

These two approaches, which we name as the strategic measures approach vs.
the control topology approach, lead to complementary results on existence, ap-
proximations and upper and lower bounds and solution methods in optimization
problems.

In Section 8, we review and revisit partially observed Markov decision pro-
cesses, and highlight that when a relaxation of control policies is allowed, this
may lead to a strict improvement of optimal performance, thus invalidating the
main purpose of relaxations.

We finally present, together with concluding remarks, a number of future
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directions and a collection of some open problems, in Section 9.

2. Information structures

2.1. Witsenhausen’s characterization of information structures

Hans Witsenhausen’s contributions [141, 139, 137, 142, 140] to stochastic con-
trol theory, and his characterization of information structures in decentralized
stochastic control have been crucial in our modern understanding of decen-
tralized stochastic control and decision theory. In this section, we introduce the
characterizations as laid out by Witsenhausen, termed the Intrinsic Model [141];
see [149] and [100] for a more comprehensive overview and further character-
izations and classifications of information structures. In this model (described
in discrete time), any action applied at any given time is regarded as applied
by an individual decision maker/agent, who acts only once. One particular ad-
vantage of this model, in addition to its generality, is that the characterizations
regarding information structures can be concisely described.

Suppose that in the decentralized system considered below, there is a pre-
defined order in which the decision makers act. Such systems are called sequential
teams (for non-sequential teams, we refer the reader to Andersland and Teneket-
zis [5], [6] and Teneketzis [130], in addition to Witsenhausen [139] and [149, p.
113]). Suppose that in the following, the action and measurement spaces are
standard Borel spaces; that is, Borel subsets of Polish (complete, separable, and
metric) spaces. In the context of a sequential system, the Intrinsic Model has
the following components:

• A collection of measurable spaces{
(Ω,F), (Ui,U i), (Yi,Yi), i ∈ N

}
,

with N := {1, 2, · · · , N}, specifying the system’s distinguishable events,
and the control and measurement spaces of decision makers (DMs). Here
N = |N | is the number of control actions taken, and each of these actions
is taken by an individual (different) DM (hence, even a DM with perfect
recall can be regarded as a separate decision maker every time it acts).
The pair (Ω,F) is a measurable space (on which an underlying probability
may be defined). The pair (Ui,U i) denotes the Borel space with its Borel
σ-algebra from which the action ui of DM i is selected. The pair (Yi,Yi)
denotes the observation/measurement space with its Borel σ-algebra for
DM i.

• A measurement constraint which establishes the connection between the
observation variables and the system’s distinguishable events. The Y

i-
valued observation variables are given by

yi = ηi(ω,u[1,i−1]),
where u[1,i−1] = {uk, k ≤ i − 1} and ηi is a measurable function. Hence,
the information variable yi induces a σ-field, denoted by σ(yi), over Ω ×∏i−1

k=1 U
k
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• A design constraint which restricts the set of admissible N -tuple control
laws

γ = {γ1, γ2, . . . , γN},
also called designs or policies, to the set of all measurable control func-
tions, so that ui = γi(yi), with yi = ηi(ω,u[1,i−1]) and γi is a measurable
function. Let Γi denote the set of all admissible policies for DM i and let
Γ =

∏N
i=1 Γk.

We note that, the intrinsic model of Witsenhausen gives a set-theoretic charac-
terization of information fields, however, for standard Borel spaces, the model
above is equivalent to that of Witsenhausen’s. Additionally, we introduce a
fourth component:

• A probability measure P defined on (Ω,F) which describes the uncertainty
on the random events in the model.

Under this intrinsic model, an Information structure (IS) is dynamic if the
information available to at least one DM is affected by the action of at least one
other DM. An IS is static, if the information available to every decision maker
is only affected by exogenous disturbances (i.e., state of the nature) ω ∈ Ω;
that is no other decision maker can affect the information at any given decision
maker. Figure 1 is a depiction for a static team problem, where Qi(yi ∈ ·|ω0) :=
P (ηi(ω) ∈ ·|ω0), i = 1, 2, 3.

ISs can also be classified as classical, quasi-classical or nonclassical. An IS is
classical if yi contains all of the information available to DM k for k < i; that
is, information is expanding (also known as the perfect-recall property). An IS
is quasi-classical or partially nested, if whenever uk, for some k < i, affects yi

through the measurement function ηi, yi contains yk (that is σ(yk) ⊂ σ(yi)).
An IS which is not partially nested is nonclassical.

For any N -tuple of policies γ = {γ1, · · · , γN} let a cost function be defined
as:

J(γ) = Eγ [c(ω0,u)] = E
[
c(ω0, γ

1(y1), · · · , γN (yN ))
]
, (1)

for some non-negative measurable loss (or cost) function c : Ω0×
∏N

i=1 U
i → R+.

Here, we have the notation u = {ui, i ∈ N}, and ω0 may be viewed as the cost
function relevant exogenous variable contained in ω.

Definition 2.1. For a given stochastic team problem with a given information
structure, an N -tuple of policies γ∗ := (γ1∗, . . . , γN ∗) ∈ Γ is an optimal team
decision rule (team-optimal decision rule or simply team-optimal solution) if

J(γ∗) = inf
γ∈Γ

J(γ) =: J∗. (2)

The expected cost achieved by this strategy J∗ is the optimal team cost.

In the following, we will denote by bold letters the ensemble of random vari-
ables across the DMs; that is y = {yi, i = 1, · · · , N} and u = {ui, i = 1, · · · , N}.
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2.2. Independent-measurements reduction of sequential teams

Following Witsenhausen [142, Eqn (4.2)], as reviewed in [149, Section 3.7], we
say that two information structures are equivalent if: (i) The policy spaces are
equivalent/isomorphic in the sense that policies under one information struc-
ture are realizable under the other information structure, (ii) the costs achieved
under equivalent policies are identical, and (iii) if there are constraints in the
admissible policies, the isomorphism among the policy spaces preserves the con-
straint conditions.

A large class of sequential dynamic team problems admit an equivalent infor-
mation structure which is static. This is called the static reduction of a dynamic
team problem.

For some, but not all, results to be presented in our paper, we need to go
beyond a static reduction, and we will need to make the measurements indepen-
dent of each other as well as ω0. This is not possible for every team which admits
a static reduction, for example quasi-classical team problems with LQG models
[73] do not generally admit such a further reduction, since the measurements
are partially nested: for partially nested (or quasi-classical) information struc-
tures, static reduction has been studied by Ho and Chu in the specific context
of LQG systems [73] and for a class of non-linear systems satisfying restrictive
invertibility properties [74].

Witsenhausen refers to such an information structure as independent static
in [142, Section 4.2(e)]. One can also reduce a static team problem into an
independent static form.

Note that the Intrinsic Model is equivalent to the following model [142]. The
probability space (Ω,F , P ) is the product of N+1 probability spaces (Ωi,Fi, Pi),
i = 0, . . . , N ; that is, Ω =

∏N
i=0 Ωi and P (dω) =

∏N
i=0 Pi(dωi). Each DM i

measures yi = ηi(ω0, ωi, u
1, . . . , ui−1) and the decisions are generated by ui =

γi(yi), with 1 ≤ i ≤ N . Here ω = (ω0, ω1, · · · , ωN ) are primitive (exogenous)
variables. Under this equivalent model, we can view ηi(ω0, ωi, u

1, . . . , ui−1) as a
measurement channel with input (ω0, u

1, . . . , ui−1) and output yi, where ωi is
the noise; that is

gi(dyi|ω0, u
1, u2, · · · , ui−1)

is a (controlled) stochastic kernel (to be defined later). Equivalently, through
standard stochastic realization results (see [65, Lemma 1.2] or [35, Lemma 3.1]),
we can represent any (controlled) stochastic kernel gi(dyi|ω0, u

1, u2, · · · , ui−1)
in a functional form yi = ηi(ω0, ωi, u

1, u2, · · · , ui−1) for some independent ωi

and measurable ηi.
This team model admits an independent static reduction provided that the

following absolute continuity condition holds:
(AC): For every i ∈ N , there exists a reference probability measure Qi on

Y
i and a measurable function fi such that for all Borel S ⊂ Y

i:

gi(yi ∈ S|ω0, u
1, u2, · · · , ui−1)

=
∫
S

fi(yi, ω0, u
1, u2, · · · , ui−1)Qi(dyi).
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Under this absolute continuity condition, since the action of each DM is
determined by the measurement variables under a policy, we can write

P (dω0, dy, du) = P (dω0)
N∏
i=1

(
fi
(
yi, ω0, u

1, u2, · · · , ui−1) Qi(dyi) 1{γi(yi)∈dui}

)
.

The cost function J(γ) can then be written as

J(γ) =
∫

P (dω0)
N∏
i=1

(
fi
(
yi, ω0, u

1, u2, · · · , ui−1) Qi(dyi)
)
c(ω0,u),

where ui = γi(yi) for 1 ≤ i ≤ N . Now, the measurement variables can be
regarded as independent from each other and also from ω0, and by incorporating
the density functions {fi} into c, we can obtain an equivalent independent static
team problem. Hence, the essential step is to appropriately adjust the probability
space and the cost function. The new cost function may now explicitly depend
on the measurement values; that is,

cs(ω0,y,u) = c(ω0,u)
N∏
i=1

fi(yi, ω0, u
1, u2, · · · , ui−1). (3)

Here we can reformulate even a static team to one which is, clearly still static,
but now with independent measurements which are also independent from the
cost relevant exogenous variable ω0. Such a condition is in general not restric-
tive. Indeed, as Witsenhausen notes, a static reduction always holds when the
measurement variables take values from countable set since a reference measure
as in Qi above can be always constructed on the measurement space Y

i (e.g.,
Qi(z) =

∑
j≥1 2−j1{z=mj} where Y

i = {mj , j ∈ N}) so that the absolute con-
tinuity condition always holds. We refer the reader to [44] for relations with
classical continuous-time stochastic control where the relation with Girsanov’s
classical measure transformation [66][26] is recognized, and [149, p. 114] for fur-
ther discussions. For discrete-time partially observed stochastic control, similar
arguments had been presented, e.g. by Borkar in [36], [38].

3. Decentralized strategic measures

For classical stochastic control problems, strategic measures were defined (see
[125], [115], [55] and [60]) as the set of probability measures induced on the prod-
uct (sequence) spaces of the states, measurements, and actions; that is, given
an initial state distribution and a policy, one can uniquely define a probability
measure on the product space of the states, measurements, and actions. Certain
measurability, compactness, and convexity properties of strategic measures for
classical stochastic control problems were studied in [55, 115, 60, 31].

In [151], strategic measures for decentralized stochastic control problems were
introduced and many of their properties were established. For decentralized
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stochastic control problems, considering the set of strategic measures along with
compactification and/or convexification of these sets of measures through intro-
ducing private and/or common randomness allow one to place operationally
flexible topologies (such as those leading to a standard Borel space, e.g., weak
convergence topology, among others) on the set of strategic measures, as we will
study in the following.

3.1. Measurable policies as a subset of randomized policies and
strategic measures

A common method in control theory is to view a measurable policy as a special
case of relaxed policies where relaxation is often employed by randomization.
Such an approach has been ubiquitously adopted in various fields often with
different terminology (e.g., relaxed controls (Young topology) in optimal deter-
ministic control [103] [146], distributional strategies in economics [105] [104],
local hidden variables in quantum information theory [21, 48, 135], optimal
quantization [150] etc.).

We recall here the following representation result [35] (see also Section 7.1).
Let X,M be Borel spaces. Let the notation P(X) denote the set of probability
measures on X. Consider the set of probability measures

Θ :=
{
ζ ∈ P(X×M) : ζ(dx, dm) = P (dx)Qf (dm|x),

Qf (·|x) = 1{f(x)∈·}, f : X → M
}
, (4)

on X ×M having fixed input marginal P on X and the stochastic kernel from
X to M is realized by some measurable function f : X → M. We equip this set
with the weak convergence topology. This set is the (Borel measurable) set of
the extreme points of the set of probability measures on X × M with a fixed
marginal P on X. For compact M, the Borel measurability of Θ follows from
[114] since the set of probability measures on X × M with a fixed marginal P
on X is a convex and compact set in a complete separable metric space, and
therefore, the set of its extreme points is Borel measurable. Moreover, the non-
compact case holds by [35, Lemma 2.3]. Furthermore, given a fixed marginal P
on X, any stochastic kernel Q from X to M can be identified by a probability
measure ξ ∈ P(Θ) such that

Q(·|x) =
∫

Θ
ξ(dQf )Qf (·|x). (5)

In particular, a stochastic kernel can thus be viewed as an integral representation
over probability measures induced by deterministic policies.

For a team setup, for any DM k, let

Θk :=
{
ζ ∈ P(Yk × U

k) : ζ = Pk Q
γk

,

Qγk

(·|yk) = 1{γk(yk)∈·}, γ
k ∈ Γk, Pk(·) = P (yk ∈ ·)

}
.



460 N. Saldi and S. Yüksel

For a static team, Pk would be fixed; that is, independent of the policies of
the preceding DMs. Therefore, in the static case, in view of (5), any element
ζ ∈ P(Yk ×Uk) with fixed marginal Pk on Yk can be expressed as a mixture of
Θk

ζ(A) =
∫

Θk

ξk(dQ)Q(A), A ∈ B(Yk × U
k), (6)

for some ξ ∈ P(Θk). In the sequel, we generalize this idea to the set of strategic
measures induced by measurable policies and define various relaxed policies that
are obtained as a mixture of measurable policies. Indeed, instead of viewing N -
tuple of policies as the joint strategy of DMs, we regard the induced probability
distribution on the product space of state, measurements, and actions as the
joint strategy and name it the strategic measure. However, we will recognize that
the N -tuple view above is also of both operational and mathematical interest
as will be detailed in Section 7.

3.2. Sets of strategic measures for static teams

Consider a static team problem defined under Witsenhausen’s intrinsic model.
In the following, B = B0 ×

∏N
k=1(Ak × Bk) are used to denote the cylindrical

Borel sets in Ω0 ×
∏N

k=1(Yk × Uk).
Let LA(μ) be the set of strategic measures induced by all admissible measur-

able policies with (ω0,y) ∼ μ; that is, P ∈ LA(μ) ⊂ P
(

Ω0 ×
∏N

k=1(Yk × U
k)
)

if and only if

P (B) =
∫
B0×
∏N

k=1
Ak

μ(dω0, dy)
N∏

k=1

1{uk=γk(yk)∈Bk}, (7)

for all cylindrical B ∈ B
(
Ω0 ×

∏N
k=1(Yk × U

k)
)
, where γk ∈ Γk for k =

1, . . . , N . Let LA(μ, γ) be the strategic measure under a particular strategy
γ ∈ Γ.

The first relaxation is obtained via individual randomization of policies.
Namely, let LR(μ) be the set of strategic measures induced by all individually
randomized team policies where ω0,y ∼ μ; that is,

LR(μ) :=
{
P ∈ P

(
Ω0×

N∏
k=1

(Yk×U
k)
)

: P (B)=
∫
B

μ(dω0, dy)
N∏

k=1

Πk(duk|yk)
}
,

where Πk is a stochastic kernel from Y
k to U

k for each k = 1, . . . , N .
Another relaxation, which is stronger than the former one, is obtained by

taking the mixture of the elements of LA(μ). To this end, define Υ = [0, 1]N .
We then let

LC(μ) :=
{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × U
k)
)

:
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P (B) =
∫

η(dz)LA(μ, γ(z))(B), η ∈ P(Υ)
}
,

where γ(z) denotes a collection of team policies measurably parametrized by
z ∈ Υ so that the map LA(μ, γ(·)) : Υ → LA(μ) is Borel measurable as LA(μ)

is a Borel subset of P
(

Ω0×
∏N

k=1(Yk×U
k)
)

under weak convergence topology

(as we will see in Theorem 3.3).
Let LCR,η denote the set of strategic measures that are induced by some

fixed but common independent randomness (with probability measure η) and
arbitrary private independent randomness; that is,

LCR,η(μ) :=
{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × U
k)
)

:

P (B) =
∫
B×Υ

η(dz)μ(dω0, dy)
∏
k

Πk(duk|yk, z)
}
,

where Πk takes place from the set of stochastic kernels from Y
k × Υ to U

k for
each k = 1, . . . , N . Here, the common randomness η is fixed.

Let LCCR denote the set of strategic measures that are induced by some arbi-
trary but common independent randomness and arbitrary private independent
randomness, as in LC(μ); that is,

LCCR(μ) :=
{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × U
k)
)

:

P (B) =
∫
B×Υ

η(dz)μ(dω0, dy)
∏
k

Πk(duk|yk, z), η ∈ P(Υ)
}
,

where Πk takes place from the set of stochastic kernels from Yk×Υ to Uk for each
k = 1, . . . , N . Here, the common randomness η is arbitrary, unlike LCR,η(μ).
The following result, essentially from [151], states some structural results about
above-defined sets of strategic measures. In particular, it establishes convexity
related properties of these sets.

Theorem 3.1. Consider a static team problem. Then, we have the following
characterizations.

(i) LR(μ) has the following representation:

LR(μ) =
{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × U
k)
)

: P (B) =
∫

U(dz)LA(μ, γ(z))(B),

U ∈ P(Υ), U(dv1, · · · , dvN ) =
∏
s

ηk(dvk), ηk ∈ P([0, 1])
}

;

that is, U ∈ P(Υ) is constructed by the product of N independent random vari-
ables on [0, 1].
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(ii) LC(μ) = LCCR(μ) and this is a convex set. The set of extreme points of
LC(μ) is LA(μ). Furthermore, LR(μ) ⊂ LC(μ).

(iii) We have the following equalities:

inf
γ∈Γ

J(γ)= inf
P∈LA(μ)

∫
P (ds)c(s) = inf

P∈LR(μ)

∫
P (ds)c(s) = inf

P∈LC(μ)

∫
P (ds)c(s).

In particular, deterministic policies are optimal among the randomized class. In
other words, individual and common randomness does not improve the optimal
team cost.

(iv) The sets LR(μ) and LCR,η(μ) are not convex. In particular, the presence
of independent or (fixed) common randomness does not convexify the set of
strategic measures.

(v) LR(μ) and LC(μ) are not necessarily weakly closed.

With X standard Borel space, let us recall the following: we say that a se-
quence of probability measures (on X) Pn → P weakly if∫

Pn(dx)f(x) →
∫

P (dx)f(x)

for all f ∈ Cb(X). If this holds for every f measurable and bounded, we say
convergence holds setwise.

To establish (v), we will present two counterexamples below in Theorem 4.2
and Theorem 4.3.

Remark 3.1. (i) In the economics and game theory literature, information
structures have been studied extensively. Stochastic team problems are
called identical interest games. In this literature, LC(μ) appears in the
analysis of Aumann’s correlated equilibrium [13]. Common and indepen-
dent randomness discussions appear in the analysis of comparison of in-
formation structures [97]. For further discussions, including a multi-stage
generalization known as communication equilibria, see [64]. For a detailed
treatment, we refer the reader to [104, p. 131].

(ii) In quantum mechanics, the set LC(μ) corresponds to the set of local hidden
variable correlations: in a well-known paper [56], Einstein, Podolsky, and
Rosen argued that due to the probabilistic nature of quantum mechanics,
the description of randomness should be classically explained by a suffi-
ciently large local hidden variable, where the local hidden variable describes
the uncertainties in an experimental setup. This will be discussed later in
the article when quantum correlations will be presented.

3.3. Sets of strategic measures for dynamic teams in the absence of
static reduction

Note that if the dynamic team setup admits a static reduction (in particular
independent static reduction), then one can define strategic measures by con-
sidering the equivalent static problem and characterize the convexity properties
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of the set of strategic measures, as done in the previous section. In this section,
we suppose that dynamic team does not admit a static reduction. Let μ be the
distribution of ω0. Recall that in the dynamic setup, the distribution of measure-
ments y is not fixed as opposed to the static case. In this case, we present the
following characterization for strategic measures in dynamic sequential teams.
Let, for all n ∈ N ,

hn = {ω0, y
1, u1, · · · , yn−1, un−1, yn, un},

and pn(dyn|hn−1) := P (dyn|hn−1) be the transition kernel characterizing the
measurements of DM n according to the intrinsic model. We note that this may
be obtained by the relation:

pn(yn ∈ ·|ω0, y
1, u1, · · · , yn−1, un−1)

:= P

(
ηi(ω,u[1,i−1]) ∈ ·

∣∣∣∣ω0, y
1, u1, · · · , yn−1, un−1

)

= P

(
gn(ω0, ωn, u

1, · · · , un−1) ∈ ·
∣∣∣∣ω0, y

1, u1, · · · , yn−1, un−1
)
. (8)

Note that once a policy is fixed, pn(dyn|hn−1) represents the conditional
distribution of yn given the past history hn−1. Let LA(μ) be the set of strategic
measures induced by measurable policies and let LR(μ) be the set of strategic
measures induced by individually randomized policies for the dynamic team. We
have the following characterizations of LA(μ) and LR(μ) that are quite useful
when establishing the closedness of these sets.

Theorem 3.2 ([151, Theorem 2.2]). Consider a dynamic team problem that
does not admit a static reduction. Then, we have the following characterizations.

(i) A probability measure P ∈ P
(

Ω0×
∏N

k=1(Yk×U
k)
)

is a strategic measure

induced by a measurable policy (that is in LA(μ)) if and only if, for every n =
1, . . . , N , we have∫

P (dhn−1, dy
n) g(hn−1, y

n) =
∫

P (dhn−1)
(∫

Yn

g(hn−1, z) pn(dz|hn−1)
)

and∫
P (dhn) g(hn−1, y

n, un)=
∫

P (dhn−1, dy
n)
(∫

Un

g(hn−1, y
n, a) 1{γn(yn)∈da}

)
,

for all continuous and bounded function g with appropriate arguments, where
P (dω0) = μ(dw0) and γn ∈ Γn.

(ii) A probability measure P ∈ P
(

Ω0×
∏N

k=1(Yk×U
k)
)

is a strategic measure

induced by a individually randomized policy (that is in LR(μ)) if and only if, for
every n = 1, . . . , N , we have∫
P (dhn−1, dy

n) g(hn−1, y
n) =

∫
P (dhn−1)

(∫
Yn

g(hn−1, z) pn(dz|hn−1)
)

(9)
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and∫
P (dhn) g(hn−1, y

n, un)

=
∫

P (dhn−1, dy
n)
(∫

Un

g(hn−1, y
n, an)Πn(dan|yn)

)
(10)

for all continuous and bounded function g with appropriate arguments, where
P (dω0) = μ(dw0) and Πn is a stochastic kernel from Y

n to U
n.

Remark 3.2. A result similar to Theorem 3.1 can also be stated for the dy-
namic case, in particular with regard to LA(μ) being the set of extreme points
of the convex hull of LR(μ). The reader is referred to [151, Theorem 2.3] which
essentially establishes this; see also [59, Theorem 1.c] for related discussions.

A celebrated result in economics theory, known as Kuhn’s theorem [86], notes
that the convex hull of admissible (i.e. those in LA(μ)) strategic measures (hence
LC(μ)) is equivalent to LR(μ) when the information structure is classical. We
can thus state that this does not apply in the absence of classical-ness, as LR(μ)
would not be convex (if the information structure is not classical, then convexity
fails [151, p.12]), but the convex hull of admissible policies is, by definition,
convex; but the convex hull of LR(μ) is LC(μ).

3.4. Measurability properties of sets of strategic measures

As noted earlier, the set LA(μ) is a Borel subset of P
(
Ω0 ×

∏
k(Yk × U

k)
)

under
weak convergence topology. The same is true for LR(μ), which is stated in the
following theorem. This result will be crucial in the analysis to follow.

Theorem 3.3 ([151, Theorem 2.10]). Consider a sequential (static or dynamic)
team.

(i) The set of strategic measures LR(μ) is Borel when viewed as a subset of the
space of probability measures on Ω0 ×

∏N
k=1(Yk × U

k) under the topology
of weak convergence.

(ii) The set of strategic measures LA(μ) is Borel when viewed as a subset of the
space of probability measures on Ω0 ×

∏N
k=1(Yk × U

k) under the topology
of weak convergence.

For further properties of the sets of strategic measures, see [151].

4. Relative compactness and closedness of strategic measures, and
existence of optimal policies

Existence of optimal policies for static and a class of sequential dynamic teams
have been studied recently in [69, 151, 119]. More specific setups have been
studied in [144], [137], [150] and [149]. Existence of optimal team policies has
been established in [45] for a class of continuous-time decentralized stochastic
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control problems. For a class of teams which are convex, one can reduce the
search space to a smaller parametric class of policies, such as linear policies for
quasi-classical linear quadratic Gaussian problems [117, 85, 73].

The following theorem states a general existence result for static teams and
for dynamic teams admitting static reduction. Its proof depends on Weierstrass
Extreme Value Theorem.
Theorem 4.1. Consider a static team or the static reduction of a dynamic
team with c denoting the cost function. Let c be lower semi-continuous in u for
every fixed ω0,y and LR(μ) or LC(μ) be a compact set under weak convergence
topology. Then, there exists an optimal team policy. This policy can be chosen
deterministic and hence induces a strategic measure in LA(μ).
Remark 4.1. Since the cost function cs in an independent static reduction
of a dynamic team also depends on the measurements y, we include y as an
argument to the cost function c in the previous theorem.

By Theorem 4.1, to prove the existence of an optimal team policy, it is suf-
ficient to establish the lower semi-continuity of the cost function c and com-
pactness of LR(μ) or LC(μ) or any other subset of LC(μ) that is sufficient
for optimality. However, we recall that unless certain conditions are imposed,
the conditional independence property dictated by IS is not preserved under
weak convergence (indeed this is also true even for setwise convergence which
is a stronger convergence notion). Hence, LR(μ) and LC(μ) are in general not
closed and so compact. The following theorem establishes that LR(μ) is not
closed under the weak convergence topology.
Theorem 4.2 ([151, Theorem 2.7]). Consider a sequence of probability mea-
sures Pn ∈ P(U1 × Y× U

2) so that for all n:

Pn(du1|y, u2) = Pn(du1|y).
If Pn → P setwise (and thus also weakly), it is not necessarily the case that

P (du1|y, u2) = P (du1|y).
That is, conditional independence of u1 and u2 given y is not preserved under
setwise convergence. In particular, LR(μ) is not (weakly or setwise) closed.

Before we present the proof of Theorem 4.2, let us note that, for each n, we
can view Pn as a strategic measure of the following static team problem. In this
team problem, Ω is a degenerate space and we have two DMs that are sharing
the same measurement y. Therefore, Theorem 4.2 states that the set of strategic
measures LR(μ) is not closed under setwise (and so weak convergence) topology.

Proof. It suffices to provide a counterexample. We build on an example from
[150] (used in a different context) in the following. Let Y = [0, 1], U1 = U

2 =
{0, 1}, and y ∼ m where m the Lebesgue measure (uniform distribution) on
[0, 1]. Let

Lnk =
[
2k − 2

2n ,
2k − 1

2n

)
, Rnk =

[
2k − 1

2n ,
2k
2n

)
(11)
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Fig 3. Plots of probability density functions f1, f2, and f3.

and define the square wave function

hn(t) =
n∑

k=1

(
1{t∈Lnk} − 1{t∈Rnk}

)
.

Define further fn(t) = hn(t) + 1.
Let Bn,1 =

⋃n
k=1 Lnk and Bn,2 = [0, 1] \ Bn,1. Define {Qn} as the sequence

of 2-cell quantizers given by

Qn(1|y) = 1{y∈Bn,1}, Qn(0|y) = 1{y∈Bn,2}.

Let
Pn(u1 = a|y) = Pn(u2 = a|y) = Qn(a|y),

where a ∈ {0, 1}. Define P ∈ P(U1 × Y × U
2) as P (a,A, b) = 1{a=b}

1
2m(A),

where a, b ∈ {0, 1} and A ∈ B([0, 1]).
By the proof of the Riemann-Lebesgue lemma ([136], Thm. 12.21), observe

that for all A ∈ B([0, 1]),

lim
n→∞

∫
A

Qn(1|y)m(dy) = lim
n→∞

∫
A

1
2fn(t)m(dt) = 1

2m(A),

and thus for all A ∈ B([0, 1])

lim
n→∞

Pn(u1 = 1, y ∈ A, u2 = 1)

= lim
n→∞

∫
A

Pn(u1 = 1|y)Pn(u2 = 1|y)m(dy)

= lim
n→∞

∫
A

Pn(u1 = 1|y)m(dy)

= 1
2m(A)

= P (1, A, 1) (12)

A similar property applies for (u1, u2) = (0, 0), (0, 1) and (1, 0) so that

lim
n→∞

Pn(u1 = a, y ∈ A, u2 = b) → P (a,A, b) = 1{a=b}
1
2m(A)
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Thus, Pn → P setwise. But even though Pn satisfies the conditional indepen-
dence property that Pn(u1 = 1|y, u2) = Qn(1|y), P does not satisfy the condi-
tional independence property of u1 and u2 given y: Under P , u1 and y are inde-
pendent but u1 = u2 and thus P (u1 = a|y, u2 = b) = 1{a=b} �= 1

2 = P (u1 = a|y).
Thus, setwise (and hence weak) convergence does not preserve the conditional
independence property.

We can also show via counterexample that LC(μ) is not closed either with
respect to the weak convergence topology.

Theorem 4.3. LC(μ) is not weakly or setwise closed.

Proof. Consider the same example as in the proof of Theorem 4.2, modified as
follows. Let Y = [0, 1]∪(1, 2], U1 = U

2 = {0, 1, 2, 3}. Let x be a {0, 1}-valued uni-
formly distributed Bernoulli random variable and let y ∼ 1{x=0}v+1{x=1}(v+1)
where v ∼ m with m being the Lebesgue measure (uniform distribution) on
[0, 1]. Let Lnk and Rnk be as given in (11) and define the square wave function,
as before,

hn(t) =
n∑

k=1

(
1{t∈Lnk} − 1{t∈Rnk}

)
.

Define also fn(t) = hn(t) + 1. Let Bn,1 =
⋃n

k=1 Lnk and Bn,2 = [0, 1] \ Bn,1.
Define {Qn} as the sequence of 4-cell quantizers given by

Qn(1|y) = 1{y∈Bn,1}, Qn(0|y) = 1{y∈Bn,2}, y ∈ [0, 1]

and

Qn(3|y) = 1{y∈1+Bn,1}, Qn(2|y) = 1{y∈1+Bn,2}, y ∈ (1, 2].

Let
Pn(u1 = a|y) = Pn(u2 = a|y) = Qn(a|y),

where a ∈ {0, 1, 2, 3}. Define P ∈ P(U1 × Y× U
2) as

P (a,A, b) = 1
4 1{a=b,a∈{0,1}} m(A ∩ [0, 1]) + 1

41{a=b,a∈{2,3}} m(A ∩ (1, 2])

where a, b ∈ {0, 1, 2, 3} and A ∈ B([0, 2]).
We can show that Pn → P setwise (and so weakly). In the limit, it is the

case that u1 = u2 almost surely. However, notice that P /∈ LC(μ): P is not a
mixture of conditionally independent random variables given y, with the mixture
being independent of y. Here, the mixture representation of P in terms of the
two independent {0, 1}-valued and {2, 3}-valued random variables is so that the
mixing random variable is correlated with y (and gives information on y).

We refer the reader to [2] [70] [14, Theorem 1.1] [150], [20] for further related
results on such intricacies on conditional independence properties. A sufficient
condition for compactness of LR(μ) under the weak convergence topology was
reported in [69]. We re-state this result in a brief and different form below for
reader’s convenience.
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Theorem 4.4 ([69]). Consider a static team where the action sets U
i are com-

pact. Furthermore, the measurements

P (dy|ω0) =
N∏
i=1

gi(dyi|ω0)

satisfy gi(dyi|ω0) = ξi(yi, ω0) νi(dyi) for some positive measure νi and contin-
uous ξi such that, for every ε > 0, there exists δ > 0 so that for ρi(a, b) < δ
(where ρi is a metric on Y

i)

|ξi(b, ω0) − ξi(a, ω0)| ≤ ε hi(a, ω0),

with supω0

∫
hi(a, ω0) νi(dyi) < ∞. Hence, static team admits independent static

reduction. Then, the set LR(μ) is compact under the weak convergence topology.
Therefore, if c(ω0,u) is lower semi-continuous in u for any ω0, then there exists
an optimal team policy (which is deterministic and hence in LA(μ)).

The results in [69] also apply to static reduction of sequential dynamic teams,
and a class of teams with non-compact action spaces that however has moment-
type cost function leading to a tightness condition on the set of strategic mea-
sures with a finite cost. In particular, the existence result applies to the coun-
terexample of Witsenhausen [137].

However, the result above can be significantly relaxed where the relaxation
is not only in the compactness condition, this can be modified by the usual
tightness conditions which will also be presented below. The generalization is
with respect to the topology considered: in the following, we present the most
general conditions to our knowledge on existence of optimal policies. In the
following, we slightly strengthen [148, Theorem 5.2] to allow for lower semi-
continuity of the cost function only in the actions.

Before we present a general result on existence, we recall the w-s topology
introduced by Schäl [125]: The w-s topology on the set of probability measures
P(X×U) is the coarsest topology under which

∫
f(x, u)ν(dx, du) : P(X×U) → R

is continuous for every measurable and bounded f which is continuous in u for
every x (but unlike weak topology, f does not need to be continuous in x).

Theorem 4.5 ([148, Theorem 5.2]). (i) Consider a static or a dynamic team
that admits an independent static reduction. Let the action sets U

i be
compact. Then, the set LR(μ) is compact under weak convergence topology,
and is also in the w-s topology (weak in actions, strong in measurements).
Then, the set LR(μ) is compact under weak convergence topology, and is
also in the w-s topology (weak in actions, strong in measurements).

(ii) Consider a static or a dynamic team that admits an independent static
reduction with the loss denoted with c (for either case). Let c be lower
semi-continuous in u for any ω0,y. Suppose further that Ui is σ-compact
(that is, Ui = ∪nKn for a countable collection of increasing compact sets
Kn) and, without any loss of generality, the control laws can be restricted
to those with E[φi(ui)] ≤ M for some lower semi-continuous φi : Ui → R+
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which satisfies limn→∞ infui /∈Kn
φi(ui) = ∞. Then, an optimal team policy

exists.

Proof. (i) For each m, consider the strategic measure:

P (dω0)
N∏

k=1

(Qkγk)m(dyk, duk).

Suppose that (Qkγk)m(dyk, duk) converges to (Qkγk)(dyk, duk) weakly. By [113,
p. 57], the joint product measure P (dω0)

∏N
k=1(Qkγk)m(dyk, duk) will converge

weakly to P (dω0)
∏N

k=1(Qkγk)(dyk, duk); see also [126, Section 5].
Since the marginals on

∏
k Y

k are fixed, [125, Theorem 3.10] (or [16, Theorem
2.5]) establishes that the set of all probability measures with a fixed marginal
on
∏

k Y
k is (sequentially) compact under the w-s topology.

(ii) If the function cs(ω0,y, ·) were continuous, this in turn would ensure that
the function (by a truncation and then a limiting argument)

∫
P (dω0)

N∏
k=1

(Qkγk)(dyk, duk) cs(ω0,y,u),

is lower semi-continuous under the w-s topology. Now, by approximating the
lower semi-continuous function cs(ω0,y, ·) from below by continuous functions,
applying the argument above, and taking the limit, we conclude that the lower
semi-continuity also applies when cs(ω0,y, ·) is only lower semi-continuous.

Finally, since the set of admissible strategic measures is sequentially compact
under the w-s topology, existence of an optimal team policy follows. The proof
for the dynamic case follows analogously by considering its static reduction.

Remark 4.2. Building on [151, Theorems 2.3 and 2.5] and [69, p. 1691] (due
to Blackwell’s theorem on irrelevant information [30, 32], [149, p. 457]), an
optimal policy, when exists, can be assumed to be deterministic.

Note that Theorem 4.5 provide weaker conditions when compared with The-
orem 4.4. So far, we present existence results for static or dynamic teams that
admit independent static reduction. In the following, we present existence re-
sults for teams that do not admit independent static reduction.

Theorem 4.6 ([151, Theorem 2.9]). Consider a sequential team with a classical
information structure with the further property that σ(ω0) ⊂ σ(y1) (under every
policy, y1 contains ω0). Suppose further that

∏N
k=1 U

k is compact. If c is lower
semi-continuous and each of the kernels pn (defined in (8)) is weakly continuous
so that ∫

f(yn) pn(dyn|ω0, y
1, . . . , yn−1, u1, · · · , un−1) (13)

is continuous in ω0, y
1, · · · , yn−1, u1, · · · , un−1 for every continuous and bounded

f , then there exists an optimal team policy which is deterministic.
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A further existence result along similar lines, for a class of static teams, is
presented next.

Theorem 4.7 ([148, Theorem 5.6]). Consider a static team with a classical
information structure (that is, with an expanding information structure so that
σ(yn) ⊂ σ(yn+1), n ≥ 1). Suppose further that

∏N
k=1(Yk × U

k) is compact. If

c̃(y1, · · · , yN , u1, · · · , uN ) := E[c(ω0,u)|y,u]

is lower semi-continuous in u for every y, then there exists an optimal team
policy which is deterministic.

Proof. Different from Theorem 4.6, we eliminate the use of ω0, and study the
properties of the set of strategic measures. Different from [151, Theorem 3.5],
we relax weak continuity. Once again, instead of the weak topology, we will use
the w-s topology [124].

Note that when
∏N

k=1 U
k is compact, the set of all probability measures on∏N

k=1 Y
k × U

k forms a weakly compact set. Since the marginals on
∏

k=1 Y
k

is fixed, [124, Theorem 3.10] (or [16, Theorem 2.5]) establishes that the set of
all probability measures with a fixed marginal on

∏
k=1 Y

k is relatively com-
pact under the w-s topology. Therefore, it suffices to ensure the closedness of
the set of strategic measures, which leads to the sequential compactness of the
set under this topology. To facilitate such a compactness condition, we first
expand the information structure so that DM k has access to all the previ-
ous actions u1, · · · , uk−1 as well. Later on, we will see that this expansion is
redundant. With this expansion, any w-s converging sequence of strategic mea-
sures will continue satisfying (10) in the limit due to the fact that there is
no conditional independence property in the sequence since all the informa-
tion is available at DM k. That is, Pn(dun|yn, y[0,n−1], u[0,n−1]) satisfies the
conditional independence property trivially as all the information is available.
On the other hand, for each element in the sequence of conditional proba-
bility measures, the conditional probability for the measurements writes as
P (dyn|y[0,n−1], u[0,n−1]) = P (dyn|yn−1). We wish to show that this also holds
for the w-s limit measure. Now, we have that for every n, yn ↔ yn−1 ↔ hn−1
forms a Markov chain. By considering the convergence properties only on con-
tinuous functions and bounded f , as in (9), with Pm → P weakly, we have
that ∫

P (dyn|yn−1)Pm(dhn−1)f(yn, hn−1)

=
∫ (

P (dyn|yn−1)f(yn, hn−1)
)
Pm(dhn−1)

→
∫ (

P (dyn|yn−1)f(yn, hn−1)
)
P (dhn−1)

=
∫

P (dyn|yn−1)P (dhn−1)f(yn, hn−1)
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Here,
(
P (dyn|yn−1)f(yn, hn−1)

)
is not continuous in yn−1, but it is in hn−2

and un−1 by an application of the dominated convergence theorem, and since

Pm(dy1, . . . , dyn−1, du1, . . . , dun−1) → P (dy1, . . . , dyn−1, du1, . . . , dun−1),

in the w-s sense (setwise in the measurement variable coordinates), conver-
gence holds. Thus, (9) is also preserved. Hence, for any w-s converging se-
quence of strategic measures satisfying (9)-(10) so does the limit since the team
is static and with perfect-recall. By [124, Theorem 3.7], and the generaliza-
tion of Portmanteau theorem for the w-s topology, the lower semi-continuity
of
∫
μ(dy, du)c̃(y,u) over the set of strategic measures leads to the existence

of an optimal strategic measure. As a result, the existence follows from similar
steps to that of Theorem 4.1. Now, we know that an optimal policy will be
deterministic (see Remark 4.2). Thus, a deterministic policy may not make use
of randomization, therefore DM k having access to {yk, yk−1, yk−2, · · · } is infor-
mationally equivalent to him having access to {yk, (yk−1, uk−1), (yk−2, uk−2)}
for an optimal policy. Thus, an optimal team policy exists.

We can report that Theorem 4.5 (for static teams or dynamic teams with an
independent static reduction) and Theorems 4.6 and 4.7 (for sequential teams
that do not allow an independent static reduction) are the most general existence
results, to our knowledge, for sequential team problems considered in this paper.
These results complement each other and cover a very large class of decentralized
stochastic control problems.

We finally state the following result.

Theorem 4.8. [75] LC(μ) is compact whenever LR(μ) is.

Proof. Let {φk} be an arbitrary sequence of information structures in LC(μ)
defined with B ∈ B

(
Ω0 ×

∏n
k=1(Yk × U

k)
)

φk(B) =
∫
B

(∫
νk(dθ)θ(dz)

)
,

Following the relationship between LCCR(μ) and LR(μ), as well as Theorem 3.2,
we can view LC(μ) as the mixture of elements of LR. The convergence prop-
erties of the sequence {φk} can be studied by the convergence of the family of
measures:

φk(B) =
∫
B

fm(z)
(∫

νk(dθ)θ(dz)
)
,

for a fixed countable collection of weak-convergence determining functions fm :
Ω × (

∏n
i=1 X

i × Y
i) → R [57, Theorem 3.4.5].

Now, using Fubini’s Theorem, we can rewrite the above as:∫
νk(dθ)

∫
fm(z)θ(dz),

and can note that the inner integral is continuous and bounded in θ.
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Thus we can write this as: ∫
νk(dθ)Fm(θ),

for the continuous and bounded Fm on LR(μ) given with Fm(θ) :=
∫
fm(z)θ(dz).

Since LR(μ) is weakly compact, the set of probability measures on B(LR(μ))
is weakly compact [27]; and accordingly there exists a subsequence of {νk},
{νkl

}, which converges weakly to some ν in P(LR(μ)). Since Fm is continuous
and bounded on LR(μ), it follows then that

∫
νkl

(dθ)Fm(θ) will converge to∫
ν(dθ)Fm(θ). This applies for each m, and therefore, we conclude that {φk}

has a convergent subsequence in LC(μ). Thus, LC(μ) is compact.

In the following, we will discuss lower and upper bounds on the optimal costs,
numerical programs, and convex relaxations.

5. Convex relaxations

In this section, we introduce convex relaxations for static teams or dynamic
teams that admit independent static reduction through relaxing conditional
independence among actions. Therefore, in this section, the joint distribution
of ω0,y is in product form μ(dω0, dy) = P (dω0)

∏N
k=1 Q

k(dyk). These relax-
ations can be classified in increasing order as quantum-correlated relaxation and
non-signaling relaxation. These classes are new to team decision theory and we
believe that these new classes provide novel perspectives and results to team
decision theory and decentralized stochastic control in the future.

We saw earlier in the article that individual or common (independent) ran-
domness does not improve optimal team cost, whereas we will see that quantum-
correlated and non-signaling relaxations in general improve the optimal cost.
Moreover, the optimization problem associated with the non-signaling case can
be written as a linear program.

A related hierarchy of policies was introduced in [12] to study games with local
information. In [12], the advantages of quantum-correlated and non-signaling
equilibria over classical ones were discussed and it was established that quantum-
correlated and non-signaling equilibria are socially more beneficial. However, our
aim is not to show benefits of quantum-correlated and non-signaling policies over
classical ones, instead our main motivation is to obtain an approximation to the
classical team problem by using these new classes of policies.

The non-signaling type relaxation for team problems was studied in [151]
with a different name, building on [4] where it was proved that the set of strate-
gic measures corresponding to the extreme points of non-signaling policies is
a strict superset of the set of strategic measures corresponding to measurable
policies. This set arises in applications in information theory in the context of
converse theorems in multi-terminal source coding (see e.g. Berger-Tung inner-
outer bounds [132]). In the quantum information theory literature [41], this cor-
relation structure has evidently also been studied extensively, as we will present
later in this section.
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5.1. Non-signaling relaxation

A joint conditional distribution of actions given observations is non-signaling
if, for any i ∈ N , the marginal distribution of the action of DM i given its
observation does not give any information about the observations of other agents
[102, 21]. Non-signaling has been investigated in quantum mechanics due to its
close connection to the foundations of quantum mechanics and relativity [116].

Let LNS(μ) denote the set of non-signaling strategic measures. Formally, non-
signaling strategic measures are defined as follows. An element P ∈ LNS(μ) if
P (dω0, dy) = μ(dω0, dy), and for any subset {k1, . . . , kM} of {1, . . . , N}, the
actions of the agents in {k1, . . . , kM} given their measurements are independent
of measurements of agents in {1, . . . , N} \ {k1, . . . , kM} and ω0; that is, for any
{k1, . . . , kM} ⊂ {1, . . . , N}, we have

P (duk1 , . . . , dukM |ω0,y) = P (duk1 , . . . , dukM | yk1 , . . . , ykM ). (14)

We also define a more relaxed version of LNS(μ), denoted by LM (μ) (which
we will call local-Markov correlations), as follows: An element P ∈ LM (μ)
if P (dω0, dy) = μ(dω0, dy), and for any k ∈ {1, . . . , N}, the action uk of
agent k given the measurement yk is independent of measurements of agents
in {1, . . . , N} \ {k} and ω0; that is, we have

P (duk|ω0,y) = P (duk|yk). (15)

At first sight, it is tempting to claim that LC(μ) is the same as the set of
non-signaling strategic measures LNS(μ) or LM (μ). Indeed, in [4] this question
was raised: a counterexample to the claim that LC(μ) is equivalent to the set
LNS(μ) was given to establish that the set of extreme points of non-signaling
policies is not LA(μ), which would imply that non-signaling policies are more
general than randomized ones as LA(μ) is the set of extreme points of LC(μ)
(see Theorem 3.1). In the quantum information literature, this result was known
long ago, as we will review later.

It turns out that the non-signaling condition (14) can be derived from fewer
linear constraints, which will be described below. These constraints indeed en-
able us to write the optimization problem associated with non-signaling policies
as a linear program.

Lemma 5.1 ([102, Section II-A]). An element P with P (dω0, dy) = μ(dω0, dy)
is a non-signaling strategic measure if and only if it satisfies the following con-
dition:

(N) For each k ∈ {1, . . . , N}, the marginal distribution of actions excluding
uk is independent of the observation yk and ω0:

P (du−k|ω0,y) = P (du−k|y−k). (16)

Proof. Note that each constraint (16) is linear in P . The equivalence of (14)
and (N) can be established as follows. First, it is immediate that (14) implies
(N). Conversely, let P satisfies (N). Fix any subset {k1, . . . , kM} of {1, . . . , N}.



474 N. Saldi and S. Yüksel

Let {l1, . . . , lT } := {1, . . . , N}\{k1, . . . , kM}. Then, using the condition (N), we
can prove that

P (duk1 , . . . , dukM |ω0,y) = P (duk1 , . . . , dukM | ω̂0, ŷ
l1 , . . . , ŷlT , yk1 , . . . , ykM ),

for all ω0, y
l1 , . . . , ylT and ω̂0, ŷ

l1 , . . . , ŷlT , which implies that

P (duk1 , . . . , dukM |ω0,y) = P (duk1 , . . . , dukM | yk1 , . . . , ykM ).

Indeed, we have

P (duk1 , . . . , dukM |ω0,y) =
∫
Ul2×...×UlT

P (du−l1 |ω0,y)

=
∫
Ul2×...×UlT

P (du−l1 | ω̂0, ŷ
l1 ,y−l1) (by (N))

= P (duk1 , . . . , dukM | ω̂0, ŷ
l1 ,y−l1)

=
∫
Ul1×Ul3×...×UlT

P (du−l2 | ω̂0, ŷ
l1 ,y−l1)

=
∫
Ul1×Ul3×...×UlT

P (du−l2 | ω̂0, ŷ
l1 , ŷl2 ,y−l1,−l2) (by (N))

= P (duk1 , . . . , dukM | ω̂0, ŷ
l1 , ŷl2 ,y−l1,−l2)

...
= P (duk1 , . . . , dukM | ω̂0, ŷ

l1 , . . . , ŷlT , yk1 , . . . , ykM ).

This completes the proof.

The following result establishes convexity and topological properties of the
sets LNS(μ) and LM (μ).

Theorem 5.1. (i) LM (μ) is a convex set and it is closed under the weak
convergence topology.

(ii) LNS(μ) is a convex set and it is closed under the weak convergence topol-
ogy.

Proof. Convexity of both sets follow since both LM (μ) and LNS(μ) are inter-
sections of convex sets.

Let Pn ∈ LM (μ) converge to P weakly. Then, for any continuous and bounded
g:∫

Pn(dyi, dy−i, dω0, u
i)g(yi,y−i, ω0, u

i) →
∫

P (dyi, dy−i, dω0, u
i)g(yi,y−i, ω0, u

i)

Since Pn ∈ LM (μ), we have that∫
Pn(dyi, dy−i, dω0, u

i)g(yi,y−i, ω0, u
i)

=
∫ ∫

Pn(dy−i, dω0|yi)Pn(dyi, dui)g(yi,y−i, ω0, u
i).
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But since the information structure is static, we write∫
Pn(dyi, dy−i, dω0, u

i)g(yi,y−i, ω0, u
i)

=
∫ ∫

μ(dy−i, dω0|yi)Pn(dyi, dui)g(yi,y−i, ω0, u
i).

Now,

h(yi, ui) :=
(∫

μ(dy−i, dω0|yi)g(yi,y−i, ω0, u
i)
)

is continuous in ui as g is continuous by dominated convergence theorem. Since
the marginal on yi is fixed, as noted earlier, [124, Theorem 3.10] (or [16, Theo-
rem 2.5]) establishes that the set of all tight probability measures with a fixed
marginal on

∏
k Y

k is relatively compact under the w-s topology. This implies
that Pn converges to P in w-s topology as the sequence {Pn} is tight. Hence,∫

Pn(dyi, dy−i, dω0, u
i)g(yi,y−i, ω0, u

i) →
∫

h(yi, ui)P (dyi, dui)

=
∫ ∫

μ(dy−i, dω0|yi)P (dyi, dui)g(yi,y−i, ω0, u
i)

and hence P ∈ LM (μ) also.
By viewing each subset {k1, . . . , km} of {1, . . . , N} as a single decision maker

with a collective action um := {uk1 , . . . , ukm} and ym := {yk1 , . . . , ykm}, apply-
ing the same analysis above shows that each set is closed, and since intersection
of closed sets is closed, the closedness of LNS(μ) follows. As noted above using
the condition (N), without any loss, we can only consider the sets of cardinality
N − 1.

Since the constraints P (du−i|yi,y−i, ω0) = P (du−i|y−i), i ∈ N , in LNS(μ)
for P are linear, the optimization problem associated with non-signaling strate-
gic measures can be written as a linear program over appropriate vector spaces.
One such formulation will be given in Section 5.4.

5.2. Quantum-correlated relaxation

To introduce quantum-correlated strategic measures, we briefly introduce the
mathematical formalism necessary to discuss quantum operations. We refer the
reader to books [111, 135, 76] for basics of quantum information and compu-
tation. In this section, we suppose that all Hilbert spaces are complex and
separable.

Quantum physical systems are described by complex Hilbert spaces. For a
Hilbert space H with an inner product 〈·, ·〉, let L(H) and D(H) denote the set
of Hermitian and positive Hermitian operators with unit trace. A state ρ of a
quantum system, living in H, is an element of D(H); that is, it is a positive
Hermitian operator with unit trace. A quantum state ρ is said to be pure if it
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has rank equal to 1. Equivalently, ρ is pure state if there exists a unit vector
u ∈ H such that

ρ = uu∗,

where u∗ is the complex conjugate of the vector u. By the spectral decompo-
sition, every quantum state can be written as a mixture of pure states. Hence,
the extreme points of D(H) coincides with the set of pure states.

A measurement on a quantum system is given by Positive Operator Valued
Measure (POVM) [76]; that is, given any measurable outcome space (X,X ), a
POVM is a mapping M : X → L(H) from the σ-algebra X of X to the Hermitian
operators L(H) on H such that

(1) M(∅) = 0, M(X) = Id;
(2) M(B) ≥ 0 ∀B ∈ X ;
(3) M(

⋃
j Bj) =

∑
j M(Bj) for any disjoint collection {Bj}, where the series

is weakly convergent.

Here, weak convergence means the following:

lim
n→∞

〈
ψ,

n∑
j=1

M(Bj)ψ
〉

=
〈
ψ,

∞∑
j=1

M(Bj)ψ
〉
,

for all ψ ∈ H.
If the measurable outcome space (X,X ) is finite in POVM M : X → L(H),

it is sufficient to define POVM M : X → L(H) on X and extend the definition
to X as follows: for any A ∈ X , define M(A) =

∑
x∈A M(x). For instance, if

X = {0, 1}, then we will only need to define M(0) and M(1). In the finite case,
M : X → L(H) should satisfy the following conditions: M(x) ≥ 0 ∀x ∈ X and∑

x M(x) = Id.
When one applies the measurement M : X → L(H) to the quantum system

in the state ρ, the probability of obtaining the event B ∈ X is given by

P (B | ρ) = Tr
{
M(B) ρ

}
.

Note that since Tr{ρ} = 1 and M(B) ≥ 0 for all B ∈ X , we have P (B|ρ) ≥ 0
for all B ∈ X and P (X|ρ) = 1. Moreover, for any disjoint collection {Bj} of
events, by (3) we have

P (B | ρ) =
∑
j

P (Bj | ρ),

where B :=
⋃

j Bj . Hence, P (·|ρ) is indeed a probability measure on X. We note
that if ρ is a pure state given by a unit vector u, then

P (B | ρ) = 〈u,M(A)u〉.

In quantum physics, a compound of N quantum systems with the underlying
Hilbert spaces {Hi, i = 1, . . . , N} is represented by the tensor product H1 ⊗
H2 ⊗ . . . ⊗ HN of the individual Hilbert spaces. Therefore, any state ρ (called
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the compound state) of this compound quantum system is an element of D(H1⊗
H2 . . .⊗HN ). If the state ρ is in product form

ρ = ρ1 ⊗ . . .⊗ ρN ,

then it is called product state. In this case, the individual quantum systems are
said to be independent. If ρ is a mixture of product states, it is called separable.
If the state is not separable, then it is called entangled.

Quantum-correlated strategic measures. With these definitions, we can
now define quantum-correlated strategic measures. An element P is a quantum-
correlated strategic measure if agents have access to a part of a quantum com-
pound state ρ ∈ D(H1⊗H2 . . .⊗HN ), where {Hi, i = 1, . . . , N} is a collection of
arbitrary Hilbert spaces, and, for each i = 1, . . . , N , DM i makes measurements
M i,yi : Ui → L(Hi) on ith part of the state ρ depending on its observations
yi to generate its action ui as the output of the measurement (recall that U i

is the Borel σ-algebra on the action space U
i of DM i); that is, the conditional

distribution P (du|ω0,y) is of the following form:

P (du|ω0,y) = Tr
{(

M1,y1
(du1) ⊗ . . .⊗MN,yN

(duN )
)
ρ
}
.

Let the state ρ be separable; that is,

ρ =
∫

ν(dz) ρz1 ⊗ . . .⊗ ρzN .

Suppose that on each individual quantum system, we are performing the follow-
ing measurement M i,yi : Ui → L(Hi). Then, the corresponding joint probability
of obtaining the event du1× . . .×duN given observations (y1, . . . , yN ) and state
ω0 is the following:

P (du1, . . . , duN |ω0,y) =
∫

ν(dz) Tr{M1,y1
(du1)ρz1} . . . Tr{MN,yN

(duN )ρzN}

=
∫

ν(dz)P (du1|y1, z) . . . P (duN |yN , z),

where P (dui|yi, z) = Tr{M i,yi(dui)ρzi }. This follows from Tr(A ⊗ B) = Tr(A)
Tr(B) and that (A⊗B)(C⊗D) = (AC)⊗ (BD). Therefore, P ∈ LC(ν). Hence,
separable states can only generate correlations that can be classically generated;
that is, if individual quantum systems share a common randomness ν(dz), then
they can also realize P (du1, . . . , duN |ω0,y) independently using classical devices
given the common randomness. Hence, to generate correlations that cannot be
realized classically, one must use entangled states.

Let LQ(μ) denote the set of quantum-correlated strategic measures. In the
next section, we will show that LC(μ) is a strict subset of LQ(μ). In view of the
discussion in the previous paragraph, the strategic measure P ∈ LQ(μ) \LC(μ)
if the shared state ρ is entangled.
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As an example, consider the two-agent team problem with Y
1 = Y

2 = U
1 =

U
2 = {0, 1}. Suppose that Ω0 is degenerate. Let H1 = H2 = C

2. Consider the
following states on C2 × C2:

η = 1
2E1,1 ⊗E1,1 + 1

2E2,2 ⊗ E2,2

τ = 1
2E1,1 ⊗E1,1 + 1

2E1,2 ⊗ E1,2 + 1
2E2,1 ⊗E2,1 + 1

2E2,2 ⊗ E2,2,

where Ea,b is a matrix on C
2 such that Ea,b(i, j) = 1{(i,j)=(a,b)}, for a, b ∈ {1, 2}.

Note that E1,1, E2,2 ∈ D(C2). Hence, η is a mixture of product states, and so, it
is separable. However, note that E1,2, E2,1 /∈ D(C2). Therefore, τ is an entangled
state (indeed it is maximally entangled state). For any angle θ, let us define

Πθ =
(

cos2(θ) cos(θ) sin(θ)
cos(θ) sin(θ) sin2(θ)

)
=
(
cos(θ) sin(θ)

) (cos(θ)
sin(θ)

)
.

Using Πθ, we now define two collection of measurements {M1,y1 : U1 → L(C2);
y1 ∈ Y

1}, {M2,y2 : U2 → L(C2); y2 ∈ Y
2} for DM 1 and DM 2, respectively, as

follows:

M1,0(0) = Π0,M
1,0(1) = Ππ/2; M1,1(0) = Ππ/4,M

1,1(1) = Π3π/4

and

M2,0(0) = Ππ/8,M
2,0(1) = Π5π/8; M2,1(0) = Π7π/8,M

2,1(1) = Π3π/8.

Namely, if the observation of DM 1 is y1, then DM 1 applies the measurement
M1,y1 : u1 �→ M1,y1(u1) to the quantum state. Similarly, if the observation of
DM 2 is y2, then DM 2 applies the measurement M2,y2 : u2 �→ M2,y2(u2) to
the quantum state.

Now, if we apply these measurements to the quantum states η and τ , we
obtain two quantum-correlated strategic measures Pη and Pτ , respectively. The
conditional distributions of these quantum-correlated strategic measures on ac-
tions given observations can be computed as follows:

Pη(u1, u2|y1, y2)

= 1
2

(
Tr{M1,y1

(u1)E1,1}Tr{M2,y2
(u2)E1,1} + Tr{M1,y1

(u1)E2,2}

× Tr{M2,y2
(u2)E2,2}

)
Pτ (u1, u2|y1, y2)

= 1
2

(
Tr{M1,y1

(u1)E1,1}Tr{M2,y2
(u2)E1,1} + Tr{M1,y1

(u1)E1,2}

× Tr{M2,y2
(u2)E1,2}

)
+ 1

2

(
Tr{M1,y1

(u1)E2,1}Tr{M2,y2
(u2)E2,1} + Tr{M1,y1

(u1)E2,2}
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× Tr{M2,y2
(u2)E2,2}

)
.

Since E1,1, E2,2 ∈ D(C2), the conditional distribution Pη(u1, u2|y1, y2) is a mix-
ture of the following independent conditional probability measures

P1,η(u1|y1)P1,η(u2|y2) := Tr{M1,y1
(u1)E1,1}Tr{M2,y2

(u2)E1,1}

and

P2,η(u1|y1)P2,η(u2|y2) := Tr{M1,y1
(u1)E2,2}Tr{M2,y2

(u2)E2,2}.

Hence Pη can be classically realized via common randomness; that is, Pη ∈
LC(μ). However, this is not true for Pτ since E1,2, E2,1 /∈ D(C2), and so,

Tr{M1,y1
(u1)E1,2}Tr{M2,y2

(u2)E1,2}

and
Tr{M1,y1

(u1)E2,1}Tr{M2,y2
(u2)E2,1}

are not probability measures. Therefore, Pτ cannot be realized classically; that
is, Pτ ∈ LQ(μ) \ LC(μ).

Here, one can view the following collection as the joint strategy of the decision
makers:{
Hi (i∈N ), ρ ∈ D(H1 ⊗H2 . . .⊗HN ), {M i,yi

: U i → L(Hi); yi ∈ Y
i} (i ∈ N )

}
.

Namely, at the beginning of the problem, decision makers agree on the Hilbert
spaces Hi (i ∈ N ) and share a compound state ρ ∈ D(H1⊗H2 . . .⊗HN ) (i.e., en-
tangled state) to be used in the measurements. Then, they choose decentralized
measurements {M i,yi : U i → L(Hi); yi ∈ Y

i} (i ∈ N ) without communicating
with each other.

Given the Hilbert spaces and the compound state, it is possible to view de-
centralized measurements as the decentralized strategies of the decision makers.
However, when designing optimal quantum-correlated strategic measures, deci-
sion makers must also find the optimal Hilbert spaces and the corresponding
optimal compound state. Note that the maximally entangled state is in general
not the optimal choice [42]. Therefore, the optimization variable in the deci-
sion problem corresponding to the quantum-correlated strategic measures is in
general quite large even if the measurement and the action spaces are finite.
However, note that [48, 84] (see also Example 5.1) give evidence that quantum-
correlated teams with finite measurement and action spaces can be computation-
ally tractable as opposed to their classical randomized counterparts even though
the optimization space is quite large compared to the classical case. Namely, in
these papers, optimization problems associated with quantum-correlated strate-
gic measures can be written as (or can be approximated by) semi-definite pro-
grams whose sizes scale with the cardinality of the measurement and action
spaces. As a result, they can be solved exactly or approximately in polynomial
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time. In particular, [48] computes the optimal value of XOR team and [84]
approximates the optimal value of the unique teams via semi-definite programs.

However, there are other instances of finite team problems [83, 131, 107,
81], where exact or approximate computation of the optimal cost of quantum-
correlated teams is NP-hard, and therefore, cannot be cast as a semi-definite
program. One of the reasons for such negative complexity results might be the
fact that the optimal value of quantum-correlated teams can be attained via
quantum systems living in infinite-dimensional Hilbert spaces (see, e.g., [58]).
Therefore, in order to obtain a computationally tractable problem, we may need
to put a constraint on the dimensions of the Hilbert spaces where quantum
systems live in.

To that end, let LQ(d)(μ) ⊂ LQ(μ) denote the set of quantum-correlated
strategic measures where each agent has access to a part of quantum compound
state ρ ∈ D(H1 ⊗H2 . . .⊗HN ) with dim(Hi) ≤ d for all i ∈ N .

In the following, we state convexity and topological properties of the sets
LQ(μ) and LQ(d)(μ).

Theorem 5.2. (i) LQ(μ) is a convex set but it is not closed under the weak
convergence topology.

(ii) LQ(d)(μ) is not convex if LC(μ) �⊂ LQ(d)(μ). In particular, LQ(1)(μ) is not
convex and LQ(2)(μ) is not convex for certain models.

(iii) For each d, LQ(d)(μ) is closed under the weak convergence topology if the
observation spaces are finite and action spaces are compact.

(iv) LQ(μ) is a strict super-set of
⋃

d LQ(d)(μ).

Proof. Proof of (i): The convexity of LQ(μ) can be proved easily and so we omit
the details. Non-closedness of LQ(μ) has been a longstanding open problem and
is proved recently in [128] who showed that the weak closure of the set is strictly
larger than the set itself by explicit construction.

Proof of (ii): By [53, Corollary 2], LQ(d)(μ) is not convex if LC(μ) �⊂ LQ(d)(μ).
In particular, LQ(1)(μ) is not convex by [53, Proposition 1] and LQ(2)(μ) is not
convex for certain models by [53, Proposition 2].

Proof of (iii): Since both the set of states and the set of POVMs of fixed (local)
dimension are compact in finite measurement space and compact action space
case and the trace is a continuous map, LQ(d)(μ) is closed (see [67, Appendix
B] where the finite action case is considered but the same argument applies for
the compact case also).

Proof of (iv): The fact that LQ(μ) is a strict super-set of
⋃

d LQ(d)(μ) is
proved in [49]; that is, the authors show that there exists a joint strategy which
is not attainable by quantum systems of any arbitrary finite dimension, but is
attained exclusively by infinite-dimensional quantum systems

The following result is a corollary of Theorem 5.2-(iii).

Corollary 5.1. Consider a static team decision problem with finite measure-
ment spaces (and hence independent measurements reduction) and compact ac-
tion spaces. Then, the following team problem infP∈LQ(d)(μ) J(P ) has an optimal
team policy.
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To show the effectiveness (both computationally and optimally) of quantum-
correlated strategic measures over classical randomized ones, we consider the
XOR team problem and a variation below.

Example 5.1. In the XOR team, we have two agents with binary action spaces
{0, 1}; that is, U

1 = U
2 = {0, 1}. Measurements are generated independently

and uniformly over some finite sets Y1 and Y
2 via probability measure μ(y1, y2).

Hence, there is no ω0 variable in the problem, and so the problem is automati-
cally static. The reward1 function is defined as

r(y1, y2, u1, u2) =
{

1, if u1 ⊕ u2 = h(y1, y2)
−1, otherwise,

where h : Y
1 × Y

2 → {0, 1} is some arbitrary binary-valued function. This
team problem with quantum-correlated policies can be written as a semi-definite
program due to Tsirelson’s Theorem [135, Theorem 6.62].

Indeed, let us define

g(y1, g2) = μ(y1, y2) (−1)h(y1,y2).

Given any ρ ∈ D(H1 ⊗ H2) for some finite-dimensional Hilbert spaces H1,H2
(finite dimensional Hilbert spaces are sufficient for this problem) and given any
two collection of POVMs {M1,y1

, y1 ∈ Y
1}, {M2,y2

, y2 ∈ Y
2}, the corresponding

strategic measure P is P (y1, y2) = μ(y1, y2) and

P (u1, u2|y1, y2) = Tr
{(

M1,y1
(u1) ⊗M2,y2

(u2)
)
ρ
}

and its expected reward function can be written as

J(P ) =
∑
y1,y2

g(y1, y2) Tr
{
(M1,y1

(0) −M1,y1
(1)) ⊗ (M2,y2

(0) −M2,y2
(1))ρ

}
.

Note that an operator H is Hermitian with operator norm ‖H‖ ≤ 1 if and only
if it can be written as H = M(0) − M(1), where M(i) (i = 0, 1) are positive
semi-definite operators with M(0)+M(1) = Id. Therefore, for any pair (y1, y2),
Hy1 = M1,y1(0)−M1,y1(1) and Hy2 = M2,y2(0)−M2,y2(1) are Hermitian with
operator norms less than 1. Conversely, for any pair (y1, y2), any Hermitian
operators Hy1

, Hy2 with operator norms less than 1 can be decomposed as above.
Let X be a |Y1| × |Y2| real matrix. Tsirelson’s Theorem states that the fol-

lowing assertions are equivalent:

1. There exist Hilbert spaces H1 and H2, a state ρ ∈ D(H1 ⊗H2), and two
collections of Hermitian operators

{Hy1
, y1 ∈ Y

1} and {Hy2
, y2 ∈ Y

2}
1All results in this paper are also true for maximization of a reward function.
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whose operator norms are less than 1, and

X(y1, y2) = Tr
{(

Hy1 ⊗Hy2
)
ρ
}
,

for all y1 ∈ Y1, y2 ∈ Y2.
2. There exists two collections {uy1 , y1 ∈ Y

1}, {vy2 , y2 ∈ Y
2} ⊂ R

|Y1|×|Y2| of
unit vectors such that

X(y1, y2) = uT
y1vy2

for all y1 ∈ Y
1, y2 ∈ Y

2.

Therefore, Tsirelson’s Theorem and the above fact about Hermitian operators
imply that

sup
P∈LQ(μ)

J(P ) = sup
uy1 ,vy2∈R|Y1|×|Y2|

y1∈Y
1,y2∈Y

2

∑
y1,y2

g(y1, y2)uT
y1vy2 ,

subject to

uT
y1uy1 = 1 and vTy2vy2 = 1, for y1 ∈ Y

1, y2 ∈ Y
2.

This optimization problem is indeed a semi-definite program. Therefore, the op-
timal value of the XOR team with quantum-correlated policies can be computed
in polynomial time as opposed to its classical counterpart.

Example 5.2. A special case for XOR team is the celebrated CHSH (Clauser-
Horne-Shimony-Holt) team [135]. In CHSH team, we have binary observation
and action spaces {0, 1} and the reward function is defined as

r(y1, y2, u1, u2) =
{

1, if u1 ⊕ u2 = y1 · y2

−1, otherwise.

For this problem, the optimal value of randomized policies is 0.5 [135, Section
6.3.2], which can be verified by an inspection of 16 measurable strategic mea-
suresas they are sufficient for optimality. However, quantum-correlated policies
can achieve the maximum reward of 2

√
2/4, that is obtained by solving the cor-

responding semi-definite program. Therefore, for CHSH team, we have

sup
P∈LQ(μ)

J(P ) > J∗,

that is, quantum-correlated policies improve the optimal value J∗ of the original
team as opposed to randomized policies.

Indeed, Let H1 = H2 = C
2 and let ρ ∈ D(H1⊗H2) be the maximally entangled

state
ρ = 1

2
∑

a,b∈{1,2}
Ea,b ⊗Ea,b.
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Recall the two collection of POVMs {M1,y1
, y1 ∈ Y

1}, {M2,y2
, y2 ∈ Y

2}:

M1,0(0) = Π0,M
1,0(1) = Ππ/2; M1,1(0) = Ππ/4,M

1,1(1) = Π3π/4

and

M2,0(0) = Ππ/8,M
2,0(1) = Π5π/8; M2,1(0) = Π7π/8,M

2,1(1) = Π3π/8,

where
Πθ =

(
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

)
.

Then, the corresponding quantum-correlated strategic measure P has the follow-
ing conditional distribution P (u1, u2|y1, y2):

P (·, ·|0, 0) =
(

2 +
√

2
8 ,

2 −
√

2
8 ,

2 +
√

2
8 ,

2 −
√

2
8

)
,

P (·, ·|0, 1) =
(

2 −
√

2
8 ,

2 +
√

2
8 ,

2 −
√

2
8 ,

2 +
√

2
8

)

P (·, ·|1, 0) =
(

2 +
√

2
8 ,

2 −
√

2
8 ,

2 −
√

2
8 ,

2 +
√

2
8

)

P (·, ·|1, 1) =
(

2 −
√

2
8 ,

2 +
√

2
8 ,

2 +
√

2
8 ,

2 −
√

2
8

)
(17)

Now, it is straightforward to compute that J(P ) = 2
√

2/4. Hence, P is the
optimal quantum-correlated strategic measure.

5.3. Relations between convex relaxations

Up to this point we have introduced a number of convex strategic measures,
we now present a comparison. First, we note that the joint strategies in the set
LC(μ) indeed correspond to the local hidden variable correlations in quantum
mechanics. In [56], Einstein, Podolsky, and Rosen have made the point that due
to the probabilistic nature of quantum mechanics, the theory cannot be com-
plete and should be supplemented by a local hidden variable to describe the
probabilistic nature, where the local hidden variable describes the uncertainties
in the experimental setup. In other words, they claimed that LC(μ) = LQ(μ).
However, John Bell, in his influential paper [25], constructed a quantum mechan-
ical system whose statistical behavior cannot be explained via the local hidden
variable theory; that is, LQ(μ) is a strict super-set of LC(μ). This result implies
that quantum mechanical systems are intrinsically probabilistic and cannot be
explained by the lack of precision in experimental measurements. Experimental
verification of Bell’s prediction has been established by Alain Aspect in [10].
Additionally, in [116], Popescu and Rohrlich also discussed that correlations



484 N. Saldi and S. Yüksel

(strategic measures in our setting) achieved by quantum mechanical systems
can be as large as LNS(μ) which itself is larger than LQ(μ). However, no exper-
imental verification has been provided for this claim as yet, to our knowledge.

We also note that the lower bounds on the optimal team costs achieved
by classical strategies LC(μ) is known to be Bell inequalities in the quantum
information theory literature. Bell inequality violations correspond to quantum-
correlated strategies that improve the classical optimal team cost [48]. Identify-
ing Bell inequality violations is an active are of research in quantum information
theory. One such violation is established in Example 5.2 for CHSH team. Since
the considered sets are convex, by the Hahn-Banach Separation Theorem [99],
identifying Bell inequality violations is equivalent to finding a separating func-
tion in an inner-product form. Accordingly identifying Bell inequality violations
would be implied by finding a cost function for which the optimal quantum-
correlated team cost is strictly smaller than the optimal classical team cost;
that is;

inf
P∈LQ(μ)

∫
P (ds) c(s) < inf

P∈LC(μ)

∫
P (ds) c(s).

Since both LQ(μ) and LC(μ) are convex sets, the above inequality states that the
hyperplane {P :

∫
P (ds) c(s) = J∗} separates the convex sets LQ(μ) and LC(μ).

It is in general very hard to find all Bell inequality violations (i.e., separating
hyperplanes) for a certain setup.

Before we establish the relation between convex relaxations, we introduce a
further information structure, denoted by LCJ , which allows for the common
random variable z to be correlated with ω0,y; in this case, the information
structure is essentially centralized, since the dependence between z and the
exogenous variables are arbitrary:

LCJ (μ) :=
{
P ∈ P

(
Ω0 ×

N∏
k=1

(Yk × U
k)
)

:

P (B) =
∫

[0,1]N×B0×
∏N

k=1
Ak

μ(dz, dω0, dy)
∏
k

1{uk=γk(yk,z)∈Bk},

γk(·, z) ∈ Γk, B ∈ B(Ω0 ×
∏
k

(Yk × U
k))
}
,

where the marginal of ω0,y is fixed as μ.

Theorem 5.3. We have the following relation between convex relaxations.

(i) LC(μ) ⊂ LQ(μ) ⊂ LNS(μ) ⊂ LM (μ) ⊂ LCJ(μ).
(ii) The sets LC(μ), LQ(μ), LNS(μ), LM (μ), LCJ (μ) are convex.
(iii) The inclusions among the convex sets above are strict.
(iv) There exist problems for which

inf
P∈LQ(μ)

∫
P (ds) c(s) < inf

P∈LC(μ)

∫
P (ds) c(s)
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inf
P∈LNS(μ)

∫
P (ds) c(s) < inf

P∈LQ(μ)

∫
P (ds) c(s)

and in particular

inf
P∈LNS(μ)

∫
P (ds) c(s) < inf

P∈LC(μ)

∫
P (ds) c(s).

One implication of the above is that, the convex programs:

inf
P∈LQ(μ)

∫
P (ds) c(s) and inf

P∈LNS(μ)

∫
P (ds) c(s)

or infP∈LM (μ)
∫
P (ds) c(s) provide lower bounds to the original problem. In par-

ticular, since the optimization problem associated with non-signaling strategic
measures can be written as a linear program, it can be solved in a polynomial
time if the measurement and action spaces are finite.

Proof. Proof of (ii): We have already proved the convexity of LC(μ), LQ(μ),
LNS(μ), and LM (μ).

Proof of (i): Let P ∈ LR(μ); that is,

P (du|ω0,y) =
N∏
i=1

Πi(dui|yi).

Let H be a Hilbert space with dimension 1. Let ew ∈ H with unit norm. We
define

ρ = ewe
∗
w ⊗ . . .⊗ ewe

∗
w

Myi

(A) = Πi(A|yi) ewe∗w
for all yi ∈ Y

i, A ∈ B(Ui), and i = 1, . . . , N . Then, we have

P (du|ω0,y) = Tr
{(

My1
(du1) ⊗ . . .⊗MyN

(duN )
)
ρ
}
.

This implies that LR(μ) ⊂ LQ(μ). Since the convex hull of LR(μ) is LC(μ) and
LQ(μ) is convex, we have LC(μ) ⊂ LQ(μ).

Let P ∈ LQ(μ); that is, agents have access to a part of a compound quantum
state ρ ∈ D(H1 ⊗ H2 ⊗ . . . ⊗ HN ), where {Hi, i = 1, . . . , N} is a collection of
arbitrary Hilbert spaces, and, for each i = 1, . . . , N , DM i makes measurements
Myi : U i → L(Hi) on the ith part of the state ρ depending on its observations
yi to generate its action as the output of the following measurement:

P (du|ω0,y) = Tr
{(

My1
(du1) ⊗ . . .⊗MyN

(duN )
)
ρ
}
.

We prove that P satisfies the non-signaling condition. Fix any k ∈ {1, . . . , N}.
Then, we have∫

Uk

P (du |ω0, y
1, . . . , yk, . . . , yN )
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=
∫
Uk

Tr
{(

My1
(du1) ⊗ . . .⊗Myk

(duk) ⊗ . . .⊗MyN

(duN )
)
ρ
}

= Tr
{(∫

Uk

My1
(du1) ⊗ . . .⊗Myk

(duk) ⊗ . . .⊗MyN

(duN )
)
ρ

}

= Tr
{(

My1
(du1) ⊗ . . .⊗ Id⊗ . . .⊗MyN

(duN )
)
ρ

}

=
∫
Uk

Tr
{(

My1
(du1) ⊗ . . .⊗M ŷk

(duk) ⊗ . . .⊗MyN

(duN )
)
ρ
}

=
∫
Uk

P (du |ω0, y
1, . . . , ŷk, . . . , yN )

for all y1, . . . , yk−1, yk, ŷk, yk+1, . . . , yN and ω0. Therefore, P is in LNS(μ).
Proof of (iii) and (iv): We prove (iii) and (iv) by providing an example.

This example is CHSH team. Recall that in CHSH team, we have two agents
with binary measurement and action spaces {0, 1}. Observations are generated
independently and uniformly. Hence, there is no state variable in the problem,
and so the problem is automatically static. The reward function is defined as

r(y1, y2, u1, u2) =
{

1, if u1 ⊕ u2 = y1 · y2

0, otherwise.

For this problem, randomized strategic measures LC(μ) can achieve 0.5 [48].
Quantum-correlated strategic measures can achieve the maximum reward of
2
√

2/4 [135, Section 6.3.2] (see also Example 5.2). However, non-signaling poli-
cies can achieve the maximum reward of 1 using the following policy, which is
called Popescu-Rohrlich (PR) box in the literature [116]:

P (u1, u2|y1, y2) =
{

1/2, if u1 ⊕ u2 = y1 · y2

0, otherwise

It is easy to show that P is non-signaling; that is, ui is independent of yj given yi,
for i, j = 0, 1 and i �= j. The reward of P is 1, which is the maximum achievable
reward by any policy as 0 ≤ r ≤ 1. Hence, P is the optimal non-signaling policy.
Therefore, for CHSH team, we have

sup
P∈LNS(μ)

∫
P (ds) r(s) > sup

P∈LQ(μ)

∫
P (ds) r(s) > sup

P∈LC(μ)

∫
P (ds) r(s)

that is, non-signaling policies improve the optimal team cost of
quantum-correlated policies and quantum correlated policies improve the op-
timal team cost of randomized policies.

Remark 5.1 (On comparing quantum and non-signaling policies). Note that
to implement the optimal non-signaling policy in the CHSH team, agents should
communicate their observations to a mediator, and then, mediator directs them
to apply either the same actions or different actions based on the product of
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their observations. This kind of communication is, in general, infeasible for
team decision problems. Therefore, although allowing non-signaling correlations
among actions of agents enables us to formulate the team problem as a linear
program (solvable in a polynomial time for finite case), it is in general not
realistic to assume that agents can apply such policies in real-life applications due
to communication constraints dictated by decentralized information structure.
Therefore, non-signaling relaxation can only be used to provide a lower bound
to the original team problem.

However, quantum correlated relaxation is indeed an admissible extension or
relaxation of classical team problem since it does not require any communica-
tion between agents and a mediator (assuming that we live in the quantum world
equipped with appropriate instrumentation!). Hence, the solution or approxima-
tion (as explained in the previous section) of quantum correlated team problems
will be a significant contribution to team decision theory.

Remark 5.2 (Information theoretic relaxations). At the heart of information
theory’s success is the arrival at single-letter characterizations of optimal infor-
mation transmission problems which are, in operational formulations, strictly
non-convex optimization problems. As detailed out in [149, Section 5.4] in the
context of optimal quantization problems, information theory convexifies these
problem by first relaxing the constraints (such as conditional independence) with
mutual information constraints and randomized codes and then showing the
attainability of such bounds as the dimension of the problem reaches infinity.
Building on this insight, various efforts have been presented for team theoretic
problems. Notably, [89] studied strategic measures in the context of product mea-
sures involving an encoder and a decoder, and a class of team problems, and
have considered convexification of the strategic measures by characterizing in-
formation channels with information theoretic inequalities. Here, the idea is to
abstractly view a channel by its mutual information properties, and thus avoiding
the product-structure which ultimately makes LR(μ) non-convex.

5.4. Linear programming formulation and its dual

Since the non-signaling constraints are linear in P , the optimization problem
associated with non-signaling strategic measures can be written as a linear pro-
gram over an appropriate vector space. The dual of this linear program and its
approximation will provide a lower bound to the original problem. This lower
bound, serving as a benchmark, can be quite useful in evaluating how a sub-
optimal policy performs in the team problem.

One such linear programming formulation can be done as follows. For any
metric space E, let M(E) denote the set of finite signed measures on E and C(E)
denotes the vector space of some real measurable functions on E. Depending
on the topological properties of the cost function c, one should choose C(E)
appropriately. For instance, if c is continuous, then C(E) must be chosen as the
set of all continuous functions.
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Consider the vector spaces

M
(

Ω0 ×
N∏

k=1

(Yk × U
k)
)
, C

(
Ω0 ×

N∏
k=1

(Yk × U
k)
)
.

For each i ∈ N , we also define

M

⎛
⎝Ω0 ×

N∏
k=1

Y
k ×
∏
k �=i

U
k

⎞
⎠ , C

⎛
⎝Ω0 ×

N∏
k=1

Y
k ×
∏
k �=i

U
k

⎞
⎠ .

To ease the notation, we will denote these sets as M, C, Mi, Ci for i ∈ N .
Let us define bilinear forms on (M, C) and on

(∏N
i=1 Mi × R,

∏N
i=1 Ci × R

)
by

letting

〈ρ, v〉1 :=
∫

v(ω0,y,u) ρ(dω0, dy, du), (18)〈(
N∏
i=1

ρi, a

)
,

(
N∏
i=1

vi, b

)〉
2

:=
N∑
i=1

∫
vi(ω0,y,u−i) ρi(dω0, dy, du−i) + ab.

(19)

The bilinear forms in (18) and (19) constitute duality between spaces [22, Chap-
ter IV.3]. Hence, the topologies on these spaces should be understood as the weak
topology of the duality induced by these bilinear forms. One should not confuse
these topologies with the topologies induced by dual vector spaces.

We define the linear map L :M→
∏N

i=1 Mi×R by L(ρ)=
(∏N

i=1 Li(ρ), T (ρ)
)
,

where

Li : ρ(dω0, dy, du) �→ ρ(dω0, dy, du−i) − ρ(dy−i, du−i)μ(dω0, dy
i), i ∈ N

T : ρ(dω0, dy, du) �→ 〈ρ, 1〉1.

Using L, the optimal team cost with non-signaling strategic measures can be
written as a linear program as follows:

(NS) minimizeρ∈M+ 〈ρ, c〉1
subject to L(ρ) = (0, . . . , 0, 1). (20)

With this linear programming formulation, the optimal team cost with non-
signaling strategic measures can be found in polynomial time if the measurement
and action spaces are finite sets. This is not possible for teams with random-
ized policies [112] and also class of teams with quantum-correlated relaxations
[83, 131, 107, 81]. Note that if the measurement and action spaces are con-
tinuous, the linear program (NS) is infinite dimensional, and so, should be
approximated. But, this approximation may not provide a lower bound to the
original team problem. To achieve this, we should first formulate the dual of
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(NS) and approximate the resulting infinite dimensional dual linear program to
obtain a lower bound to the original team problem.

Note that the dual of L is given by L∗ :
∏N

i=1 Ci × R → C, where

L∗(v1, . . . , vN , b) :=
N∑
i=1

(
vi(ω0,y,u−i) −

∫
Ω0×Yi

μ(dω0, dy
i) vi(ω0,y,u−i)

)
+ b.

Then the dual program of (NS) can then be written as [22, Chapter IV.6]

(NS∗) maximize(v1,...,vN ,b)∈
∏N

i=1
Ci×R

〈(0, . . . , 0, 1), (v1, . . . , v2, b)〉2 = b

subject to L∗(v1, . . . , vN , b) ≤ c. (21)

Note that this dual linear program (NS∗) is in infinite dimensional spaces
that are often computationally intractable. By weak duality, the maximum value
of (NS∗) is a lower bound to the original team decision problem. Therefore, its
approximation is also a lower bound to the original team problem as we are
maximizing the objective function as opposed to the linear program (NS). To
approximate the infinite dimensional linear program (NS∗), we can use the
techniques developed in [106] in which approximations to infinite dimensional
linear programming problems were introduced. Indeed, in this work, authors
applied the findings of the paper to approximate the Markov decision processes
(MDPs) using the linear programming formulation of the MDPs. Similar to
the (NS∗), this linear programming problem is defined on a function space. In
[106], the authors first approximate the infinite dimensional function space with
a finite dimensional subspace spanned by finitely many independent functions.
For instance, one can use finitely many Fourier basis functions to generate this
finite dimensional subspace. With this reduction, the problem becomes semi-
infinite since the functions should still satisfy the inequality constraint (i.e.,
L∗(v1, . . . , vN , b) ≤ c in (NS∗)) for uncountably many variables (i.e., for all
(ω0,y,u) ∈ Ω0×

∏N
k=1(Yk×U

k) in (NS∗)). The next step is the randomization
step; that is, simulate i.i.d. samples using some distribution and let functions
satisfy the inequality contraint only for these sampled points. As a result, we
obtain a (random) finite dimensional approximation to the original linear pro-
gram with some probabilistic convergence guarantee. In our setup, by solving
this finite dimensional approximation, we can then obtain a lower bound to the
original team problem.

In the following, we will apply a similar reasoning, but to the primal problem
to arrive at (as tight as desired) upper bounds, instead.

6. Finite approximations of information structures via quantization

In this section, we consider the finite approximation of static team problems.
Since results of this section can also be applied to static reduction of dynamic
teams, we suppose that the cost function c also depends on the measurements y
(which is not the case in the original problem formulation). Recall that, in the
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independent static reduction of a dynamic team, the reduced cost function cs is
a function of ω0, u, and y. To obtain finite approximation result, the following
assumptions are imposed on the components of the model.

Assumption 6.1. (a) The cost function c is continuous in (u,y) for any
fixed ω0. In addition, it is bounded on any compact subset of Ω0×

∏N
k=1(Yk×

U
k).

(b) For each k, U
k is a closed and convex subset of a completely metrizable

locally convex vector space.
(c) For each k, Yk is locally compact.
(d) For any subset G of

∏N
k=1 U

k, the function wG(ω0,y) := supu∈G c(ω0,y,u)
is integrable with respect to μ(dω0, dy), for any compact subset G of

∏N
k=1

Uk of the form G =
∏N

k=1 G
k.

(e) For any γ ∈ Γ with J(γ) < ∞ and each k, there exists uk,∗ ∈ U
k such

that J(γ−k, γk
uk,∗) < ∞, where γk

uk,∗ ≡ uk,∗.

Note that Assumption 6.1-(d),(e) hold if the cost function is bounded. Indeed,
conditions in Assumption 6.1 are quite mild and hold for the counterexample of
Witsenhausen [137].

In what follows, for any subset G of
∏N

k=1 U
k, we let

ΓG :=
{
γ ∈ Γ : γ

(
N∏

k=1
Y

k

)
⊂ G

}

and Γc,G := Γc ∩ ΓG, where Γc denotes the set of continuous strategies. Using
these definitions, let us define the following set of strategic measures for any
subset G of

∏N
k=1 U

k:

LG
A(μ)

:=
{
P ∈ LA(μ) : P (B)=

∫
B0×
∏N

k=1
Ak

μ(dω0, dy)
N∏

k=1
1{uk=γk(yk)∈Bk}, γ ∈ ΓG

}
.

Let LG,c
A (μ) denote the set of strategic measures in LG

A(μ) induced by continuous
policies.

The following result states that, there exists a near optimal strategic measure
whose support on the product of action spaces

∏N
k=1 U

k is convex and compact
(and thus bounded) subset G of it, and conditional distributions of actions given
measurements are induced by continuous policies.

Proposition 6.1. Suppose Assumption 6.1 holds. Then, for any ε > 0 there
exists a compact subset G of

∏N
k=1 U

k of the form G =
∏N

i=1 G
i, where each Gi

is convex and compact, such that

inf
P∈LG,c

A
(μ)

∫
P (ds) c(s) < J∗ + ε.
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Sketch of Proof. Given any strategic measure, using Assumption 6.1-(e) and the
fact that every measure on a Borel space is tight [113, Theorem 3.2], one can
construct a strategic measure in LA(μ) whose support on the product of action
spaces is convex and compact and whose cost is ε/2-close to the cost of the
given strategic measure.

For the new strategic measure, since it has a convex and compact support
on the product of action spaces, using Lusin’s theorem [54, Theorem 7.5.2], we
can construct a strategic measure induced by continuous policies whose cost
function is ε/2-close to the cost of bounded support strategic measure.

We can complete the proof by combining these two results.

Since each Y
i is a locally compact separable metric space, there exists an

increasing sequence of compact subsets {Ki
l } such that Ki

l ⊂ intKi
l+1 and

Y
i =
⋃∞

l=1 K
i
l [3, Lemma 2.76], where intD denotes the interior of the set D.

Let di denote the metric on Y
i. For each l ≥ 1, let Yi

l,n :=
{
yi,1, . . . , yi,il,n

}
⊂

Ki
l be a 1/n-net in Ki

l . Recall that if Y
i
l,n is a 1/n-net in Ki

l , then for any
y ∈ Ki

l we have

min
z∈Yi

l,n

di(y, z) <
1
n
.

For each l and n, let qil,n : Ki
l → Y

i
l,n be a nearest neighborhood quantizer given

by

qil,n(y) = arg min
z∈Yi

l,n

di(y, z),

where ties are broken so that qil,n is measurable. If Ki
l = [−M,M ] ⊂ Y

i = R

for some M ∈ R+, the finite set Y
i
l,n can be chosen such that qil,n becomes a

uniform quantizer. We let Qi
l,n : Yi → Y

i
l,n denote the extension of qil,n to Y

i

given by

Qi
l,n(y) :=

{
qil,n(y), if y ∈ Ki

l ,

yi,0, otherwise,

where yi,0 ∈ Y
i is some auxiliary element.

Define Γi
l,n = Γi ◦ Qi

l,n ⊂ Γi; that is, Γi
l,n is defined to be the set of all

strategies γ̃i ∈ Γi of the form γ̃i = γi ◦Qi
l,n, where γi ∈ Γi. Define also Γl,n :=∏N

i=1 Γi
l,n ⊂ Γ. Note that, for any i = 1, . . . , N , Γi

l,n is the set of policies for
DM i which can only use the output levels of the quantizer Qi

l,n. In other words,
in addition to the measurement channel gi(dyi|ω0) between DM i and the state
of nature, there is also an analog-to-digital converter (quantizer) between them.

Using these definitions, let us define the following set of strategic measures
for any l and n:

Ll,n
A (μ)
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:=
{
P ∈ LA(μ) : P (B)

=
∫
B0×
∏N

k=1
Ak

μ(dω0, dy)
N∏

k=1

1{uk=γk(yk)∈Bk}, γ ∈ Γl,n

}
.

The following theorem states that an optimal (or almost optimal) strategic
measure can be approximated with arbitrarily small approximation error for
the induced costs by strategic measures in Ll,n

A (μ) for sufficiently large l and n.

Theorem 6.1. [120] For any ε > 0, there exist (l, n(l)), a compact subset G of∏N
k=1 U

k of the form G =
∏N

i=1 G
i, where each Gi is convex and compact, and

P ∈ L
l,n(l)
A (μ)

⋂
LG
A(μ) such that∫

P (ds) c(s) < J∗ + ε

Sketch of Proof. Fix any strategic measure P ∈ LA(μ). Then, by Proposi-
tion 6.1, there exists a strategic measure PG ∈ LG,c

A (μ) for some compact subset
G of

∏N
k=1 U

k of the form G =
∏N

i=1 G
i, where each Gi is convex and compact,

such that ∫
PG(ds) c(s) ≤

∫
P (ds) c(s) + ε/2.

Let γ ∈ ΓG,c be the strategy that induces PG. Then define γi
l,n = γi ◦Qi

l,n for
each i = 1, . . . , N . Note that on any compact subset of Yi, we have γi

l,n → γi

as γi is continuous. Let Pl,n the strategic measure induced by the strategy
(γ1

l,n, . . . , γ
N
l,n).

Note that since μ(dω0, dy) is tight, for any δ > 0, there exists a compact
subset K of

∏N
k=1 Y

k of the form K =
∏N

i=1 K
i, where each Ki is compact

such that μ(Ω0 × K) ≥ 1 − δ. By choosing a sequence of {δ(l, n)} and the
corresponding compact sets {Kl,n} appropriately, we can prove that

lim
(l,n)→∞

∫
Pl,n(ds) c(s) =

∫
PG(ds) c(s),

as γi
l,n → γi on each compact set Kl,n and μ(Ω0 ×Kl,n) ≥ 1 − δ(l, n). Hence,

there exists (l, n(l)) such that∫
Pl,n(l)(ds) c(s) ≤

∫
PG(ds) c(s) + ε/2.

This completes the proof.

The above result implies that to compute a near optimal strategic mea-
sure for the team problem it is sufficient to consider quantized measurements(
Q1

l,n(y1), . . . , QN
l,n(yN )

)
for sufficiently large l and n. Furthermore, this nearly

optimal strategic measure can have a compact support of the form G =
∏N

i=1 G
i

on
∏N

k=1 U
k, where Gi is convex and compact for each i = 1, . . . , N .



Stochastic information structures 493

For ease of reference, we define

LA(q)(μ) =
⋃
(l,n)

Ll,n
A (μ)

and we define LA(c)(μ) to be the subset of LA(μ) defined in (7) where the policies
are restricted to be in Γc.

6.1. Finite measurement approximate models

In this section, for each (l, n), we define a team model with finite measurement
spaces. We prove that, for sufficiently large l and n, an optimal strategic measure
of the team model corresponding to (l, n) will provide a strategic measure to
the original team model which is nearly optimal.

To this end, fix any (l, n). For the pair (l, n), the corresponding finite measure-
ment team model has the following measurement spaces: Zi

l,n := {yi,0, yi,1, . . . ,
yi,il,n} (i.e., the output levels of Qi

l,n), i ∈ N . The stochastic kernels gil,n( · |ω0)
from Ω0 to Z

i
l,n denote the measurement constraints and are given by:

gil,n( · |ω0) :=
il,n∑
j=0

g(Sl,n
i,j |ω0) δyi,j ( · ),

where Sl,n
i,j :=

{
y ∈ Y

i : Qi
l,n(y) = yi,j

}
. Indeed, gil,n( · |ω0) is the push-forward

of the measure gi( · |ω0) with respect to the quantizer Qi
l,n.

Let Φi
n,l :=

{
φi : Zi

l,n → Ui, φi measurable
}

denote the set of measurable
policies for DM i and let Φl,n :=

∏N
i=1 Φi

l,n. The cost of this team model is
Jl,n : Φl,n → R+ and defined as

Jl,n(φ) :=
∫

Ω0×
∏N

i=1
Zi
l,n

c(ω0,y,u)Pl,n(dω0, dy),

where φ = (φ1, . . . , φN ), u = φ(y), and

Pl,n(dω0, dy) = P (dω0)
N∏
i=1

gil,n(dyi|ω0) =: μl,n(dω0, dy).

For any compact subset G of
∏N

k=1 U
k, we also define ΦG

l,n := {φ ∈ Φl,n :
φ(
∏N

i=1 Z
i
l,n) ⊂ G}.

In order to obtain the approximation result, we need to impose the following
additional assumption.

Assumption 6.2. For any compact subset G of
∏N

k=1 U
k of the form G =∏N

i=1 G
i, we assume that the function wG is uniformly integrable with respect to

the measures {μl,n}; that is,

lim
R→∞

sup
l,n

∫
{wG>R}

wG(ω0,y) dμl,n = 0.
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This assumption is quite mild and satisfied by the celebrated counterexample
of Witsenhausen.

Let TA(μl,n) denote the set of strategic measures induced by measurable
policies for this team model. Let TG

A (μl,n) be the strategic measures in TA(μl,n)
whose support on

∏N
k=1 U

k is a subset G.
The following theorem is the main result of this section. It states that to

compute a near optimal strategic measure for the original team problem, it is
sufficient to compute an optimal strategic measure for the finite measurement
team problem corresponding to sufficiently large l and n.

Theorem 6.2. [120] Suppose Assumptions 6.1 and 6.2 hold. Then, for any
ε > 0, there exists a pair (l, n(l)) and a compact subset G =

∏N
i=1 G

i of
∏N

k=1 U
k

such that an optimal (or almost optimal) strategic measure P l,n(l) in the set
TG
A (μl,n(l)) for the (l, n(l)) team is ε-optimal for the original team problem when

P l,n(l) is extended to Ω ×
∏N

k=1(Yk × U
k) via quantizers Qi

l,n(l); that is,

P l,n(l)
ex (·) =

∫
·
μ(dω0, dy)

N∏
k=1

1{uk=γk◦Qk
l,n(l)(y

k)∈·}

where

P l,n(l)(·) =
∫
·
μl,n(l)(dω0, dy)

N∏
k=1

1{uk=γk(yk)∈·}

Proof. We first prove the following fact. Let {φ
l,n

} be a sequence of strategies
such that φ

l,n
∈ ΦG

l,n, where G =
∏N

i=1 G
i and each Gi is convex and compact.

For each l and n, define γ
l,n

:= φ
l,n

◦Ql,n, where Ql,n := (Q1
l,n, . . . , Q

N
l,n). Then,

we have

lim
l,n→∞

|Jl,n(φ
l,n

) − J(γ
l,n

)| = 0.

Indeed, let us introduce the following finite measures on Ω0 ×
∏N

k=1 Y
k:

μG(S) :=
∫
S

wG(ω,y) dμ,

μl,n
G (S) :=

∫
S

wG(ω,y) dμl,n.

Since μl,n converges to μ weakly, by [127, Theorem 3.5] and Assumption 6.2
we have μl,n

G → μG weakly as l, n → ∞. Hence, the sequence {μl,n
G } is tight.

Therefore, there exists a compact subset K of Ω0×
∏N

k=1 Y
k such that μG(Kc) <

ε/2 and μl,n
G (Kc) < ε/2 for all l, n. Then, we have

|Jl,n(φ
l,n

) − J(γ
l,n

)|

=
∣∣∣∣
∫

Ω0×
∏N

k=1
Yk

c(ω0, Ql,n(y), γ
l,n

(y)) dμ−
∫

Ω0×
∏N

k=1
Yk

c(ω0,y, γl,n
(y)) dμ

∣∣∣∣
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≤
∫
K

∣∣c(ω0, Ql,n(y), γ
l,n

(y)) − c(ω0,y, γl,n
(y))

∣∣ dμ
+
∫
Kc

wG(ω0,y) dμ +
∫
Kc

wG(ω0,y) dμl,n.

The first term in the last expression goes to zero as l, n → ∞ by the dominated
convergence theorem and the fact that c is bounded and continuous in y. The
second and third terms are less than ε by tightness. Since ε is arbitrary, this
completes the proof of the fact. Note that this fact implies that for any P l,n ∈
TG
A (μl,n), we have

lim
l,n→∞

∣∣∣∣
∫

P l,n(ds) c(s) −
∫

P l,n
ex (ds) c(s)

∣∣∣∣ = 0.

Note that using this fact, it is straightforward to prove that

lim inf
l,n→∞

inf
P∈TG

A
(μl,n)

∫
P (ds) c(s) ≥ J∗.

Since the extension of the strategic measures TG
A (μl,n) to Ω0 ×

∏N
k=1(Yk ×U

k)
forms the set of strategic measures Ll,n

A (μ)
⋂

LG
A(μ), by Theorem 6.1, we can

complete the proof. Indeed, let P l,n(l)
ex ∈ Ll,n

A (μ)
⋂

LG
A(μ) be the ε optimal policy

for the original problem. Then we have

J∗ + ε ≥ lim sup
l,n→∞

∫
P l,n(l)

ex (ds) c(s)

= lim sup
l,n→∞

∫
P l,n(l)(ds) c(s)

≥ lim sup
l,n→∞

inf
P∈TG

A
(μl,n)

∫
P (ds) c(s).

Hence

J∗ + ε ≥ lim sup
l,n→∞

inf
P∈TG

A
(μl,n)

∫
P (ds) c(s) ≥ lim inf

l,n→∞
inf

P∈TG
A

(μl,n)

∫
P (ds) c(s) ≥ J∗.

This completes the proof.

We interpret this result as saying that the space of information structures
obtained by quantizing the original information structure is approximately op-
timal: denseness under weak convergence implies denseness of strategic measures
as far as optimality is concerned.

Remark 6.1. Results proved in this section about approximation of static team
problems can be directly applied to static reductions of dynamic teams if static
reductions satisfy Assumption 6.1 and Assumption 6.2. In particular, the above
approximation results hold for Witsenhausen’s counterexample.
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7. Product topology induced by individual policies and relations
with information structures

Instead of strategic measures, one may choose to directly induce topologies on
control policies or strategies alone. We will see that such an approach will let
us arrive at complementary conditions compared with what we have studied
earlier. In the following, we first revisit some classical results in optimal control
theory via this approach.

7.1. Some remarks on classical deterministic and stochastic control
and Young measures

It is instructive to revisit various control topologies that are already well-known
in classical control theory (when there is a single controller who has access
to the state variable). In deterministic nonlinear, geometric, and continuous-
time control, properties on stabilizability, controllability, and reachability are
drastically impacted by the restrictions on the classes of allowed controls (e.g.,
continuous, Lipschitz, finitely differentiable, or smooth control functions in the
state or time when control is open-loop [118, 40, 129, 80]) and naturally the
control topology induced is dictated by the class of admissible controls.

For optimal control, to allow for continuity/compactness arguments, apriori
imposing compactness over spaces of measurable functions would be an artificial
restriction, and the use of powerful theorems such as the Arzela-Ascoli theorem
which necessarily entail (usually very restrictive and suboptimal) conditions on
continuity properties of the considered policies. In deterministic optimal control
theory, relaxed controls [146] [134] allow for this machinery to be applied with
no artificial restrictions on the classes of control policies considered; these are
known as Young measures.

Let us consider an open-loop controller, where the control is only a function
of the time variable. We let ν(dt, du) be a measure on [0, T ]×U where the first
marginal λ(dt) is the normalized Lebesge measure on time interval [0, T ] and let
ν(du|t) = 1{γ(t)∈du} be the conditional measure induced by deterministic open
loop control. So, any deterministic open-loop control is embedded via:

ν(dt, du) = λ(dt) 1{γ(t)∈du}.

If we allow for randomized policies, we obtain the set Pλ([0, T ]×U) of all prob-
ability measures with fixed marginal on [0, T ]. This set is weakly closed, whose
extreme points are those induced by deterministic policies (as also was discussed
in the context of (4)). Thus, any deterministic optimal control problem, which
can be written in an integral form and has a lower semi-continuous cost func-
tions in actions, will have an optimal solution, which will then be deterministic
as these form the extreme points of randomized controls. It can also in fact
be shown that such policies are dense in the space of randomized policies, in
addition to these policies forming the extreme points in the set of randomized
policies (see e.g., [24, Proposition 2.2] [92], [105, 19, Theorem 3], but also many
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texts in optimal stochastic control where denseness of deterministic controls has
been established inside the set of relaxed controls [33]). We refer the reader to
[103] (see also the review paper [92]) for further discussion.

The following example builds on these, with somewhat different arguments.
Let X = R,U = [0, 1], and let f : X × U → [0, 1] and c : X × U → [0, 1] be
measurable functions continuous in the control action variable. Consider the
following optimal control problem:

inf
γ:X→U

ut=γ(xt)

∫ 1

0
c(xt, ut)λ(dt) (22)

subject to

dx

dt
= f(xt, ut) (23)

The natural space to consider is the set of all control functions which depends
on the current state, where the only restriction is measurability. However, al-
lowing for measurability only does not facilitate continuity/compactness argu-
ments since, as noted above, imposing compactness on a space of functions is an
unnecessarily restrictive condition. Accordingly, one often cites appropriate but
tedious measurable selection theorems building on optimality equations through
dynamic programming.

On the other hand, every deterministic function of the state can be expressed
as a deterministic function of time, and so, be considered open-loop. Accordingly,
we consider open loop controls and those which are relaxed. Let Pλ([0, T ] ×U)
be the set of relaxed open loop policies (Young measures). Now consider the
space C([0, 1];X) ×Pλ([0, T ] ×U), where C([0, 1];X) is the space of continuous
functions from [0, 1] to X. We endow this space with the product topology with
the first component being under the supremum norm and the second under the
Prohorov metric (or any weak convergence inducing metric). Note now that the
cost (22) is continuous on C([0, 1];X) × Pλ([0, T ] × U). Note that since f is
uniformly bounded, we have that the set A of all admissible sample paths of
the state x : [0, 1] → X is equicontinuous, and so, by the Arzela-Ascoli theorem,
A is relatively compact in C([0, 1];X). Accordingly, our space of interest A ×
Pλ([0, T ] × U) is a relatively compact subset of C([0, 1];X) × Pλ([0, T ] × U).

Define now

H=
{

(x,m) ∈ C([0, 1];X)×Pλ([0, T ] × U) : xt−
∫ t

0
f(xs, u)ms(du)λ(ds) = 0

}
,

where ms(du) = m(du|s). This set is closed under the topology defined on
C([0, 1];X) × Pλ([0, T ] × U) and is a subset of C([0, 1];X) × Pλ([0, T ] × U).
Hence, H is compact. Now, the problem then is to find an optimal (x,m) ∈ H
which minimizes (22), reformulated as:

inf
(x,m)∈H

∫ 1

0
c(xt, u)m(dt, du)
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This is continuous in (x,m) by an application of the generalized weak conver-
gence theorem under continuous convergence [126, Theorem 3.5] or [95, Theorem
3.5]. Therefore, there exists an optimal solution to the problem.

Note that as has been reported in various literatures (e.g. in optimal quanti-
zation [150, p. 878]) that the set of deterministic controls is not weakly closed
(or setwise) under Young’s relaxation. In fact, there exist problems where an
optimal solution exists among relaxed controls but not in deterministic controls
[92].

On the other hand, in the continuous-time stochastic context, the analysis
can be quite subtle due to the fact that the control policy (only restricted to
be measurable in general) may violate conditions needed for the existence of
strong solutions for a given stochastic differential equation since the control
policy may couple the state dynamics with the past in an arbitrarily compli-
cated, though measurable, way and hence violating the existence conditions
for strong solutions to stochastic differential equations [98] [90] (e.g., in [143]
Lipschitz continuity conditions are imposed, where Lipschitz property holds in
the control when viewed as a map from the normed linear space of continuous
functions on measurements to control actions). To avoid such technical issues
on strong solutions, relaxed solution concepts were introduced and studied in
the literature based on the measure transformation technique due to Girsanov
[26, 50, 51] which allows the control to be a function of an independent Brow-
nian innovations process. These approaches require strong absolute continuity
conditions on the measurement process which may not be always applicable.
See [92] for a detailed analysis for controlled stochastic differential systems. As
we will see later in the paper, in the partially observed setup, a further inter-
pretation of relaxed controls, called wide sense admissible controls [62, 36, 38]
has been utilized to arrive at existence results on optimal control policies.

As we will see in the following, adding more general, non-classical, information
structures will entail further intricacies but also facilitate additional creativity
for the analysis in optimal stochastic control.

7.2. Trading-off continuity with compactness: a product space
approach for individual control policies

To make the ideas in this section more explicit, consider the set of individu-
ally randomized strategic measures LR(μ) studied in Section 3.2. In this set,
a policy of a DM k is a stochastic kernel Πk(duk|yk) from Y

k to U
k. Instead

of studying continuity and compactness properties regarding strategic measures
(joint probability measures on the state, measurement and action spaces), we
can focus on individual control policies and measurements, and their Cartesian
products. Let us denote, as in Section 3.1,

Θi = {v ∈ P(Yi × U
i) : v(dyi × U

i) = ξi(dyi)}

to be the distributional strategy for DM i, which is the joint probability measure
with a fixed marginal ξi on the measurement variable yi. Note that if the problem
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is an independent static reduction of a dynamic team, then one can choose ξi

as the reference measure Qi in the static reduction.
By our earlier analysis, we know that Θi (a subset of Θi that is sufficient

for optimality) is compact under the weak topology or the w-s topology if Ui

is compact (if this subset satisfies some moment condition). Hence, since the
marginal on measurements are fixed, we can view the weak topology or w-s
topology on Θi as a topology on the set of policies Γi. In particular, any sequence
of policies:

γ
n

:= (γ1
n, · · · , γN

n )

will have a converging subsequence, γ
nk

to a limit γ, and therefore, closedness
(in particular compactness) is not an issue under this topology. In other words,
the IS is always preserved under this topology, which is not the case in the
strategic measure approach as it has been shown in Theorem 4.2.

Note that if the measurements are independent, then strong existence re-
sults can be obtained using this approach. This is precisely the same condition
obtained via the strategic measures approach studied in Theorem 4.5.

On the other hand, what is not clear is, in general, whether we have

lim
n→∞

J(γ
n
) = J(γ)

under this topology (this is always true when we place a topology on the set of
strategic measures). In particular, if we have a general μ(dω0, dy), it is not clear
if we have this joint continuity condition. The following example will demon-
strate this subtlety through a negative implication. Therefore, there is a trade-off
between continuity and compactness in these approaches: The strategic measure
approach provides continuity but may not preserve the IS (so compactness); and
conversely, the approach via topology on individual policies leads to a compact
strategy space but loses continuity.

Example 7.1. Consider the counterexample presented in Theorem 4.2. By con-
sidering each individual decision makers’ policy separately, we have that each
will converge individually; that is,

Pn(dy1, du1) → P (dy1, du1), Pn(dy2, du2) → P (dy2, du2).

Now, consider a cost function c(ω0, u
1, u2) = (u1 − u2)2. Note that, for each n,

under Pn, actions u1 and u2 are the same (i.e., u1 = u2) given y1 = y2 = y, and
so, J(γ

n
) =

∫
Pn(ds) c(s) = 0 for every n. However, in the limit where ui and

y = yi (i = 1, 2) are independent under P , we have J(γ
n
) =
∫
P (ds) c(s) = 1/2.

This is a consequence of viewing individual policies separately without their joint
convergence properties. Thus, we do not even have lower semi-continuity. Hence,
while we have established compactness, we have lost lower semi-continuity by
placing the topologies directly on control policies and not on the strategic mea-
sures.

Remark 7.1 (Hilbert space construction for static quadratic Gaussian teams).
For static Linear Quadratic Gaussian (LQG) team problems, it is instructive to
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note that [149, Theorem 2.6.6] (building on [117]) utilizes a Hilbert space theo-
retic construction of control topologies on individual control policies (and on the
team policy via a product space construction).Via this topology on the controls,
the optimality of affine solutions was established via the Projection theorem. In
view of the discussion presented above (on the trade-off between continuity and
compactness), it is interesting to note that the Hilbert space topology simultane-
ously leads to both closedness and continuity, though the setup is restricted only
to quadratic cost criteria.

7.3. Policies defined by conditional independence given
measurements

[148] considered the following topology on control policies, while developing a
universal dynamic programming algorithm applicable to any sequential decen-
tralized stochastic control problem, generalizing Witsenhausen’s program [140]
which was tailored primarily for countable probability spaces.

Define

(i) State: xt = {ω0, u
1, · · · , ut−1, y1, · · · , yt}, 1 ≤ t ≤ N .

(i’) Extended State: πt ∈ P(Ω0 ×
∏t

i=1 Y
i ×
∏t−1

i=1 U
i) where, for Borel B ∈

Ω0 ×
∏t

i=1 Y
i ×
∏t−1

i=1 U
i,

πt(B) := Eπt [1{(ω0,y1,··· ,yt;u1,··· ,ut−1)∈B}].

Thus, πt ∈ P(Ω0 ×
∏t

i=1 Y
i ×
∏t−1

i=1 U
i) where the space of probability

measures is endowed with the weak convergence topology.
(ii) Control Action: Given πt, γ̂t is a probability measure in P(Ω0×

∏t
k=1 Y

k×∏t
k=1 U

k) that satisfies the conditional independence relation:

ut ↔ yt ↔ xt = (ω0, y
1, · · · , yt;u1, · · · , ut−1)

(that is, for every Borel B ∈ Ui, almost surely under γ̂t, the following
holds:

P (ut ∈ B|yt, (ω0, y
1, · · · , yt;u1, · · · , ut−1)) = P (ut ∈ B|yt)

with the restriction
xt ∼ πt.

Denote by Γt(πt) the set of all such probability measures. Any γ̂t ∈ Γt(πt)
defines, for almost every realization yt, a conditional probability measure
on U

t. When the notation does not lead to confusion, we will denote the
action at time t by γt(dut|yt), which is understood to be consistent with
γ̂t.

(ii’) Alternative Control Action for Static Teams with Independent Measure-
ments: Given πt, γ̂t is a probability measure on Y

t × U
t with a fixed

marginal P (dyt) on Y
t, that is πY

t

t (dyt) = P (dyt). Denote by Γt(πY
t

t ) the
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set of all such probability measures. As above, when the notation does not
lead to confusion, we will denote the action at time t by γt(dut|yt), which is
understood to be consistent with γ̂t. In particular, (yt, ut) is independent
of (yk, uk) for k �= t.

With the control actions defined as in the above [148] developed a universal
dynamic program for any sequential decentralized stochastic control and estab-
lished, as a corollary of the program, further existence results, one of which is
essentially identical to that presented in Theorem 4.5, but slightly more restric-
tive in that the cost function is assumed to be continuous in all of its arguments.

Theorem 7.1. [148]

(i) Under the kernel (8) and controlled Markov construction presented, the
optimal team problem admits a well-defined backwards-induction (dynamic
programming) recursion.

(ii) In particular, if the problem is independent static-reducible, actions are
compact-valued and the cost function is continuous, an optimal policy ex-
ists and the value function is continuous in the prior (that is, in the dis-
tribution of primitive noise variables) under weak convergence.

Remark 7.2. The above construction is related to an interpretation put forward
by Witsenhausen in his standard form [140] where all the uncertainly is embed-
ded into the initial state and the controlled system evolves deterministically.
Witsenhausen had considered only countable probability spaces for an optimality
analysis.

7.4. Weak-∗ topology on randomized policies

In this section, inspired by the topology on policies for classical stochastic control
problems constructed in Borkar [34] (see also [9]), we study a topology on the
set of randomized policies for static teams or dynamic teams that admit static
reduction introduced in [119]. With an abuse of notation, we denote the set of
randomized policies for DM i by Γi, which can be written as

Γi =
{
γi : γi is a measurable function from Y

i to P(Ui)
}
,

where P(Ui) is endowed with the Borel σ-algebra generated by the weak conver-
gence topology. We will use the latter characterization of Γi when introducing
the topology.

For a metric space E, let C0(E) be the Banach space of all continuous real
functions on E vanishing at infinity endowed with the norm

‖g‖∞ = sup
e∈E

|g(e)|.

Recall that M(E) and P(E) denote the set of all finite signed measures and
probability measures on E. Let E1 and E2 be two metric spaces. For any μ ∈
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M(E1 × E2), ProjE1
(μ)( · ) = μ( · × E2) be the marginal of μ on E1. For a

Banach space K, let K∗ denote its topological dual. For any i, we now introduce
a topology on Γi. To this end, we impose the following assumption.

Assumption 7.1. (a) Ω0, Yi, and U
i (i = 1, . . . , N) are locally compact.

(b) For all i, the measurement channel gi(dyi|ω0) = gi(yi, ω0)μi(dyi) for some
probability measure μi on Y

i; that is, gi(dyi|ω0) is absolutely continuous
with respect to μi(dyi) for all ω0.

Note that by Riesz representation theorem [63, Theorem 7.17], the topological
dual of (C0(Ui), ‖ · ‖∞) is (M(Ui), ‖ · ‖TV ), where ‖ · ‖TV is the total variation
norm on M(Ui).

We now define the set of w∗-measurable functions from Y
i to M(Ui). Later,

we will prove that the set of randomized policies Γi for DM i is a bounded subset
of this set. A function γ : Yi → M(Ui) is called w∗-measurable if the mapping

Y
i � y �→

∫
dγ(y)(du) g(u) ∈ R

is measurable for all g ∈ C0(Ui) [43, p. 18]. Let L
(
μi,M(Ui)

)
denote the set of

all such functions. With this definition, we now define the following set

L∞
(
μi,M(Ui)

)
:=
{
γ ∈ L

(
μi,M(Ui)

)
: ‖γ‖∞ := ess sup

y∈Yi

‖γ(y)‖TV < ∞
}
,

where ess sup is taken with respect to the measure μi. Recall that μi is the ref-
erence probability measure in Assumption 7.1-(b) for the measurement channel
gi.

Let L1
(
μi, C0(Ui)

)
denote the set of all Bochner-integrable [52] functions

from Y
i to C0(Ui) endowed with the norm

‖f‖1 :=
∫
Yi

‖f(y)‖∞ μi(dyi).

By using the fact that C0(Ui)∗ = M(Ui), one can prove that the topological
dual of

(
L1
(
μi, C0(Ui)

)
, ‖ · ‖1

)
can be identified with

(
L∞
(
μi,M(Ui)

)
, ‖ · ‖∞

)
[43, Theorem 1.5.5, p. 27]; that is,

L1
(
μi, C0(Ui)

)∗ = L∞
(
μi,M(Ui)

)
.

Using this identification, we equip L∞
(
μi,M(Ui)

)
with the w∗-topology induced

by L1
(
μi, C0(Ui)

)
. We write γn ⇀∗ γ, if γn converges to γ in L∞

(
μi,M(Ui)

)
with respect to the w∗-topology. As noted earlier, for this topology, we have been
inspired by the topology introduced in [9, 34], where in these works, a similar
topology is introduced for randomized Markov policies to study continuous-time
stochastic control problems with average cost optimality criterion.

Note that we can identify the set of randomized policies Γi as a bounded
subset of L∞

(
μi,M(Ui)

)
:

Γi =
{
γ ∈ L∞

(
μi,M(Ui)

)
: γ(y) ∈ P(Ui) μi − a.e.

}
.
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Hence, we can equip Γi with the relative w∗-topology inherited by the w∗-
topology on L∞

(
μi,M(Ui)

)
.

Now, we derive some properties of this topology on Γi. Firstly, since P(Ui) is
bounded in M(Ui), by the Banach-Alaoglu Theorem [63, Theorem 5.18], Γi is
relatively compact with respect to w∗-topology. Since C0(Ui) is separable, then
by [71, Lemma 1.3.2], Γi is also relatively sequentially compact. However, Γi is
not closed with respect to the w∗-topology. Indeed, let Y

i = U
i = R. Define

γn(yi)( · ) := δn( · ) and γ(yi)( · ) := 0( · ), where δn denotes Dirac-delta measure
at point n and 0( · ) denotes the degenerate measure on Ui; that is, 0(D) = 0
for all D ∈ B(R). Let g ∈ L1

(
μi, C0(Ui)

)
. Then we have

lim
n→∞

∫
Yi

(∫
Ui

γn(y)(du) g(y)(u)
)
μi(dy) = lim

n→∞

∫
Yi

g(y)(n)μi(dy)

=
∫
Yi

lim
n→∞

g(y)(n)μi(dy) (as ‖g(y)‖∞ is μi-integrable)

= 0 (as g(y) ∈ C0(Ui)).

Hence, γn ⇀∗ γ. But, γ /∈ Γi, and so, Γi is not closed.
Thus, as opposed to the topology introduced in Section 7 on randomized

policies, here the set of policies is not closed under the w∗-topology; that is, the
IS may not be preserved. However, as we will see in the sequel, under this topol-
ogy, the cost J is lower semi-continuous, which is in general not the case for the
topology introduced in Section 7. However, by imposing additional assumptions
on the components of the problem, we may first ensure the closedness of the
set of policies or subset of it that is sufficient for optimality under this topology
using lower semi-continuity of the cost. Then, we can prove the existence of
an optimal policy. This result will be complementary to the existence results
presented in Section 4.

In the remainder of this section, Γi is equipped with this topology. In addition,
Γ has the product topology induced by these w∗-topologies; that is, γ

n
converges

to γ in Γ with respect to the product topology if and only if γi
n ⇀∗ γi for all

i = 1, . . . , N . In this case we write γ
n
⇀∗ γ. Note that Γ is sequentially relatively

compact under this topology.
To this end, for any L > 0, we define

ΓL :=
{
γ ∈ Γ : J(γ) < J∗ + L

}

and

SL :=
{
λ ∈ P

(
Ω0 ×

N∏
i=1

(Yi × U
i)
)

:

λ(dω0, dy, du) = μ(dω0)
N∏
i=1

γi(dui|yi)μi(dyi), γ ∈ ΓL

}
.
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For each i = 1, . . . , N , we define Si
L := ProjYi×Ui(SL). In order to prove that

ΓL is closed with respect to the w∗-topology, we should impose the following
assumption.

Assumption 7.2. For some L > 0, Si
L is tight for i = 1, . . . , N .

We provide several conditions that imply Assumption 7.2.

Theorem 7.2 ([119, Theorem 4]). Suppose either of the following conditions
hold:

(i) U
i is compact for all i.

(ii) For the non-compact case, we assume
(a) The cost function c satisfies the following condition: for each j, for

any M ≥ 0, and for any compact K ⊂ Ω0 ×
∏N

k=1 Y
k ×

∏j−1
k=1 U

k,
there exists a compact L ⊂ U

j such that

inf
K×Lc×

∏N

k=j+1
Uk

c(ω0,y,u) ≥ M.

(b) For all j, gj > 0 and gj is lower semi-continuous.

Then, Assumption 7.2 holds.

The following theorem establishes the existence of an optimal team decision
rule using the w∗-topology.

Theorem 7.3 ([119, Theorem 6]). Suppose Assumptions 7.1 and 7.2 hold.
Moreover, we assume that c is lower semi-continuous and measurement chan-
nels gi(dyi|ω0) are continuous with respect to the total variation distance. Then,
there exists γ∗ ∈ ΓL which is optimal.

Sketch of Proof. Note that when the cost function c is a compactly supported
continuous function, by the Stone-Weierstrass Theorem [94, Lemma 6.1], c can
be uniformly approximated by functions of the form

k∑
j=1

rj

N∏
i=1

fj,igj,i, (24)

where rj ∈ C0(Ω0), fj,i ∈ C0(Yi), and gj,i ∈ C0(Ui) for each j = 1, . . . , k and i =
1, . . . , N , are compactly supported. One can prove that the cost J is continuous
with respect to the w∗-topology if c is of the form in (24) [119, Theorem 5].
Since any compactly supported function can be uniformly approximated by
such functions, J is also continuous if c is compactly supported. Note that if
c is lower semi-continuous, then c can be approximated pointwise from below
by compactly supported functions (see the proof of [71, Proposition 1.4.18]).
Hence, if c is lower semi-continuous, then J is also lower semi-continuous with
respect to the w∗-topology by the monotone convergence theorem.
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Now, we prove that ΓL is closed under the w∗-topology, which will complete
the proof since ΓL is relatively compact. To this end, let

γ
n
⇀∗ γ,

for some γ ∈
∏N

i=1 L∞
(
μi,M(Ui)

)
(recall that Γ is not closed with respect to

the w∗-topology). If γi ∈ P(Ui) μi-a.e. for all i, then γ is in ΓL, and so, ΓL is
closed.

Fix any i. Note that the sequence {γi
n ⊗ μi} is tight as it is a subset of Si

L.
Thus, there exists a further subsequence, denoted for simplicity by {γi

l ⊗ μi},
that converges weakly to some λ ∈ P(Yi × U

i). This implies that γi ⊗ μi = λ,
and so, γi⊗μi(Yi×U

i) = 1. Hence, γi ∈ P(Ui) μi-a.e. Thus, ΓL is closed. This
completes the proof.

Remark 7.3. Weak topology has been used in a similar context in [87, 88];
[87, Lemma 4.9] and [88, Lemma A.1] can be exploited to prove the existence
of optimal policies. Indeed, if one can prove that actions are square integrable
under any strategy, the set of actions is weakly relatively compact, and the cost
function is lower semi-continuous, then the existence of optimal policies can be
deduced by the Weierstrass Extreme Value Theorem since [87, Lemma 4.9] and
[88, Lemma A.1] guarantees that the limiting actions preserve the information
structure of the problem.

7.5. Exchangeability, infinite products of individual policies and
optimality of symmetric randomized policies for mean-field
teams

As a final example on the utility of placing a product topology on individual
policies, we consider stochastic team problems with infinitely many decision
makers. Such problems have seen a significant activity in the context of mean
field theory [78, 77, 96] (see also more recent papers [61, 29, 8, 91]) and in mean-
field team problems [79, 133][7] [101] [122]. In the context of mean-field team
problems [101] and [122] have shown that, under sufficient convexity conditions,
a sequence of optimal policies for teams with N number of decision makers
as N → ∞ converges to a team optimal policy for the static team with a
countably infinite number of decision makers, where the latter establishes the
optimality of symmetric (i.e., identical for each DM) policies as well as existence
of optimal team policies for both finite and infinite DM setups. In the following,
we demonstrate how the control topology approach can be utilized to relax such
strong convexity conditions.

Consider the following:

Problem (PN): Let N = {1, . . . , N}. Let γ
N

= (γ1, · · · , γN ) and ΓN =∏N
i=1 Γi. Define an expected cost function of γ

N
as

JN (γ
N

) = E
γ
N [c(ω0, uN )] := E[c(ω0, γ

1(y1), · · · , γN (yN ))], (25)
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for some Borel measurable cost function c : Ω0 ×
∏N

k=1 U
k → R+. We

define ω0 to be the Ω0-valued cost function relevant exogenous random
variable as ω0 : (Ω,F ,P) → (Ω0,F0), where Ω0 is a Borel space with its
Borel σ-field F0. Here, we have the notation uN := {ui, i ∈ N}.
Problem (P∞): Consider a stochastic team with a countably infinite
number of decision makers, that is, N = N. Let Γ =

∏
i∈N

Γi and γ =
(γ1, γ2, . . . ). Let c : Ω0 × U× U → R+. Define the expected cost of γ as

J(γ) = lim sup
N→∞

1
N

E
γ

[ N∑
i=1

c

(
ω0, u

i,
1
N

N∑
p=1

up

)]
. (26)

With a slight abuse of notation, we use the same notation for the cost
function c as in (25).

Assumption 7.3. Assume for any DMi, there exists a probability measure Qi

on Y
i and a function f i such that for all Borel sets S = S1 × · · ·×SN , we have

P((y1, . . . , yN ) ∈ S
∣∣ω0) =

N∏
i=1

∫
Si

f i(yi, ω0, y
1, . . . , yi−1)Qi(dyi). (27)

As observed in Section 2.2, Assumption 7.3 allows us to reduce the problem
to a static team problem where the observation of each DM is independent of
observations of other DMs and also independent of ω0. Hence, under Assump-
tion 7.3, we can focus on each DMi separately and identify Γi via the set of
probability measures

Θi :=
{
P ∈ P(Ui × Y

i)
∣∣∣∣P (dui, dyi) = 1{γi(yi)∈dui}Q

i(dyi), γi ∈ Γi

}
. (28)

As noted earlier, the above set is the set of extreme points of the set of probabil-
ity measures on (Ui×Y

i) with fixed marginals Qi on Y
i. Hence it inherits Borel

measurability and topological properties of that Borel measurable set [35]. As
before, we define convergence of policies as γi

n → γi iff 1{γi
n(yi)∈dui}Q

i(dyi) →
1{γi(yi)∈dui}Q

i(dyi) (in the weak convergence topology) as n → ∞ for each
DM. We will also allow for randomized (relaxed) policies. Accordingly, each in-
dividual control policy γi ∈ Γi is an element in the set of probability measures
P(Ui × Y

i) with a fixed marginal, Qi, on Y
i.

Now that we have a standard Borel space formulation for policies, we can
define the set of probability measures on policies with product topology on
ΓN =

∏N
i=1 Γi. We define the following set of Borel probability measures on

admissible relaxed policies ΓN as follows:

LN := P(ΓN ), (29)

where Borel σ-field B(Γi) is induced by the topology defined above.
Recall the definition of exchangeability for random variables.
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Definition 7.1. Random variables x1, x2, . . . , xN defined on a common proba-
bility space are N -exchangeable if for any permutation σ of the set {1, . . . , N},

P

(
xσ(1) ∈ A1, xσ(2) ∈ A2, . . . , xσ(N) ∈ AN

)

= P

(
x1 ∈ A1, x2 ∈ A2, . . . , xN ∈ AN

)

for any measurable {A1, . . . , AN}, and (x1, x2, . . . ) is infinitely-exchangeable if
it is N - exchangeable for all N ∈ N.

Now, we define the set of exchangeable probability measures on policies as:

LN
EX :=

{
Pπ ∈ LN

∣∣∣∣for all Ai ∈ B(Γi) and for all σ ∈ SN :

Pπ(γ1 ∈ A1, . . . , γ
N ∈ AN ) = Pπ(γσ(1) ∈ A1, . . . , γ

σ(N) ∈ AN )
}
,

where SN is the space of permutations of {1, . . . , N}. We note that LN
EX is a

convex subset of LN . Define the set of probability measures on policies induced
by a common randomness as:

LN
CO :=

{
Pπ ∈ LN

∣∣∣∣for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1, . . . , γ
N ∈ AN ) =

∫
z∈[0,1]

N∏
i=1

P i
π(γi ∈ Ai|z)η(dz), η ∈ P([0, 1])

}
,

where η is the distribution of common, but independent (from intrinsic exoge-
nous system variables), randomness. Note that conditioned on z, policies are
independent. We also define the set LN

CO,SYM as the set of identical probability
measures on policies induced by a common randomness:

LN
CO,SYM :=

{
Pπ ∈ LN

∣∣∣∣for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1, . . . , γ
N ∈ AN ) =

∫
z∈[0,1]

N∏
i=1

Pπ(γi ∈ Ai|z)η(dz), η ∈ P([0, 1])
}
,

where we drop the index i in Pπ to indicate that the independent randomization
is identical through DMs. Also, define the set of probability measures on policies
with only private independent randomness as:

LN
PR

:=
{
Pπ∈LN

∣∣∣∣for all Ai∈B(Γi) : Pπ(γ1∈A1, . . . , γ
N ∈AN ) =

N∏
i=1

P i
π(γi ∈ Ai)

}
.
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Finally, define the set of probability measures on policies with identical and
independent randomness:

LN
PR,SYM

:=
{
Pπ∈LN

∣∣∣∣for all Ai∈B(Γi) : Pπ(γ1∈A1, . . . , γ
N ∈AN ) =

N∏
i=1

Pπ(γi ∈ Ai)
}
.

For a team with a countably infinite number of decision makers, we define
sets of probability measures L,LEX, LCO, LCO,SYM, LPR, LPR,SYM similarly us-
ing the Ionescu Tulcea extension theorem by iteratively adding new coordinates
for our probability measure (see e.g., [3, 72]). We define the set of probability
measures L on the infinite product Borel spaces Γ =

∏
i∈N

Γi as:

L := P(Γ). (30)

Now, we define the set of infinitely exchangeable probability measures on policies
as:

LEX :=
{
Pπ ∈ L

∣∣∣∣for all Ai ∈ B(Γi) and for all N ∈ N, and for all σ ∈ SN :

Pπ(γ1 ∈ A1, . . . , γ
N ∈ AN ) = Pπ(γσ(1) ∈ A1, . . . , γ

σ(N) ∈ AN )
}
,

and we define

LCO :=
{
Pπ ∈ L

∣∣∣∣for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1, γ
2 ∈ A2, . . . ) =

∫
z∈[0,1]

∏
i∈N

P i
π(γi ∈ Ai|z)η(dz), η ∈ P([0, 1])

}
.

Note that LCO is a convex subset of L and its extreme points are in the set of
probability measures on policies with private independent randomness:

LPR

:=
{
Pπ ∈ L

∣∣∣∣for all Ai ∈ B(Γi) : Pπ(γ1 ∈ A1, γ
2 ∈ A2, . . . ) =

∏
i∈N

P i
π(γi ∈ Ai)

}
.

Also, we define

LCO,SYM :=
{
Pπ ∈ L

∣∣∣∣for all Ai ∈ B(Γi) :

Pπ(γ1 ∈ A1, γ
2 ∈ A2, . . . ) =

∫
z∈[0,1]

∏
i∈N

Pπ(γi ∈ Ai|z)η(dz), η ∈ P([0, 1])
}
,

and we define

LPR,SYM

:=
{
Pπ ∈ L

∣∣∣∣for all Ai ∈ B(Γi) : Pπ(γ1 ∈ A1, γ
2 ∈ A2, . . . ) =

∏
i∈N

Pπ(γi ∈ Ai)
}
.
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Theorem 7.4. [121] Suppose that Assumption 7.3 holds. Then, any Pπ ∈ LEX
satisfying the following condition:

• For every i ∈ N, E(φi(ui)) ≤ K for some finite K, where φi : Ui → R+ is
a lower semi-continuous moment function.

is in LCO,SYM, i.e., for any Pπ ∈ LEX satisfying the above moment condition,
there exists a [0, 1]-valued random variable z ∼ η such that for any Ai ∈ B(Γi)

Pπ(γ1 ∈ A1, γ
2 ∈ A2, . . . ) =

∫
z∈[0,1]

∏
i∈N

Pπ(γi ∈ Ai|z)η(dz) (31)

Assumption 7.4. The cost function c in problem (PN ) is exchangeable with
respect to actions for all ω0, i.e., for any permutation σ of {1, . . . , N}

c(ω0, u
1, . . . , uN ) = c(ω0, u

σ(1), . . . , uσ(N))

for all ω0.

Lemma 7.1. For a fixed N , consider an N -DM static team. Assume L̄N is an
arbitrary convex subset of LN . Under Assumption 7.3 and Assumption 7.4, if
observations of DMs are exchangeable conditioned on ω0, then

inf
Pπ∈L̄N

∫
Pπ(dγ)μN (dω0, dy)cN (γ, y, ω0)

= inf
Pπ∈L̄N∩LN

EX

∫
Pπ(dγ)μN (dω0, dy)cN (γ, y, ω0),

where cN (γ, y, ω0) := c(ω0, γ
1(y1), . . . , γN (yN )).

Assumption 7.5. The cost function c : Ω0 ×U×U → R+ in problem (P∞) is
continuous in its second and third arguments for all ω0.

Under mild conditions, we can show that the optimal expected cost function
induced by LN

EX and LEX are equal as N goes to infinity. Hence, by Lemma 7.1,
under symmetry, this allows us to show that without loss of global optimality,
optimal policies of static mean-field teams with a countably infinite number of
DMs can be considered to be an infinitely exchangeable type.

Lemma 7.2. Suppose that Assumption 7.3 and Assumption 7.5 hold. Assume
further that U is compact and the cost function is bounded. If observations of
DMs are i.i.d. random vectors conditioned on ω0, then

lim sup
N→∞

inf
PN

π ∈LN
EX

∫
PN
π (dγ)μN (dω0, dy)cN (γ, y, ω0)

= lim sup
N→∞

inf
Pπ∈LEX

∫
Pπ,N (dγ)μN (dω0, dy)cN (γ, y, ω0), (32)

where cN (γ, y, ω0) := 1
N

∑N
i=1 c

(
ω0, γ

i(yi), 1
N

∑N
p=1 γ

p(yp)
)
, Pπ,N is the

marginal of the Pπ ∈ LEX to the first N components and μN is the marginal of
the fixed probability measure on (ω0, y

1, y2, . . . ) to the first N + 1 components.
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We now establish an existence of a randomized optimal policy for (P∞),
which is symmetric.

Theorem 7.5. [121] Consider a static team problem (P∞) where Assump-
tion 7.3 and Assumption 7.5 hold. Assume further that U is compact. If ob-
servations of DMs are i.i.d. random vectors conditioned on ω0, then there exists
a randomized optimal policy P ∗

π for (P∞) which is in LPR,SYM:

min
Pπ∈LPR,SYM

lim sup
N→∞

∫
Pπ,N (dγ)μN (dω0, dy)cN (γ, y, ω0) (33)

= inf
Pπ∈LPR

lim sup
N→∞

∫
Pπ,N (dγ)μN (dω0, dy)cN (γ, y, ω0). (34)

Following from Lemma 7.1, Lemma 7.2, and our analysis in the proof of
Theorem 7.5, thanks to Theorem 7.4, we can show that without losing global
optimality, optimal policies for mean-field teams can be considered to be sym-
metric and privately randomized (LPR,SYM).

We note that if one also has convexity in the cost as well as action sets
U

i, then one can also establish that for every finite N , the optimal policies
are symmetric and deterministic, but in the infinite limit, randomization may
be required [122]. Similar results also hold for dynamic team problems [123].
We emphasize that a strategic measures approach would not be feasible for
arriving at this solution since exchangeability in the actions is not sufficient to
ensure that the dominating random variable (in the de Finetti representation)
is independent of the intrinsic randomness in the system.

7.6. Extended weak convergence, topology of information, and
adapted topologies

A versatile topology, which has evidently been used in a variety of contexts
in stochastic analysis, is essentially given by the following convergence notion.
Consider a stochastic process converging to another one in the following sense:
all finite dimensional marginals converge weakly and the conditional kernels
on the future random variables given the past converge weakly as well when
conditional kernels are viewed as measure valued stochastic processes.

This notion has been applied for different problems: Aldous has termed it
extended weak convergence [2] and Hellwig has named it the information topol-
ogy [70]; these have recently been shown to be equivalent in discrete-time [14,
Theorem 1.1]. In addition to the conditional independence preservation [70] [68],
applications in robust stochastic control also follow from this discussion, with
details being very context-specific: [82], [95], [23, 15].

In relation to our context, such a convergence notion again requires strong
continuity conditions under all admissible policies. In the same spirit of the dis-
cussion in Section 7.2, though continuity and closedness hold under convergence
with this notion, compactness will require more restrictive conditions.

With this approach, the recent work [68] (see also [20]) has established exis-
tence results for a setup where either the measurements are countable or there is
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a common information among decision makers which is countable space-valued
with the private information satisfying an absolute continuity condition. As
noted earlier in the paper, static reduction applies in both such setups and the
results presented in this paper (notably Theorem 4.5) generalize those reported
in [68]. We note also that the use of the w-s topology in Theorem 4.5 significantly
relaxes the requirements of continuity.

8. Revisiting (and avoiding a subtle potential error in) relaxed
policies for partially observed stochastic control

In this section, we will revisit the concept of relaxed control policies for classical
stochastic control problems, with a further relaxation known as wide sense ad-
missible policies introduced by Fleming and Pardoux [62] and prominently used
to establish the existence of optimal solutions for partially observed stochastic
control problems. Borkar [36, 38, 37] (see also [39]) has utilized these policies
for a coupling/simulation method to arrive at optimality results for average cost
partially observed stochastic control problems.

The main goal of this section is to show that if wide sense admissible control
policies are not defined in a correct form, this can lead to a significant error
in reasoning: the controllers may be allowed to have access to information that
they should not.

Relaxed control policies are extremely useful concepts as shown in Section 3.2
and allows one to use topologies on the sets of probability measures to study
existence, optimality, and structural results. A key aspect of such relaxations
is that, the relaxation should not allow for optimal expected cost values to be
improved; they should only be means to facilitate stochastic analysis. Our goal
here is, building on the insights developed in Section 5.1 (in particular by the
analysis on the CHSH team [47] reviewed in Theorem 5.3), to highlight a sub-
tlety which may lead to incorrect conclusions if the relaxation is not cautiously
constructed. Accordingly, we first present a brief overview of relaxed control
policies in continuous-time or discrete-time stochastic control.

Consider a continuous-time Markov decision process {xt} on an Euclidean
space R

N , controlled by a control process {ut} taking values in a convex and
compact Borel action space U ⊂ R

L, and with an associated observation process
{yt} taking values in R

M , where 0 ≤ t ≤ T . The evolution of {xt, yt} is given
by stochastic differential equations

dxt = b(xt, yt, ut)dt + σ(xt, yt)dWt, (35)
dyt = h(xt)dt + dBt. (36)

Here, W and B are independent standard Wiener processes with values in RD

and R
M , respectively (hence, σ is a N×D-matrix). Typically the functions b, σ, h

above are assumed to have some regularity and growth conditions to ensure the
existence of strong or weak solutions. The objective is to minimize the following
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cost function

E

[ ∫ T

0
F (xt, ut)dt + G(xT )

]
,

where F : RN × U → [0,∞) and G : RN → [0,∞). In the literature, it is
customary to require that control process {ut} be adapted to the filtration
generated by the observation process {yt}; that is, for each t ∈ [0, T ], ut is
σ (ys, 0 ≤ s ≤ t)-measurable. We will call such policies (strict-sense or precise)
admissible policies. In [62], Fleming and Pardoux introduced another class of
policies which they called wide-sense admissible policies. Using this relaxed class
of policies, they study the existence of optimal policies to the above problem.

To define wide sense admissible policies, we first reproduce the above pro-
cesses on a canonical probability space

Ω = Ω0 × Ω1 × Ω2 × Ω3,

where Ω0, Ω1, and Ω2 are C([0, T ];Rm) with m = D,N,M , respectively, and
Ω3 = L2([0, T ];U). We identify the Wiener process W , state process x, ob-
servation process y, and action process u as follows. If ω = (W,x, y, u) ∈ Ω,
then

w(t) = (wt(w), xt(w), yt(w), ut(w)), 0 ≤ t ≤ T.

Here, Ω1, Ω2, and Ω3 are endowed with the usual sup-norm topology and Ω3 is
endowed with the weak topology. Let Ω2 = Ω2 × Ω3 and define

Ft(y) = σ (ys, 0 ≤ s ≤ t) , Ft(u) = σ (us, 0 ≤ s ≤ t) , G2
t = Ft(y) ×Ft(u).

Here, G2
t is the product σ-field generated by Ft(y) and Ft(u). Note that {G2

t }
is a filtration on Ω2.

We can now define the class of wide-sense admissible policies. A wide-sense
admissible policy π is a probability measure on (Ω2,G2

T ) such that y is a (π, {G2
t})

Wiener process. Note that this definition requires that the projection (y, u) →
y maps π onto Wiener measure and {us, 0 ≤ s ≤ t} is independent of the
increment yr − yt for all t ≤ r ≤ T . The latter condition states that actions up
to time t are independent of the observations after time t given past observations
and actions. In other words, instead of saying that actions should be dependent
on current and past observations, this condition states that actions should be
independent of future observations given past observations and actions.

Given a distribution μ of x0, each wide-sense admissible policy induces a joint
measure Pπ of (w, x, y, u) as follows. Let P y,u denote the conditional probability
of (w, x) given (y, u) induced by stochastic differential equations (35),(36), which
is independent of the policy as the action process u is given. Then define Pπ

0 as
follows

Pπ
0 (dw, dx, dy, du) = P y,u(dw, dx) ⊗ π(dy, du).
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Let us define the following density function

ZT = exp
[∫ T

0
h(xs)dys −

1
2

∫ T

0
|h(xs)|2ds

]
.

Then, Pπ is given by

dPπ

dPπ
0

= ZT .

Here, we apriori assume that this is integrable under the new measure, and so,
we are indeed applying Girsanov’s transformation. Let Bt = yt −

∫ t

0 h(xs)ds.
Then, under Pπ, W and B are independent standard Wiener processes and
stochastic differential equations (35) and (36) hold. Hence, the cost function of
the wide-sense admissible policy π is given by

J(π) = Eπ

[∫ T

0
F (xt, ut)dt + G(xT )

]
,

where Eπ denotes the expectation with respect to Pπ.
Note that in this setup, a policy π is admissible in the classical sense if π is

wide-sense admissible and there exists FT (y)/FT (u)-measurable f : Ω2 → Ω3
such that π(dy, du) = δf(y)(du)⊗w(dy), where w is a Wiener measure. Likewise,
we can say that the policy is relaxed if f : y �→ P(U) is probability measure
valued. We refer the reader to [62] for a more explicit construction of wide-sense
admissible policies in the continuous time setup.

In [62, Theorem 7.2], Fleming and Pardoux proved the existence of an op-
timal wide-sense policy by converting the original problem to a fully-observed
continuous-time Markov decision process on the belief-space P (RN ); that is,
the state of the belief-space MDP is the conditional distribution of the state xt

given the past observations and actions G2
t . Then, by adding some mild con-

ditions on the stage-wise cost functions F and G, they also proved that the
infimum achieved by classical admissible policies is the same as the infimum
achieved by wide-sense admissible policies [62, Theorem 6.1]. Therefore, with-
out loss of generality, one can work with wide-sense admissible policies instead
of classical policies in order to further analyze such problems.

Remark 8.1. It may be important to note that Bismut [28] arrived at further
existence results, through an approach which avoids separation (and the con-
struction of a belief-MDP), in discrete-time a similar approach is given in [148,
Section 5.4.2].

8.1. Discrete-time case

Inspired by the work of Fleming and Pardoux [62], Borkar introduced wide-sense
control policies to study discrete-time partially-observed finite state-observation
Markov decision processes with average cost criterion in [36, p.675 ], [38, item 1].
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Using coupling methods, Borkar proved that fully-observed belief-space Markov
decision processes under wide-sense admissible policies admit the solution of
the average cost optimality equation, and any stationary policy for the belief-
space MDP that solves this equation is optimal. Borkar later extended this
result to continuous state-observation MDPs in [37, 39]. While it is evident that
the discussion in [36, p.675], [38, item 1] is just an oversight (since this was
corrected later, as we will discuss below), nonetheless we wish to note that if a
reader applies this as written, this may lead to a consequential error, as we note
in the following and as this was not explicitly noted.

To this end, we first review the construction of Borkar, which is very similar
to the above construction, and we wish to recognize also that Borkar achieves
what is in essence equivalent to Witsenhausen’s static reduction reviewed in
Section 2.2. For simplicity, we only consider here the case where state and ob-
servation spaces are finite. We consider a discrete-time Markov decision process
{xn} on a finite state space X, controlled by a control process {un} taking values
in a compact Borel action space U, and with an associated observation process
{yn} taking values in a finite observation space Y, where n = 0, 1, 2, . . .. The
evolution of {xn, yn} is given by

P
(
xn+1, yn+1 ∈ ·

∣∣xm, xm, um,m ≤ n
)

= ρ(xn+1, yn+1 ∈ ·|xn, un),

where ρ : X×U → P(X)×P(Y) is some transition kernel. To ease the exposition,
we assume that ρ is of the following form:

ρ(xn+1, yn+1|xn, un) = r(yn+1|xn+1) ⊗ p(xn+1|xn, un),

where p is the state transition kernel and r is the observation kernel. The initial
distribution of x0 is μ.

A control process {un} is admissible in the classical sense if it is adapted to
the filtration {σ(ym,m ≤ n)} generated by observations {yn}. In this case, one
can write

un = πn(y0, . . . , yn), n ≥ 0, (37)

for some πn :
∏n

k=0 Y → U. Let us denote π = {πn}.
Note that one can always write the evolution of the state process {xn} as a

noise-driven dynamical system

xn+1 = F (xn, un, wn), (38)

where F : X × U × [0, 1] → X is measurable and {wn} are independently and
identically distributed uniformly on [0, 1]. Using this dynamical system, we now
reproduce the above process on a more convenient probability space. This will
then enable us to define wide-sense admissible policies.

In the following, we reduce the problem to an independent static one via
Witsenhausen/Girsanov/Borkar, see Borkar’s [36, 38] explicit analysis or Wit-
senhausen’s method presented in Section 2.2.

Under this reduction, we obtain a new probability measure Pπ
0 under which:
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(a) {yn} is i.i.d. uniform on Y and independent of x0 and {wn},
(b) {un, y0, . . . , yn} is independent of {wn}, x0, and {ym,m > n}, for all n.

Using these properties, Borkar defined wide sense admissible policies in [36, 38]
as follows. A policy P0 is wide sense admissible if P0 satisfies (a) and (b). Note
that condition (b) is very similar to the non-signaling condition introduced in
Section 5.1. It assumes that the action at time n is independent of the observa-
tions after time n given past observations (but not necessarily past actions). In
other words, instead of saying that action un should be dependent on current
and past observations {y0, . . . , yn}, this condition states that action un should be
independent of future observations {ym,m > n} given past observations. Borkar
and Budhiraja thankfully realized this seemingly simple, but consequential as
we will see later, typo as this was corrected in further publications: in [37, 39],
when Borkar and Budhiraja extend this definition to the continuous space case,
they have slightly changed the condition: This condition is denoted by (b’) and
stated as follows:

(b’) {u0, . . . , un, y0, . . . , yn} is independent of {wn}, x0, and {ym,m > n}, for
all n.

In (b’), in addition to {un, y0, . . . , yn}, we suppose that past actions u0, . . . , un−1
are independent of {wn}, x0, and {ym,m > n}. In other words, un is indepen-
dent of the observations after time n given past observations and actions (note
that in condition (b) past actions are missing). This is indeed the right relaxation
since in the next section, we establish via a counterexample that the optimal
value achieved by wide sense admissible policies (with condition (b)) is strictly
better than the optimal value achieved by classically admissible policies. More-
over, we show that an optimal wide-sense admissible policy under (b) evidently
has access to a control policy that it should not have; that is, it violates the
causality of the problem, which is prohibited in general.

8.2. A counterexample

We have a partially observed MDP with the components X = {0, 1} × {0, 1} ×
{0, 1}, U = {0, 1}, and Y = {y∗} contains only one element. Let x0 ∼ π0 ⊗ γ0,
where π0 is a distribution on {0, 1} × {0, 1} and γ0 is a distribution on {0, 1}.
A typical element of X is denoted by x = [x1, x2, x3]. The transition and the
observation kernels are defined as follows:

p
(
[x1

n+1, x
2
n+1, x

3
n+1]

∣∣[x1
n, x

2
n, x

3
n], un

)
= λ(x1

n+1, x
2
n+1|x1

n, x
2
n) ⊗ δun(x3

n+1)
r(yn|xn) = δy∗(yn),
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where λ : {0, 1}× {0, 1} → P ({0, 1}× {0, 1}) is a stochastic kernel such that π0
is an invariant probability measure of λ. The reward2 function is given by

c(x, u) =
{

1, if x3 ⊕ u = x1 · x2

0, otherwise.

To construct this counterexample, we have been inspired by the CHSH team [47]
reviewed earlier in Theorem 5.3, which establishes that non-signaling policies are
not admissible relaxations as they strictly improve the performance. A similar
conclusion will be obtained in this counterexample.

In this problem, the observation process {yn} is non-informative as, for each
n, yn ∼ δy∗ . Since any admissible control process {un} is adapted to the filtration
generated by the observation process; that is, one can write

un = πn(y0, . . . , yn), n ≥ 0, (39)

for some πn :
∏n

k=0 Y → U, any admissible control process {un} can be repre-
sented as a deterministic sequence {an}∞n=0 ⊂ {0, 1}∞, i.e., un ∼ δan for all n.
Note that, by the definition of the state transition kernel, the distribution π0 of
the first two components of the state (x1

n, x
2
n) remains as it is during the evolu-

tion of the state. With these observations, the maximum reward an admissible
policy can attain is

max
{
π0(x1

0 · x2
0 = 0), π0(x1

0 · x2
0 = 1)

}
. (40)

For instance, if

max
{
π0(x1

0 · x2
0 = 0), π0(x1

0 · x2
0 = 1)

}
= π0(x1

0 · x2
0 = 0),

then this reward can be obtained by picking the control sequence as follows:

u0 = 0, u1 = 1, u2 = 0, u3 = 1, . . .

We now construct an optimal wide sense admissible policy with the reward
function 1, which is in general strictly larger than (40). Let the probability
distribution P0 on Ω have the following properties:

(a) {yn} is i.i.d. uniform on Y and independent of x0 and {wn},
(b) For any n ≥ 0,

P0(un, un+1|xm, ym, wm,m ≤ n) =
{

1/2, if un ⊕ un+1 = x1
n · x2

n

0, otherwise

One can prove that P0 is wide sense admissible; that is, {un, y0, . . . , yn} is in-
dependent of {wn}, x0, and {ym,m > n}, for all n, under P0. Indeed, we have
P0(un|xm, ym, wm,m ≤ n) = U{0,1}(un) and P0(un+1|xm, ym, wm,m ≤ n) =

2We note that all results in this paper apply with straightforward modifications for the
case of maximizing reward instead of minimizing cost.
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U{0,1}(un+1), where U{0,1} is the uniform distribution on {0, 1}. The average
reward of P0 is 1, which can be the maximum achievable by any policy as
0 ≤ c ≤ 1. Hence, P0 is the optimal wide-sense policy.

Note that if

max{π0(x1
0 · x2

0 = 0), π0(x1
0 · x2

0 = 1)} = π0(x1
0 · x2

0 = 0) = π0(x1
0 · x2

0 = 1) = 1/2,

then classical policies at most attain the reward of 1/2, while wide sense ad-
missible policies can get the reward of 1 which is twice as big as 1/2. Hence,
this proves the fact that wide sense admissible policies are much bigger than
the classical policies. Furthermore, P0 cannot be implemented in real life control
applications as the action un at any time n depends on the knowledge of the
action un+1 at time n + 1, which violates the causality of the problem. Hence,
this shows that for certain class of problems, wide-sense admissible policies are
not a legitimate class of policies to study in the discrete-time setup. In order
to work with such policies, it is necessary to establish a theorem like [62, Theo-
rem 6.1] that establishes equivalency of these two classes of policies in terms of
achievable optimal value. This can indeed be done if condition (b) is replaced
by condition (b’). Note that the wide sense policy P0 defined above violates the
condition (b’). Therefore, it is not wide sense admissible under condition (b’).

In summary, if the relaxation is done with the interpretation that un is con-
ditionally independent from future observations given the past observations, an
incorrect conclusion can be made. If the relaxations is so that the control action
un is conditionally independent from future observations, given all the past,
then relaxation is valid.

9. Conclusion, topics left out and some open problems

9.1. Concluding remarks

The way information is decentralized is a key attribute determining how to
approach a problem in various areas of applied mathematics. In this review
article, we studied information structures in a probability theoretic and topo-
logical context. We defined information structures, placed various topologies on
them, and study closedness and compactness properties. We presented existence
and approximation results for optimal decision/control policies. We discussed
various upper and lower bounding techniques, through relaxations and convex
programs ranging from classically realizable and classically non-realizable (such
as quantum and non-signaling) relaxations. Figure 2 depicts a summary of our
findings on strategic measures.

We later presented various topologies on decision/control strategies defined
independently of information structures, but for which information structures
determine whether the topologies have utility in arriving at existence, compact-
ness, convexification or approximation results.

We showed that viewing decentralization with regard to the induced strategic
measures and viewing decentralization with respect to the applied control poli-



518 N. Saldi and S. Yüksel

cies, lead to different operational conclusions and tools to arrive at optimality
conditions and results for optimal decentralized decision making.

We showed that externally provided randomness should be well motivated
and when one defines relaxed control; which is a common solution technique
in discrete-time and continuous-time classical stochastic control, this should be
introduced cautiously since such randomness may indeed lead to unacceptable
performance improvement.

In the paper we considered the set of correlations given an information struc-
ture. A further related set of results involve the problem of optimal design of
information structures. This subject is beyond the scope of this review article
with some related results in [150, Thms. 3.2, 3.3, 3.4] and [149], which also
directly apply to the multi-agent setting.

9.2. Discussion on existence and some related results

As noted earlier, while the topological constructions on policies are quite use-
ful, Theorem 4.5 (for static teams or dynamic teams with an independent-
measurements reduction) and Theorems 4.6 and 4.7 (for sequential teams that
do not allow an independent-measurements reduction) are the most general ex-
istence results, to our knowledge, for the problems considered here. However,
some slightly weaker versions of these results can be arrived at through different
methods, as laid out in the paper. We also note, for completeness, that existence
of optimal policies for static and a class of sequential dynamic teams had been
studied in [144], [137] [69, 151], [150] [148]. Conditions for optimality have been
established in [45] for a class of continuous-time decentralized stochastic control
problems. We also noted in the article, for (classical) partially observed models,
existence results in [62], [28] with a discrete-time review in [148]. For a class of
teams which are convex, one can reduce the search space to a smaller paramet-
ric class of policies, such as linear policies for quasi-classical linear quadratic
Gaussian problems [117, 85, 73].

Note that standard dynamic programming is known to be a useful tool for
a class of dynamic teams since the 1970s. Clearly, if all the information at any
given decision maker is common knowledge between all decision makers, then the
system can be viewed as a centralized system and standard dynamic program-
ming is applicable. However, if only some of the system variables are common
knowledge, the remaining unknowns may or may not lead to a computationally
tractable program generating an optimal solution. A possible approach toward
establishing a tractable program is through the construction of a controlled
Markov chain where the controlled Markov state may now live in a larger state
space (for example a space of probability measures) and the actions may be ele-
ments from appropriately defined function spaces [149]. This controlled Markov
construction may lead to a computation of optimal policies. Such a dynamic
programming approach has been adopted extensively in the literature (see for
example, [11], [145], [46], [1], [147], [93] and significantly generalized and termed
as the common information approach in [109] and [110]) through the use of a
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team-policy which uses common information to generate partial functions for
each DM to generate their actions using local information. This construction
requires a common knowledge among decision makers, which is a unifying as-
sumption in the aforementioned contributions in the literature. Witsenhausen
[140] and [148] developed universal dynamic programming algorithms, which
are conceptually useful and mathematically consequential (on existence and re-
cursive analysis) but practically of limited algorithmic use with our current
knowledge.

9.3. Some open problems

In the following, we present a number of open problems:

(a) Note that one can prove, using the same argument in Theorem 5.3-(ii),
that

inf
P∈LQ(1)(μ)

∫
P (ds) c(s) ≤ J∗,

since there exists an optimal individually randomized policy that achieves
J∗. Therefore, for any d, the team problem infP∈LQ(d)(μ)

∫
P (ds) c(s) is

indeed an admissible extension or relaxation of classical team problem
since it does not require any communication between agents and a medi-
ator. Hence, the solution of this problem will be a significant contribution
to team decision theory as the optimal quantum-correlated policy can be
realizable in real life in view of recent and potential advances in quan-
tum technology. However, it is important to note that LQ(d)(μ) cannot be
convex if the dimension constraint d is small [53] (see also Theorem 5.2).
Therefore, with dimensionality constraint, the optimization problem corre-
sponding to the quantum-correlated strategic measures can be non-convex.
To convexify the problem, we can either add unlimited common random-
ness without changing d or increase d and allow for a limited common
randomness [53]. We can now state the following open problem:

(OP1) Under what conditions on the components of the team, there exists
d ≥ 1 such that the optimization problem

inf
P∈LQ(d)(μ)

∫
P (ds) c(s) (41)

can be written or can be approximated by a semi-definite program?
One way to approach (OP1) may be to adopt the so-called NPA hierarchy
[108], which provides an infinite hierarchy of semidefinite programming
(SDP) outer approximations to the set of quantum-correlated strategic
measures. In the NPA hierarchy, given a set of finitely many operators that
are linear combinations of products of projectors, one forms the moment
matrix, where each entry of the moment matrix is obtained by computing
the trace of the product of the operators in this finite set. This moment
matrix satisfies some semidefinite constraints and cost can be written as a
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trace of the product of moment matrix and properly extended cost opera-
tor. Hence, for each finite set of operators, one can write the optimization
problem over moment matrix as a semidefinite program. Since semidefi-
nite constraints satisfied by moment matrix are necessary conditions for
the original quantum-correlated relaxation, it gives an outer approxima-
tion to the original problem. As the number of operators in the finite set
converges to infinity, it can be proved that the outer approximation con-
verges to the original quantum-correlated setup. However, although this
gives SDP outer approximations, there are no bounds on the rate of con-
vergence quantifying how the approximation improves as the level in the
hierarchy increases. On the other hand, if we can bound the rate of con-
vergence for the NPA hierarchy, it will be possible to use it for solving
(OP1).

(b) Recall the dual program introduced in Section 5.4 using non-signaling
policies. In this section, we establish the dual problem for Witsenhausen’s
counterexample and pose several open problems. To this end, we let Y1 =
Y

2 = U
1 = U

2 = R, which denote the observation and action spaces
of agents. In Witsenhausen’s celebrated counterexample [138], depicted
in Fig. 4, there are two decision makers: Agent 1 observes a zero mean
and σ-variance Gaussian random variable y1 ∈ Y1 and decides its action
u1 ∈ U

1. Agent 2 observes y2 := u1 + v ∈ Y
2, where v ∈ V = R is zero

mean and unit variance Gaussian noise independent of y1, and decides its
action u2 ∈ U

2

Fig 4. Witsenhausen’s counterexample.

The cost function of the team is given by

c(y1, u1, u2) = k2(u1 − y1)2 + (u2 − u1)2,

where k > 0. Let g(y) := 1√
2π exp {−y2/2} be the probability density

function of a zero mean and unit variance Gaussian random variable. Then
we have

P (y2 ∈ S |u1) =
∫
S

g(y2 − u1)m(dy2),

where m denotes the Lebesgue measure on Y
2. Let

f(u1, y2) := exp
{
− (u1)2 − 2y2u1

2

}
(42)
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so that g(y2 − u1) = f(u1, y2) 1√
2π exp {−(y2)2/2} = f(u1, y2) g(y2). The

independent static reduction of Witsenhausen’s counterexample proceeds
as follows: for any strategic measure P ∈ LR(μ), the expected cost can be
written as

J(P ) =
∫

c(y1, u1, u2)P (du2|y2)P (dy2|u1)P (du1|y1)μσ(dy1)

=
∫

c(y1, u1, u2) f(u1, y2)μ1(dy2)μσ(dy1),

where μρ denotes zero mean and ρ-variance Gaussian distribution. Hence,
by defining cs(y1, y2, u1, u2) = c(y1, u1, u2) f(u1, y2) and μ(dy1, dy2) =
μσ(dy1)μ1(dy2), we can write J(P ) as

J(P ) =
∫

cs(y1, y2, u1, u2)P (du2|y2)P (du1|y1)μ(dy1, dy2). (43)

Therefore, in the static reduction of Witsenhausen’s counterexample, the
agents observe independent zero mean Gaussian random variables. In the
remainder of this note, we consider the static reduction of Witsenhausen’s
counterexample. Note that a strategic measure P ∈ P(Y1×Y

2×U
1 ×U

2)
is non-signaling if

P (du1|y1, y2) = P (du1|y1),
P (du2|y1, y2) = P (du2|y2). (44)

As noted in Section 5.4, since the constraints in (44) for P are linear, the
optimal team cost with non-signaling policies can be written as a linear
program over an appropriate vector spaces as follows. Recall that, for any
metric space E, M(E) denotes the set of finite signed measures on E and
C(E) denotes the set of continuous real functions. Consider the vector
spaces M(U1 ×U

2 ×Y
1 ×Y

2), C(U1 ×U
2 ×Y

1 ×Y
2), M(U1 ×Y

1 ×Y
2),

C(U1 ×Y1 ×Y2), M(U2 ×Y1 ×Y2), and C(U2 ×Y1 ×Y2). Let us define
bilinear forms on(

M(U1 × U
2 × Y

1 × Y
2), C(U1 × U

2 × Y
1 × Y

2)
)

and on(
M(U1×Y1×Y2)×M(U2×Y1×Y2)×R, C(U1×Y

1×Y
2)×C(U2×Y

1×Y
2)×R

)
by letting

〈ρ, v〉1 :=
∫
U1×U2×Y1×Y2

v(u1, u2, y1, y2) ρ(du1, du2, dy1, dy2), (45)

〈(ρ1, ρ2, a), (v1, v2, b)〉2 :=
∫
U1×Y1×Y2

v1(u1, y1, y2) ρ1(du1, dy1, dy2)
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+
∫
U2×Y1×Y2

v2(u2, y1, y2) ρ2(du2, dy1, dy2) + ab. (46)

The bilinear forms in (45) and (46) constitute duality between spaces [22,
Chapter IV.3]. Hence, the topologies on these spaces should be understood
as the weak topology of the duality induced by these bilinear forms. We
define the linear map L : M(U1 × U

2 × Y
1 × Y

2) → M(U1 × Y
1 × Y

2) ×
M(U2 × Y

1 × Y
2) × R by

L(ρ) = (L1(ρ), L2(ρ), L3(ρ)) ,

where

L1 : ρ(du1, du2, dy1, dy2) �→ ρ(du1, dy1, dy2) − ρ(du1, dy1)μ1(dy2)
L2 : ρ(du1, du2, dy1, dy2) �→ ρ(du2, dy1, dy2) − ρ(du2, dy2)μσ(dy1)
L3 : ρ(du1, du2, dy1, dy2) �→ 〈ρ, 1〉1.

Using L, the optimal value of the team with non-signaling policies can be
written as a linear program as follows:

(NS) minimizeρ∈M+(U1×U2×Y1×Y2) 〈ρ, cs〉1
subject to L(ρ) = (0, 0, 1). (47)

Since LC(μ) ⊂ LNS(μ), the solution of above linear program gives a lower
bound to the original formulation of Witsenhausen’s counterexample. Note
that the dual of L is given by L∗ : C(U1×Y

1×Y
2)×C(U2×Y

1×Y
2)×R →

C(U1 × U
2 × Y

1 × Y
2), where

L∗(v1, v2, b) = v1(u1, y1, y2) −
∫
Y2

v1(u1, y1, y2) dμ1(y2)

+ v2(u2, y1, y2) −
∫
Y1

v2(u2, y1, y2) dμσ(y1) + b. (48)

Then the dual program of (NS) can be written as [22, Chapter IV.6]

(NS∗) maximize(v1,v2,b)∈C(U1×Y1×Y2)×C(U2×Y1×Y2)×R b

subject to L∗(v1, v2, b) ≤ cs. (49)

We can now state the following problems:
(OP2) Approximate numerically the dual linear program (NS∗) to obtain a

lower bound to J∗.
(OP3) Analyze the difference

inf
P∈LNS(μ)

∫
P (ds) cs(s) − inf

P∈LC(μ)

∫
P (ds) cs(s),

or at least with an upper bound obtained with numerical methods
(see [120] for a review of numerical results in the literature).
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(OP4) We know that when there is no u1 · u2 term in the original cost
function c, there is an affine optimal policy which can be obtained
analytically using information theoretic tools [17]. In this case, what
is the relation between

inf
P∈LNS(μ)

∫
P (ds) cs(s)

and
inf

P∈LC(μ)

∫
P (ds) cs(s)?

More generally, for which cost functions, can we establish that

inf
P∈LNS(μ)

∫
P (ds) cs(s) = inf

P∈LC(μ)

∫
P (ds) cs(s)?

(c) In the paper, we considered only sequential decentralized stochastic con-
trol. As noted earlier, if there is a pre-defined order in which the deci-
sion makers act, then we say that a system is sequential; otherwise, the
system is non-sequential. Such non-sequential systems are substantially
more difficult to study, since the ambiguities in the order of actions lead
to challenges on the interpretation of local information. Optimal design
of such non-sequential models requires the systems to be deadlock-free,
that is the actions of a given DM should not depend on the actions of
DMs acting in the future, for any realized random ordering. Furthermore,
the optimization problem for such systems should be well posed/solvable,
since for some designs the expected cost may not be well-defined. We refer
the reader to Witsenhausen [139], Andersland and Teneketzis [5], [6] and
Teneketzis [130] for a comprehensive study of non-sequential systems, see
[149] for a brief review. We also note that with the observation that the
information fields generated by local measurements lead to subtle condi-
tions on solvability and causality, an alternative probabilistic model, based
on quantum mechanics, for describing such problems has been proposed
by Baras in [19] and [18]. These papers also present an accessible review
of related developments on the quantum information literature prior to
the publications. In summary, the study of non-sequential decentralized
stochastic control systems in the context of what we studied throughout
this paper is an open problem.
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[120] N. Saldi, S. Yüksel, and T. Linder, Finite model approximations and
asymptotic optimality of quantized policies in decentralized stochastic con-
trol, IEEE Transactions on Automatic Control, 62 (2017), pp. 2360–2373.
MR3641451
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Some open problems, Lecture Notes in Econ. and Math. Syst., Springer-
Verlag, 107 (1975), pp. 322–335.

[142] H. S. Witsenhausen, Equivalent stochastic control problems, Math. Con-
trol, Signals and Systems, 1 (1988), pp. 3–11. MR0923272

[143] W. M. Wonham, On the separation theorem of stochastic control, SIAM
Journal on Control, 6 (1968), pp. 312–326. MR0237219
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