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1. Introduction

The theory of exponential families has received a great deal of attention in the
classical probability and statistical literature and it remains a very interesting
topic. This is in particular due to the fact that the most common distributions
belong either to natural exponential families (NEFs) or to general exponential
families. The notion of variance function is a fundamental concept in the theory
of NEFs and many classifications of NEFs by the form of their variance function
has been realized. The most important classes on R are the quadratic class of
NEFs such that the variance function is a polynomial of degree less than or
equal to two characterized by Morris [28] and the cubic class of NEFs such
that the variance function is a polynomial of degree less than or equal to three
characterized by Letac and Mora [25]. The multivariate version of the quadratic
and cubic NEF’s have been respectively described by Casalis [12] and Hassairi
[23].

It is well known that the definition of a real NEF is based on the kernel
(θ, x) �−→ exp(θx). Wesolowski [36] has defined a notion of family generated by
a measure ν for any kernel k(x, θ) such that

L(θ) =

∫
k(x, θ)ν(dx)

converge in a open set Θ. It is the set of distributions

{(k(x, θ)/L(θ))ν(dx) : θ ∈ Θ} .

Besides the exponential kernel, the most interesting example of kernels is the
Cauchy-Stieltjes one (θ, x) �−→ 1/(1 − θx). In fact, the authors in [9] have
introduced the definition of q-exponential families, where they identified all the
q-exponential families when |q| < 1. In particular, they studied the case where
q = 0, which was related to the free probability theory by using the Cauchy—
Stieltjes kernel 1/(1 − θx). When q = 1, we get the exponential families. Bryc
[6] continued the study of Cauchy-Stieltjes Kernel (CSK) families for compactly
supported probability measures ν. It was in particular shown that such families
can be parameterized by the mean m. With this parametrization, denoting
V (m) as the variance of the element with mean m, the function m �→ V (m)
called the variance function and the mean m0 of the generating measure ν
uniquely determines the family and ν. The class of quadratic CSK families is
described in [6]. This class consists of the free Meixner distributions. In [10], Bryc
and Hassairi have extended the results established in [6] to allow probability
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measures with unbounded support. They have provided a method to determine
the domain of means and introduced a notion of pseudo-variance function. They
have also characterized a class of cubic CSK families with support bounded from
one side. A general description of polynomial variance function with arbitrary
degree is given in [8]. In particular, a complete description of the cubic compactly
supported CSK families is given.

On the other hand, in the setting of non-commutative probability theory,
Voiculescu introduce the notion of free independence. Moreover, if X and Y are
free independent random variables with laws respectively denoted by μ and ν,
then μ� ν is the law of the sum of X and Y , where the operation � is the free
additive convolution which is defined using the R-transform. A multiplicative
counterpart of free additive convolution, denoted by �, was introduced in [5]
for probability measures on the positive real line, and μ � ν is the law of the
product of X and Y . Speicher and Woroudi [32] have introduced a new kind
of convolution between probability measures in the context of non-commutative
probability theory with boolean independence: the boolean additive convolution
�. Moreover, if X and Y are boolean independent random variables with laws
respectively denoted by μ and ν, then μ � ν is the law of the sum of X and
Y . A multiplicative counterpart of boolean additive convolution, denoted by ∪×,
was introduced by Bercovici [4], who showed how to calculate it using moment
generating series.

In this paper we review some facts concerning the effects of free and boolean
convolutions powers on CSK families. We present in section 2 some basic con-
cepts about NEFs and CSK families. We provide some similarities and differ-
ences between the two families. In particular and in contrast to NEFs, a typical
member of a given CSK family generates a different CSK family, so one can con-
struct new CSK families by the iteration process. We relate the pseudo-variance
function for the iterated family to the original pseudo-variance function, and
we determine the domain of means. Section 3 is devoted to the study of free
additive convolution from the perspective of CSK families. We present further
similarities with NEFs and reproductive exponential models. We also explore
a property of CSK families that have no counterpart in NEFs: We investigate
when the domain of means can be extended beyond the natural domain. In sec-
tion 4, we deal with boolean additive convolution from a point of view related
to CSK families. We determine the formula for variance function under boolean
additive convolution power. This formula is used to identify the relation be-
tween variance functions under boolean Bercovici-Pata bijection. We also give
the connection between boolean cumulants and variance function and we relate
boolean cumulants of some probability measures to Catalan numbers and Fuss
Catalan numbers. In section 5, we focus on free multiplicative convolution. We
determine the effect of the free multiplicative convolution on the pseudo-variance
function of a CSK family. We then use the machinery of variance functions to
establish some limit theorems related to this type of convolution and involving
the free additive convolution and the boolean additive convolution. An explicit
expression of the free multiplicative law of large numbers is also given. We are
interested in section 6 on the boolean multiplicative convolution. We determine
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the effect of the boolean multiplicative convolution on the pseudo-variance func-
tion of a CSK family. We also identify the relation between variance functions
under Belinschi-Nica type semigroup for multiplicative convolutions.

2. Cauchy-Stieltjes Kernel families

In the setting of non-commutative probability theory and in analogy with the
theory of NEFs, a theory of CSK families has been recently introduced based on
the Cauchy-Stieltjes kernel. In this paragraph we present some basic elements
of CSK families. One start by presenting some basic concepts of NEFs. Then,
we point out some similarities and differences between the two families.

2.1. About NEFs

If μ is a positive measure on the real line, we denote by

Lμ(θ) =

∫
R

exp(θx)μ(dx), (2.1)

its Laplace transform, and we denote Θ(μ) = interior{θ ∈ R; Lμ(θ) < ∞}.
M(R) will denote the set of measures μ such that Θ(μ) is not empty and μ is
not concentrated on one point. If μ is in M(R), we also denote

κμ(θ) = log(Lμ(θ)), θ ∈ Θ(μ), (2.2)

the cumulate function of μ.
To each μ in M(R) and θ in Θ(μ), we associate the following probability

distribution:
P (θ, μ)(dx) = exp(θx− κμ(θ))μ(dx). (2.3)

The set
F = F (μ) = {P (θ, μ), θ ∈ Θ(μ)} (2.4)

is called the natural exponential family (NEF) generated by μ.
The measure μ is said to be a basis of F (μ). It is worth mentioning that a

basis of F is by no means unique: If μ and μ′ are in M(R), then F (μ) = F (μ′)
if and only if there exists (a, b) ∈ R

2 such that

μ′(dx) = exp(ax+ b)μ(dx). (2.5)

Therefore, all measure of the form (2.5) generate the family F , in particular
the elements of F . In what follows, we will see that this property fails for CSK
families. In fact a typical member in a CSK family generate something different
than the original family, then the construction can be iterated.

The map θ �−→ κ′
μ(θ) is a bijection between Θ(μ) and its image MF which

is called the domain of means of the family F. Denote by φμ : MF −→ Θ(μ)
the inverse of κ′

μ. We are thus led to the parametrization of F by the mean m.
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For each μ ∈ M(R) and m ∈ MF , let us denote P (m,F ) = P (φμ(m), μ) and
rewrite F = {P (m,F ); m ∈ MF }.

The variance of P (m,F ) is denoted VF (m). The map m �−→ VF (m) is called
the variance function of the NEF F and is defined for all m ∈ MF by

VF (m) = κ′′
μ(φμ(m)) = (φ′

μ(m))−1.

The important feature of VF (.) is that it characterizes the NEF F in the following
sense: If F1 is another NEF such that MF ∩ MF1 contains a non-empty open
interval O and VF (m) = VF1(m) for m ∈ O, then F = F1. Thus (MF , VF (m))
completely characterizes F .

For μ in M(R) the Jørgensen set of F (μ) is defined by

Λ(μ) = {λ > 0 : ∃ μλ : Lμλ
(θ) = (Lμ(θ))

λ
and Θ(μλ) = Θ(μ)}.

Λ(μ) is stable under addition which means that for λ, λ′ ∈ Λ(μ), we have
λ + λ′ ∈ Λ(μ1) and μλ+λ′ = μλ ∗ μλ′ . The link between μλ and Fλ = F (μλ) is
revealed by the following; For λ ∈ Λ(μ), MFλ

= λMF , and for m ∈ MFλ
,

VFλ
(m) = λVF

(m
λ

)
.

2.2. About CSK families

Our notations are the ones used in [16]. Let ν be a non-degenerate probability
measure with support bounded from above. Then

Mν(θ) =

∫
1

1− θx
ν(dx) (2.6)

is defined for all θ ∈ [0, θ+) with 1/θ+ = max{0, sup supp(ν)}.
For θ ∈ [0, θ+), we set

P(θ,ν)(dx) =
1

Mν(θ)(1− θx)
ν(dx).

The set

K+(ν) = {P(θ,ν)(dx); θ ∈ (0, θ+)}

is called the one-sided CSK family generated by ν.
Let kν(θ) =

∫
xP(θ,ν)(dx) denote the mean of P(θ,ν). According to [10, page

579–580] the map θ �→ kν(θ) is strictly increasing on (0, θ+), it is given by the
formula

kν(θ) =
Mν(θ)− 1

θMν(θ)
. (2.7)

The image of (0, θ+) by kν is called the (one sided) domain of means of the
family K+(ν), it is denoted (m0(ν),m+(ν)). This leads to a parametrization of



A survey on the effects of free and boolean convolutions on CSK families 409

the family K+(ν) by the mean. In fact, denoting by ψν the reciprocal of kν , and
writing for m ∈ (m0(ν),m+(ν)), Q(m,ν)(dx) = P(ψν(m),ν)(dx), we have that

K+(ν) = {Q(m,ν)(dx);m ∈ (m0(ν),m+(ν))}. (2.8)

Now let
B = B(ν) = max{0, sup supp(ν)} = 1/θ+ ∈ [0,∞). (2.9)

It is shown in [10] that the bounds m0(ν) and m+(ν) of the one-sided domain
of means (m0(ν),m+(ν)) are given by

m0(ν) = lim
θ→0+

kν(θ) and m+(ν) = B − lim
z→B+

1

Gν(z)
, (2.10)

where Gν(.) is the Cauchy transform of ν which is defined by

Gν(z) =

∫
1

z − x
ν(dx), (2.11)

for z ∈ C
+ = {x+ iy ∈ C; y > 0}.

It is clear that m+(ν) ≤ sup supp(ν) and

m0(ν) = lim
θ↘0+

kν(θ) =

∫
xν(dx) ≥ −∞.

It is worth mentioning here that one may define the one-sided CSK family for
a measure ν with support bounded from below. This family is usually denoted
K−(ν) and parameterized by θ such that θ− < θ < 0, where θ− is either 1/b(ν)
or −∞ with b = b(ν) = min{0, inf supp(ν)}. The domain of means for K−(ν) is
the interval (m−(ν),m0(ν)) with m−(ν) = b− 1/Gν(b).

If ν has compact support, the natural domain for the parameter θ of the
two-sided CSK family K(ν) = K+(ν) ∪ K−(ν) ∪ {ν} is θ− < θ < θ+.

The variance function given by

m �→ Vν(m) =

∫
(x−m)2Q(m,ν)(dx), (2.12)

is a fundamental concept in the theory of CSK families as presented in [6].
Unfortunately, if ν hasn’t a first moment which is for example the case for free
1/2-stable law, all the distributions in the CSK family generated by ν have
infinite variance. This fact has led the authors in [10] to introduce a notion of
pseudo-variance function defined by

Vν(m) = m

(
1

ψν(m)
−m

)
, (2.13)

If m0(ν) =
∫
xdν is finite, then (see [10]) the pseudo-variance function is related

to the variance function by

Vν(m) =
m

m−m0
Vν(m). (2.14)
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In particular, Vν = Vν when m0(ν) = 0.
The generating measure ν is uniquely determined by the pseudo-variance

function Vν . In fact, if we set

z = z(m) = m+
Vν(m)

m
, (2.15)

then the Cauchy transform (2.11) satisfies

Gν(z) =
m

Vν(m)
, (2.16)

Also the distribution Q(m,ν)(dx) may be written as Q(m,ν)(dx) = fν(x,
m)ν(dx) with

fν(x,m) :=

⎧⎪⎨
⎪⎩

Vν(m)
Vν(m)+m(m−x) , m = 0 ;

1, m = 0, Vν(0) = 0 ;
V

′
ν(0)

V′
ν(0)−x , m = 0, Vν(0) = 0 .

(2.17)

Now, we recall the effect on a CSK family of applying an affine transformation to
the generating measure. Consider the affine transformation ϕ : x �−→ (x− λ)/β
where β = 0 and λ ∈ R and let ϕ(ν) be the image of ν by ϕ. In other words,
if X is a random variable with law ν, then ϕ(ν) is the law of (X − λ)/β, or
ϕ(ν) = D1/β(ν � δ−λ), where Dr(μ) denotes the dilation of measure μ by a
number r = 0, that is Dr(μ)(U) = μ(U/r). The point m0 is transformed to
(m0 − λ)/β. In particular, if β < 0 the support of the measure ϕ(ν) is bounded
from below so that it generates the left-sided family K−(ϕ(ν)). For m close
enough to (m0 − λ)/β, the pseudo-variance function is

Vϕ(ν)(m) =
m

β(mβ + λ)
Vν(βm+ λ). (2.18)

In particular, if the variance function exists, then Vϕ(ν)(m) = 1
β2Vν(βm+ λ).

Note that using the special case where ϕ is the reflection ϕ(x) = −x, one
can transform a right-sided CSK family to a left-sided family. If ν has support
bounded from above and its right-sided CSK family K+(ν) has domain of means
(m0,m+) and pseudo-variance function Vν(m), then ϕ(ν) generates the left-
sided CSK family K−(ϕ(ν)) with domain of means (−m+,−m0) and pseudo-
variance function Vϕ(ν)(m) = Vν(−m).

Remark 2.1. There are numerous similarities between the NEFs and the CSK
families: both are parameterized by the mean, both are uniquely determined by
the variance function and the so called “domain of means”, and the variance
function of the CSK family generated by the free additive convolution of gener-
ating measure ν has the same form as the variance function of the exponential
family of the classical convolution (as we will see in the next section).

There also some differences due to the fact that the exponential kernel exp(θx)
is always positive while the Cauchy kernel 1/(1 − θx) might be negative, and
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due to the fact that the variance of a CSK family might not exist. This fact
has led the authors in [10] to introduce the “pseudo-variance” function that has
no direct probabilistic interpretation but has similar properties to the variance
function and is equal to the variance function of the CSK family generated by
a measure ν of mean zero.

2.3. Iterated CSK families

One difference between the exponential and CSK families is that one can build
nontrivial iterated CSK families. That is, each member of an exponential family
generates the same exponential family so it does not matter which of them we
use for the generating measure. But this is not so for CSK families: each member
of a CSK family generates something different than the original family, so the
construction can be iterated.

Suppose Q(m,ν) is in the CSK family generated by a probability measure ν
with support bounded from above. Consider a new CSK family generated by
Q(m,ν). Then, as long as m = m0, the variance function of this new family
necessarily exists. Our goal is to relate the variance function of this new family
to the pseudo-variance function of the initial family. We relate the domains of
means and the pseudo-variance functions of the original family K+(ν) and the
new family K+(Q(m1,ν)). Fix m1 ∈ (m0(ν),m+(ν)), and consider Q(m1,ν) =
P(θ1,ν) ∈ K+(ν), with θ1 ∈ (0, θ+(ν)). Define

MP(θ1,ν)
(θ) =

∫
1

1− θx
P(θ1,ν)(dx),

for θ ∈ Θ = {θ > 0; MP(θ1,ν)(dx)(θ) < ∞}. The CSK family generated by
Q(m1,ν) = P(θ1,ν) is

K+(P(θ1,ν)) = {P (θ,P(θ1,ν))(dx)} =

{
1

MP(θ1,ν)
(θ)(1− θx)

P(θ1,ν)(dx), θ ∈ Θ

}
.

Proposition 2.2. [7, Proposition 2.2]

(i) Θ = (0, θ+(ν))
(ii) For θ ∈ Θ, we have

MP(θ1,ν)
(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θMν(θ)− θ1Mν(θ1)

Mν(θ1)(θ − θ1)
if θ = θ1;

Mν(θ1) + θ1M
′
ν(θ1)

Mν(θ1)
if θ = θ1.

(2.19)

(iii) For θ ∈ Θ, we set kν(θ)=
∫
xP(θ,ν)(dx) the mean of P(θ,ν), and kP(θ1,ν)

(θ)=
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xP (θ,P(θ1,ν))(dx), the mean of P (θ,P(θ1,ν))(dx). Then

kP(θ1,ν)
(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θkν(θ)− θ1kν(θ1)

(θ − θ1) + θθ1(kν(θ)− kν(θ1))
if θ = θ1;

kν(θ1) + θ1k
′
ν(θ1)

1 + θ21k
′
ν(θ1)

if θ = θ1.

(2.20)

Next we denote by D+(ν) and Vν the domain of means and the pseudo-
variance function of the family K+(ν), and by D+(Q(m1,ν)) and VQ(m1,ν)

the
domain of means and the pseudo-variance function of K+(Q(m1,ν)). Recall that
D+(ν) = kν((0, θ+)) and D+(Q(m1,ν)) = kP(θ1,ν)

((0, θ+)). We set m = kν(θ) and
m = kP(θ1,ν)

(θ). We will also use the inverse ψν of the function θ �−→ kν(θ) from
(0, θ+) into (m0,m+), and the inverse ψP(θ1,ν)

of the function θ �−→ kP(θ1,ν)
(θ)

from (0, θ+) into its image (m0,m+).

Theorem 2.3. [7, Theorem 2.3] Let ν be a probability measure with support
bounded from above, and let K+(ν) be the CSK family generated by ν. Fix m1 ∈
(m0,m+) and let B = B(ν) be given by (2.9). With the notations introduced
above, we have

(i)

m = kP(θ1,ν)
(ψν(m)) =

⎧⎪⎪⎨
⎪⎪⎩

m2
Vν(m1)−m2

1Vν(m)

mVν(m1)−m1Vν(m)
if m = m1;

2m1Vν(m1)−m2
1V

′
ν(m1)

Vν(m1)−m1V
′
ν(m1)

if m = m1.

(2.21)
(ii) The (one sided) domain of means is

D+(Q(m1,ν)) = (m0,m+) =

(
m1,

m+Gν(B)−m2
1/Vν(m1)

Gν(B)−m1/Vν(m1)

)
.

(interpreted as the limit b → B+.)
(iii)

VQ(m1,ν)
(m)

m
+m =

Vν(m)

m
+m. (2.22)

Note that the function m �−→ m is a bijection from D+(ν) into D+(Q(m1,ν)),
so that to get explicitly the pseudo-variance function of the CSK family
K+(Q(m1,ν)), we need to express m in terms of m from (2.21) and insert it
in (2.22).

Note that as the probability measure Q(m1,ν) has a finite first moment m0 =
m1, the variance function VQ(m1,ν)

(.) of the CSK family K+(Q(m1,ν)) exists and
from (2.14) we have

VQ(m1,ν)
(m) =

m

m−m1
VQ(m1,ν)

(m).
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The following two special cases are of interest as they exhibit the iterated CSK
families generated by two laws of importance in free probability. We consider
the Wigner semicircle distribution. It is named after the Hungarian theoretical
physicist Eugene Wigner who contributed to mathematical physics. The Wigner
semicircle distribution arises as the limiting distribution of eigenvalues of a
random symmetric matrices as the size of the matrix approaches infinity. In
free probability theory, the role of Wigner’s semicircle distribution is analogous
to that of the Gaussian distribution in classical probability theory.

Example 2.4. The Wigner’s semicircle (free Gaussian) law

ν(dx) =

√
4− x2

2π
1(−2,2)(x)dx,

generates the CSK family with a constant variance function Vν(m) = 1 = Vν(m)
and the (one-sided) domain of means is D+(ν) = (0, 1). (The full two-sided
domain of means is of course (−1, 1).) For m1 ∈ D+(ν), the probability measure

Q(m1,ν)(dx) =

√
4− x2

2π(1 +m1(m1 − x))
1(−2,2)(x)dx,

generates the CSK family with pseudo-variance function

VQ(m1,ν)
(m) =

m

m−m1
(−m1m+m2

1 + 1),

and with the domain of means D+(Q(m1,ν)) = (m1, 1+m1). The corresponding
variance function is

VQ(m1,ν)
(m) = −m1m+m2

1 + 1. (2.23)

Up to an affine transformation, this is the Marchenko-Pastur law, see next ex-
ample. In fact, in the mathematical theory of random matrices the Marchenko-
Pastur distribution or Marchenko-Pastur law is introduced by the Ukrainian
mathematicians Vladimir Alexandrovich Marchenko and Leonid Andreevich
Pastur. It describes the asymptotic behavior of singular values of large rect-
angular random matrices, (see [26] for more details).

Example 2.5. For 0 < a2 < 1, the (absolutely continuous) centered Marchenko-
Pastur (free Poisson) law

ν(dx) =

√
4− (x− a)2

2π(1 + ax)
1(a−2,a+2)(x)dx

generates the CSK family with quadratic variance function V (m) = 1 + am =
V(m), and the domain of means is D+(ν) = (0, 1).

For m1 ∈ D+(ν), the probability measure

Q(m1,ν)(dx) =
(1 + am1)

√
4− (x− a)2

2π(1 +m1(a+m1 − x))(1 + ax)
1(a−2,a+2)(x)dx
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generates CSK family with pseudo-variance function

VQ(m1,ν)
(m) =

m

(1 + am1)(m−m1)
(1 + am) (1 +m1 (a+m1 −m)) .

The domain of means is

D+(Q(m1,ν)) = (m1, 1 + (a+ 1)m1).

The variance function is

VQ(m1,ν)
(m) =

(1 + am) (1 +m1 (a+m1 −m))

1 + am1
.

3. Free additive convolution

Free convolution is the free probability analog of the classical notion of con-
volution of probability measures. Due to the non-commutative nature of free
probability theory, one has to talk separately about additive and multiplicative
free convolution, which arise from addition and multiplication of free random
variables. Free convolution can be used to compute the laws and spectra of sums
or products of random variables which are free independents. Such examples in-
clude: random walk operators on free groups (Kesten measures) and asymptotic
distribution of eigenvalues of sums or products of independent random matrices.
In this section, we are interested in the study of free additive convolution from
the perspective of CSK families.

Denote by M (respectively by M+) the set of Borel probability measures
on R (respectively on R+). For ν ∈ M, its Cauchy transform Gν is defined
by (2.11). Note in particular that �(Gν(z)) < 0 for any z ∈ C

+, and hence
we may consider the reciprocal Cauchy transform Fν : C+ −→ C

+ given by
Fν(z) = 1/Gν(z) for z ∈ C

+. According to [5], for any probability measure
ν ∈ M and any λ ∈ (0,+∞), there exists positive numbers α, β and M such
that Fν is univalent on the set Γα,β := {z ∈ C

+ : �(z) > β, |�(z)| < α�(z)}
and such that Fν(Γα,β) ⊃ Γλ,M . Therefore the right inverse F−1

ν of Fν exists on
Γλ,M , and the free cumulant transform Rν can be defined by

Rν(z) = zF−1
ν (1/z)− 1, for all z such that 1/z ∈ Γλ,M . (3.1)

The name refers to the fact that Rν linearizes free additive convolution (see
[5]). Variants of Rν (with the same linearizing property) are the R-transform
Rν and the Voiculescu transform vν related by the following equalities:

Rν(z) = zRν(z) = zvν(1/z). (3.2)

The free additive convolution μ�ν of the probability measures μ, ν on Borel
sets of the real line is a uniquely defined probability measure μ� ν such that

Rμ�ν(z) = Rμ(z) +Rν(z). (3.3)
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A probability measure ν ∈ M is �-infinitely divisible, if for each n ∈ N, there
exists νn ∈ M such that

ν = νn � .....� νn︸ ︷︷ ︸
n times

.

Our interest in theR-transform stems from its linear property to free additive
convolution. Let ν�α denote the α-fold free additive convolution of ν with itself.
In contrast to classical convolution, this operation is well defined for all real
α ≥ 1, (see [29]) and we have

Rν�α(z) = αRν(z). (3.4)

Probability measure ν is �-infinitely divisible if its free additive convolution
power ν�α is well-defined for all real α > 0.

3.1. Free additive convolution and variance function

In this paragraph, we present further similarities of CSK families with expo-
nential families and reproductive exponential models. Next, we give the formula
of pseudo-variance function (and variance function in case of existence) by the
effect of free additive convolution power. It is the same as the formula for vari-
ance function of a NEF under the effect of classical additive convolution power.
More precisely:

Proposition 3.1. [10, Proposition 3.10] Let Vν be the pseudo-variance function
of the one sided CSK family generated by a probability measure ν with support
bounded from above and with the mean −∞ ≤ m0 < ∞. Then for α > 0 such
that ν�α is defined, the support of ν�α is bounded from above and for m > αm0

close enough to αm0,

Vν�α(m) = αVν(m/α). (3.5)

Furthermore, if m0 < +∞, then the variance functions of the CSK families
generated by ν and ν�α exists and

Vν�α(m) = αVν(m/α). (3.6)

We remark that the restriction of (3.5) to m close enough to αm0 cannot be
easily avoided, as we do not have a general formula for the upper end of the
domain of means for ν�α. The study of the action of free additive convolution
power on the domain of means is given in what follows, (see [7] for more details).

A property which in [3, (3.16)] is indeed called the reproductive property of
an exponential family states that if μ ∈ F with variance function VF , then for
all n ∈ N the law of the sample mean, D1/n(μ

∗n) is in the NEF with variance
function VF /n. The analogue of this result for the CSK families is given in [6],
[10]. More precisely we have,



416 R. Fakhfakh

Proposition 3.2. Suppose Vν is the pseudo-variance function of the CSK fam-
ily K+(ν) generated by a non degenerate probability measure ν with support
bounded from above and mean m0(ν), then for α ≥ 1 measure

να := D1/α(ν
�α) (3.7)

has also support bounded from above and there is ε > 0 such that the pseudo-
variance function of the one sided CSK family generated by να is

Vνα(m) = Vν(m)/α,

for all m ∈ (m0,m0 + ε).

If ν is �-infinitely divisible, then the above holds for every α > 0. Conversely,
if for every α > 0, there is δ = δ(α) > 0 such that Vν(m)/α is a pseudo-variance
function of some CSK family on (m0,m0 + δ), then ν is �-infinitely divisible.

Recall that if ν is a compactly supported measure, theR-transform is analytic
at z = 0

Rν(z) =

∞∑
n=1

cn(ν)z
n−1. (3.8)

The coefficients cn = cn(ν) are called free cumulants of measure ν. The following
result give the link between free cumulants and variance function of a CSK
family, (see [6] for more details).

Theorem 3.3. Suppose V is analytic in a neighborhood of m0, V (m0) > 0, and
ν is a probability measure with finite all moments, such that

∫
xν(dx) = m0.

Then the following conditions are equivalent.

(i) ν is non-degenerate, compactly supported, and there exists an interval
(A,B) � m0 such that (2.8) defines a family of probability measures pa-
rameterized by the mean with the variance function V .

(ii) The free cumulants (3.8) of ν are c1 = m0, and for n ≥ 1

cn+1 =
1

n!

dn−1

dxn−1
(V (x))n

∣∣∣∣
x=m0

. (3.9)

We now use (3.9) to relate certain free cumulants to Catalan numbers, see
[6, Corollary 3.4].

Corollary 3.4. If ν is the standardized free gamma Meixner law, i.e. it gen-
erates the free exponential family with m0 = 0 and variance function V (m) =
(1 + am)2, then its free cumulants are

ck+1(ν) =
1

k + 1

(
2k
k

)
ak−1, k ≥ 1.
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3.2. Marchenko-Pastur approximation

Let

ωa,σ(dx) =

√
4σ2 − (x− a)2

2πσ2
1|x−a|<2σ(dx).

denote the semicircle law of mean a and variance σ2. Up to affine transforma-
tions, this is the free Meixner law which generates the CSK family with the
variance function Vωa,σ (m) = σ2.

Following the analogy with NEFs, the CSK family K(ωa,σ) can be thought as
a free analog of the NEF generated by the normal distribution. Somewhat sur-
prisingly, this family does not contain all semicircle laws, but instead it contains
affine transformations of the (absolutely continuous) Marchenko-Pastur laws.

Example 3.5 (Semi-circle CSK family). For λ > 0, let

πm,λ(dx) =

√
λ
√
4− λx2

2π(1 + λm(m− x))
1x2<4/λ(dx).

Function V (m) = 1/λ is the variance function of the CSK family

K(ω0,1/
√
λ) =

{
πm,λ(dx) : |m| < 1/

√
λ
}

(3.10)

To verify that the expression integrates to 1 for m = 0, we use the explicit form
of the density [24, (3.3.2)] to note that πm,λ = L(m + 1/(λm) − mX) is the
law of the affine transformation of a free Poisson (Marchenko-Pastur) random
variable X with parameter 1/(λm2). From the properties of Marchenko-Pastur
law we see that

∫
πm,λ(dx) = 1 if and only if f m2 ≤ 1/λ.

We have the following analogue of [3, Theorem 3.4].

Theorem 3.6. [6, Theorem 4.1](Marchenko-Pastur approximation) Consider
K+(ν) the CSK family generated by a probability measure ν with mean m0.
Suppose the variance function V of K+(ν) is analytic and strictly positive in a
neighborhood of m0. Then there is δ > 0 such that if L(Yλ) is in the CSK family
with variance function V/λ has mean E(Yλ) = m0 +m/

√
λ with |m| < δ, then

√
λ(Yλ −m0)

λ→+∞−−−−−→ πm,1/V (m0) in distribution.

By Example 3.5, if 0 < |m| ≤ σ, then up to affine transformation πm,1/σ2 is a
Marchenko-Pastur law. Thus in this case Theorem 3.6 gives a Marchenko-Pastur
approximation to L(Yλ).

Of course, every compactly supported mean-zero measure ν is an element of
the CSK family that it generates. Since π0,1/σ2 = ω0,σ is the semicircle law,
combining Proposition 3.2 with Theorem 3.6 we get the following Free Central
Limit Theorem; see [11], [35].

Corollary 3.7. If a probability measure ν is compactly supported and centered,
then with σ2 =

∫
x2ν(dx), we have

D1/
√
n(ν

�n)
n→+∞−−−−−→ ω0,σ in distribution.
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3.3. Extending the domain for parametrization by the mean

We investigate when the domain of means can be extended beyond the natural
domain. This is a property in CSK families that have no counterpart in NEFs.
Given a probability measure ν with support bounded from above, equation
(2.10) tells us how to determine the one-sided domain of means (m0,m+) and
formula (2.13) tell us how to compute the pseudo-variance function Vν(m) for
m ∈ (m0,m+). But the pseudo-variance function is often well defined for other
values of m, too. So it is natural to ask whether the corresponding “family of
measures” can also be enlarged preserving the pseudo-variance function. The
following examples illustrates the idea.

Example 3.8. Consider the (two-sided) CSK family generated by the semicircle
law

ν =
1

2π

√
4− x21|x|<2dx

with the variance function Vν(m) = Vν(m) = 1, the domain of means (−1, 1)
and

K(ν) =

{ √
4− x2

2π(1 +m(m− x))
1|x|<2dx : m ∈ (−1, 1)

}
.

This is a family of atomless Marchenko-Pastur laws, which can be naturally
enlarged to include all Marchenko-Pastur laws:

K(ν) =

{
πm(dx) =

√
4− x2

2π(1 +m(m− x))
1|x|<2dx

+ (1− 1

m2
)+δm+ 1

m
; m ∈ (−∞,∞)

}
.

Noting that∫
πm(dx) = 1,

∫
xπm(dx) = m,

∫
(x−m)2πm(dx) = 1,

we see that Vν(m) = 1 is the variance function of this enlarged family.

Of course, it may also happen that the extension beyond the natural domain
of means is not possible. Here is a simple example when this happens.

Example 3.9. Let ν = 1
2δ−1 + 1

2δ1 be the symmetric Bernoulli distribution.
Then Mν(θ) = 1

1−θ2 and kν(θ) = θ. The (two-sided) range of parameter is
Θ = (−1, 1). So the domain of means here is (−1, 1), and with m0(ν) = 0 the
pseudo-variance function is equal to the variance function,

Vν(m) = Vν(m) = 1−m2.

In this case, the variance function is negative outside the domain of means, so
we cannot extend the family {Q(m,ν) : m ∈ (−1, 1)} beyond the original domain
of means.
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Our next example shows that the extension sometimes may proceed in two
separate steps.

Example 3.10. Consider the inverse semicircle law

ν(dx) =

√
−1− 4x

2πx2
1(−∞,− 1

4 )
(x)dx.

Since m2 + m ≥ −1/4, it is clear that measure Q(m,ν) is non-negative and
well defined for all m. Since the integral

∫
Q(m,ν)(dx) is an analytic function of

m < −1/2, it must be 1, so Q(m,ν) is a probability measure for all m < −1/2.
This is the “first part” of the extension, from (−∞,−1) to a larger interval
(−∞,−1/2).

Inspecting the original definition of P(θ,ν) we see that the kernel 1/(1−θx) is
positive on the support of ν for θ from Θ = (0,∞), which was the set used in the
definition, but it is also well defined for θ < −1/4. So this extension “includes”
this second set, with m = −1 corresponding to infinite values of θ.

At m = −1/2 the integrand has singularity at x = −1/4 but the integral is
still 1, see the calculation below. For m > −1/2, the mass becomes less then one,
as

∫
Qm(dx) = m2/(1 +m)2. So for m > −1/2 we can define a new probability

measure

Q(m,ν)(dx) = Q(m,ν)(dx) +

(
1− m2

(1 +m)2

)
δm+m2(dx)

= Q(m,ν)(dx) +
(1 + 2m)

(1 +m)2
δm+m2(dx) (3.11)

with the extra mass in the atomic part, which located at m + m2 so that the
mean is preserved.

We now prove the above two claims in Example 3.10.

Proof. By the change of variable t =
√
−1− 4x in∫

Q(m,ν)(dx) =

∫ −1/4

−∞

m2
√
−1− 4x

2πx2(m2 +m− x)
dx,

we obtain ∫
Q(m,ν)(dx) =

16m2

π

∫ +∞

0

t2

(t2 + 1)2((2m+ 1)2 + t2)
dt.

The integrand can be decomposed as follows

t2

(t2 + 1)2((2m+ 1)2 + t2)
=

(2m+ 1)2

((2m+ 1)2 − 1)2(t2 + 1)

− 1

((2m+ 1)2 − 1)(t2 + 1)2
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− (2m+ 1)2

((2m+ 1)2 − 1)2(t2 + (2m+ 1)2)
.

For real numbers a, b, r = 0, we denote Jn =
∫ b

a
dx

(x2+r2)n . Then we have

Jn+1 =
1

2nr2

(
(2n− 1)Jn +

[
x

(x2 + r2)n

]b
a

)
.

Using this, we get:
For m = −1/2,∫

Q(−1/2,ν)(dx) =
4

π

∫ +∞

0

1

(t2 + 1)2
dt =

4

π

(
1

2

(
π

2
+
[

x
1+x2

]+∞

0

))
= 1.

For m = −1/2

∫
Q(m,ν)(dx) =

16m2

π

∫ +∞

0

t2

(t2 + 1)2((2m+ 1)2 + t2)
dt

=
16m2

π

[ ∫ (2m+ 1)2

((2m+ 1)2 − 1)2(t2 + 1)
dt

−
∫

1

((2m+ 1)2 − 1)(t2 + 1)2
dt

−
∫

(2m+ 1)2

((2m+ 1)2 − 1)2(t2 + (2m+ 1)2)
dt
]

=
16m2

π

[ (2m+ 1)2

((2m+ 1)2 − 1)2
[arctan(t)]+∞

0

− 1/2

(2m+ 1)2 − 1

(
π

2
+
[

t
(t2+1)2

]+∞

0

)

− (2m+ 1)

((2m+ 1)2 − 1)2

[
arctan( t

2m+1 )
]+∞

0

]
.

If m < −1/2∫
Q(m,ν)(dx) =

16m2

π
(

(2m+ 1)2

((2m+ 1)2 − 1)2
π

2
− 1

((2m+ 1)2 − 1)

π

4

− (2m+ 1)

((2m+ 1)− 1)2
(−π

2
)) = 1.

If m > −1/2∫
Q(m,ν)(dx) =

16m2

π

( (2m+ 1)2

((2m+ 1)2 − 1)2
π

2
− 1

((2m+ 1)2 − 1)

π

4

− (2m+ 1)

((2m+ 1)− 1)2
π

2

)
=

m2

(1 +m)2
.
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We now verify that the atomic part works as needed. By the change of variable
t =

√
−1− 4x from (3.11) we get

∫
xQ(m,ν)(dx) =

∫ −1/4

−∞

m2
√
−1− 4x

2πx(m2 +m− x)
dx

= −4m2

π

∫ +∞

0

t2

(t2 + 1)((2m+ 1)2 + t2)
dt

= −4m2

π

(
−
∫ +∞

0

1

4m(1 +m)(t2 + 1)
dt

+

∫ +∞

0

(2m+ 1)2

4(m2 +m)((2m+ 1)2 + t2)
dt

)

= −4m2

π

([
−1

4m(1 +m)
arctan(t)

]+∞

0

+

[
(2m+ 1)

4m(1 +m)
arctan

(
t

2m+ 1

)]+∞

0

)

= −4m2

π

(
−1

4m(1 +m)

π

2
+

(2m+ 1)

4m(1 +m)

π

2

)
= − m2

1 +m
.

So ∫
xQ(m,ν)(dx) = − m2

1 +m
+

1− 2m

(1 +m)2
m(1 +m) = m

as expected.

We now give a general theory that shows how the two-step extension works.

3.3.1. The first extension

Suppose that the pseudo-variance function Vν(.) extends as a real analytic func-
tion to (m0,+∞). Denote by A = A(ν) = sup supp(ν), recall notation (2.9) and
define

m+(ν) = inf

{
m > m0 : m+

V(m)

m
= A(ν)

}
. (3.12)

We know that m+(ν) ≥ m+ is well defined. We will verify that one can use
Q(m,ν)(dx) = fν(x,m)ν(dx) given by (2.17) to extend the domain of means
to (m0,m+(ν)), preserving the pseudo-variance function. (The definition (2.13)
of pseudo-variance is not directly applicable beyond m > m+, so we use an
equivalent definition).

Theorem 3.11. [7, Theorem 3.4] Formula (2.17) defines the family of proba-
bility measures {

Q(m,ν)(dx) = fν(x,m)ν(dx) : m ∈ (m0,m+)
}
,
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parameterized by the mean m =
∫
xQ(m,ν)(dx). The Cauchy-Stieltjes transform

of the generating measure ν satisfies (2.16) with z given by (2.15) for all m ∈
(m0,m+). In particular, if ν has finite first moment m0 then for m ∈ (m0,m+)
the variance of Q(m,ν)(dx) is given by (2.13).

The rest of this paragraph contains proof of Theorem 3.11. We consider the
set Θ for which the transform (2.6) exists. In fact, if A(ν) ≥ 0, then Θ = (0, θ+)
with θ+ = 1

B , and if A(ν) < 0, then

Θ =
(
−∞, 1

A(ν)

)
∪ (0,∞) . (3.13)

One can always write

Θ =

(
sign(A(ν))

B
,

1

A(ν)

)
∪
(
0 ,

1

B

)
with

sign(A(ν)) =

{
1, if A(ν) ≥ 0 ;
−1, if A(ν) < 0 .

One can then define the first extension of K+(ν) as

K+(ν) =

{
P(θ,ν)(dx) =

1

Mν(θ)(1− θx)
ν(dx) ;

θ ∈
(
sign(A(ν))

B
,

1

A(ν)

)
∪
(
0,

1

B

)}
.

Note that K+(ν) = K+(ν) when A(ν) ≥ 0, because in this case(
sign(A(ν))

B
,

1

A(ν)

)
= ∅.

Therefore, the first extension is non-trivial only when A(ν) < 0.

Proposition 3.12. [7, Proposition 3.5] Suppose A(ν) < 0. For θ ∈ Θ =(
−∞, 1

A(ν)

)
∪ (0,∞) the mean

k(θ) =

∫
xP(θ,ν)(dx) =

Mν(θ)− 1

θMν(θ)
, (3.14)

is strictly increasing on (0,∞) and on
(
−∞, 1

A(ν)

)
.

Proof. It is known ([10]) that the function kν(.) is strictly increasing on (0,∞),

we will use the same reasoning to show that it is also increasing on
(
−∞, 1

A(ν)

)
.

We first observe that for θ ∈
(
−∞, 1

A(ν)

)
, the expression (1 − θx) is negative

for all x in the support of ν. In fact, x < A(ν) implies that θx > θA(ν) > 1,
that is 1− θx < 1− θA(ν) < 0. Hence∫ |x|

(1− θx)2
ν(dx) =

1

|θ|

∫ |θx− 1 + 1|
(1− θx)2

ν(dx)
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≤ −1

θ

∫ |θx− 1|
(1− θx)2

ν(dx) +−1

θ

∫
1

(1− θx)2
ν(dx)

≤ Mν(θ)

θ
+ (−1

θ
)

Mν(θ)

1− θA(ν)
< ∞.

Now fix −∞ < α < β < 1/A(ν). For x ∈ supp(ν) ⊂ (−∞, 0), the function

θ �−→ ∂

∂θ

(
1

1− θx

)
=

x

(1− θx)2

is decreasing on
(
−∞, 1

A(ν)

)
, so for all θ ∈ [α, β],

x

(1− βx)2
≤ x

(1− θx)2
≤ x

(1− αx)2
.

We define for x ∈ supp(ν)

g(x) =
|x|

(1− αx)2
+

|x|
(1− βx)2

.

Then g ≥ 0, and g is ν-integrable, because α and β are in
(
−∞, 1

A(ν)

)
, and

∂
∂θ

(
1

1−θx

)
= x

(1−θx)2 ≤ g(x), for all θ ∈ [α, β]. Thus, one can differentiate

Mν(θ) under the integral sign and formula (2.7) gives

k′ν(θ) =
Mν(θ) + θM ′

ν(θ)−Mν(θ)
2

(θMν(θ))2
.

The fact that

Mν(θ) + θM ′
ν(θ)−Mν(θ)

2 =

∫
1

(1− θx)2
ν(dx)−

(∫
1

1− θx
ν(dx)

)2

≥ 0

implies that the function θ �−→ kν(θ) is increasing on
(
−∞, 1

A(ν)

)
.

We have that

lim
θ→−∞

kν(θ) = lim
θ→−∞

Mν(θ)− 1

θMν(θ)
= lim

θ→−∞

1
θGν(

1
θ )− 1

Gν(
1
θ )

= 0− 1

Gν(0)
= B − 1

Gν(B)
= m+.

For the proof of Theorem 3.11 instead of using (3.12), we define

m+(ν) = lim
θ→ 1

A(ν)

kν(θ). (3.15)

(We will later verify that this coincides with (3.12) when A(ν) < 0.) Then, the

function kν(.) realizes a bijection from
(
−∞, 1

A(ν)

)
onto its image (m+,m+(ν)).
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We then define the function ψν on (m0,m+) as the inverse of the restriction of
kν(.) to (0,∞), and on (m+,m+(ν)) as the inverse of the restriction of kν(.) to(
−∞, 1

A(ν)

)
. This leads to the parametrization by the mean m ∈ (m0,m+) ∪

(m+,m+(ν)) of the familyK+(ν). The definition of the pseudo-variance function
can also be extended using the function ψν . Following (2.13), we define Vν(.)
for m ∈ (m0,m+) ∪ (m+,m+(ν)) as

Vν(m) = m

(
1

ψν(m)
−m

)
.

We have that

lim
m−→(m+)−

1

ψν(m)
= 0 = lim

m−→(m+)+

1

ψν(m)
,

so that we define Vν(.) at m+ by Vν(m+) = −m2
+. Note that Q(m+,ν)(dx) =

m+

x ν(dx) is well defined for A(ν) < 0.
The explicit parametrization by the means of the enlarged family can then

be given by

K+(ν) =
{
Q(m,ν)(dx) = fν(x,m)ν(dx) ; m ∈ (m0,m+(ν))

}
.

The function m �−→ ψν(m) = 1
Vν(m)/m+m is increasing on (m+,m+(ν)), so

the function m �−→ Vν(m)/m+m is decreasing on (m+,m+(ν)) and

lim
m−→m+(ν)

Vν(m)/m+m = A(ν).

This implies that (3.12) holds when A(ν) < 0.

If A(ν) ≥ 0, then (3.12) gives m+(ν) = m+ because m+ + Vν(m+)
m+

= 1
θ+

=

B = A(ν), and then K+(ν) = K+(ν). This ends the proof of Theorem 3.11.

3.3.2. Domain of means under affine transformation

Let ϕ an affine transformation. It is well known that the lower end of the one
sided domain of means of the family K+(ν) behave nicely under the action of
affine transformation ϕ, that is m0(ϕ(ν)) = ϕ(m0(ν)). But we do not have a
general formula of the upper end for the natural domain of means for K+(ν).
The following examples show that there is no simple formula for m+(ν) under
affine transformation.

Example 3.13. Consider the inverse semicircle distribution

ν(dx) =

√
−1− 4x

2πx2
1(−∞,− 1

4 )
(x)dx. (3.16)

It generates the CSK family with pseudo-variance function Vν(m) = m3, and
the domain of means is D+(ν) = (m0(ν),m+(ν)) = (−∞,−1). The image ϕ(ν)
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of ν by the map x �−→ ϕ(x) = x+ 1/2 is

ϕ(ν)(dx) =

√
1− 4x

2π(x− 1/2)2
1(−∞, 14 )

(x)dx. (3.17)

and it generates the CSK family with pseudo-variance function Vϕ(ν)(m) =
m(m− 1/2)2. We have that

ψϕ(ν)(m) =
1

m2 + 1/4
and kϕ(ν)(θ) = −

√
θ(4− θ)

2θ

for all θ in Θ(ϕ(ν)) = (0, 4). The domain of means is (m0(ϕ(ν)),m+(ϕ(ν))) =
(−∞, 0). In this case we have m+(ϕ(ν)) = 0 = −1/2 = ϕ(m+(ν)).

Example 3.14. Consider the (two-sided) CSK family generated by the semi-
circle law

ν(dx) =
1

2π

√
4− x21|x|<2(dx) (3.18)

with the variance function Vν(m) = Vν(m) = 1 and domain of means (−1, 1),
that is

K(ν) =

{ √
4− x2

2π(1 +m(m− x))
1|x|<2dx : m ∈ (−1, 1)

}
.

The image ϕ(ν) of ν by the map x �−→ ϕ(x) = x− 3 is

ϕ(ν)(dx) =

√
−(x+ 1)(x+ 5)

2π
1(−5,−1)(x)dx. (3.19)

With B(ϕ(ν)) = max{0, sup supp(ϕ(ν))} = 0, the (two-sided) range of param-
eter is (θ−, θ+) = (−1/5,+∞). The probability measure ϕ(ν) generates the
(two-sided) CSK family

K(ϕ(ν)) = {P(θ,ϕ(ν))(dx); θ ∈ (−1/5,+∞)}
= {Q(m,ν)(dx),m ∈ (m−(ϕ(ν)),m+(ϕ(ν)))}

with pseudo-variance function Vϕ(ν)(m) = m
m+3 . We have that

ψϕ(ν)(m) =
m+ 3

m2 + 3m+ 1
and kϕ(ν)(θ) =

(1− 3θ)−
√
(θ + 1)(5θ + 1)

2θ
.

We have

m+(ϕ(ν)) = lim
θ−→+∞

kϕ(ν)(θ) = lim
θ−→+∞

(1− 3θ)−
√
(θ + 1)(5θ + 1)

2θ

= −3 +
√
5

2
= −2 = ϕ(m+(ν)).
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The purpose is to give a more natural definition for the domain of means of a
CSK family that behave nicely under affine transformation. In several references,
we consider the range of the parameter θ such that 1/θ ∈ (sup supp ν,∞) ∩
[0,∞). In fact authors in [10] have pushed forward the theory of CSK families
by extending the results in [6] to allow measures ν with unbounded support.
In such situation, the family is parameterized by a ‘one-sided’ range of θ of
a fixed sign, so that generating measures have support bounded from above
and the CSK families are parameterized by θ > 0, which gives the domain of
means (m0,m+). We can include additional range of θ which is possible only
when the support of ν is in (−∞, 0). In this case we can include additional
range of 1/θ ∈ (sup supp ν, 0), so the extended range of θ would have a simpler
description

Θ(ν) = {θ; 1/θ ∈ (sup supp ν,∞)},
that is, Θ(ν) is the set for which the transform Mν exists and, with A = A(ν) =
sup supp(ν), it can be written as

Θ(ν) =

{
(−∞, 1/A) ∪ (0,∞), if A < 0;
(0, 1/A), if A ≥ 0.

This extension for the range of the parameter θ was considered in the first
extension.

It is worth mentioning here that if ν is the inverse semicircle distribution,
from example 3.13, given by (3.16). The image ϕ(ν) of ν by the map x �−→
ϕ(x) = x + 1/2 is given by (3.17). We have that Θ(ν) = (−∞,−4) ∪ (0,+∞).
We have that

K+(ν) = {P(θ,ν)(dx), θ ∈ Θ(ν)} = {Q(m,ν)(dx),m ∈ (m0,m+(ν))},

with m+(ν) = −1/2. We have that

m+(ϕ(ν)) = m+(ϕ(ν)) = 0 = ϕ(m+(ν)).

Also, if ν is the semicircle distribution, from example 3.14, given by (3.18).
The image ϕ(ν) of ν by the map x �−→ ϕ(x) = x−3 is given by (3.19). We have
that m+(ν) = m+(ν) = 1 and Θ(ϕ(ν)) = (−∞,−1) ∪ (−1/5,+∞). The CSK
family generated by ϕ(ν) is

K+(ϕ(ν)) = {P(θ,ϕ(ν))(dx); θ ∈ (−∞,−1) ∪ (−1/5,+∞)}
= {Q(m,ν)(dx),m ∈ (m−(ϕ(ν)),m+(ϕ(ν)))},

with

m+(ϕ(ν)) = lim
θ−→−1

kϕ(ν)(θ) = lim
θ−→−1

(1− 3θ)−
√
(θ + 1)(5θ + 1)

2θ

= −2 = ϕ(m+(ν)).

Given a probability measure ν with support bounded from above and an
affine transformation ϕ, the following result gives the link between the mean
function of the CSK family generated by ϕ(ν) and the the mean function of the
CSK family generated by ν.
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Proposition 3.15. [18, Proposition 3.3] Let ν be a non degenerate probability
measure with support bounded from above and let ϕ(ν) be the image of ν by the
map ϕ : x �−→ αx + β. If Θ(ν) and Θ(ϕ(ν)) are respectively the sets for which
the transforms Mν and Mϕ(ν) exists and h : x �−→ 1/x, then

h(Θ(ϕ(ν))) = ϕ(h(Θ(ν))), (3.20)

and for θ ∈ Θ(ϕ(ν)),

kϕ(ν)(θ) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ(−1/Gν(0)), if θ = 1/β ;

ϕ

(
kν

(
θα

1− θβ

))
, if θ = 1/β .

(3.21)

The following result prove that the domain of means of the extended CSK
family behave nicely under affine transformation in a manner analogous to the
domain of means for NEFs. We also consider how m+(ν) gets transformed under
affine transformation, (see [18] for more details).

Theorem 3.16. [18, Theorem 3.4] Consider a probability measure ν with sup-
port bounded from above and let ϕ(ν) be the image of ν by the map ϕ : x �−→
αx+ β, where α ∈ R\{0} and β ∈ R.

(A) Suppose that α > 0. The domain of means of K+(ϕ(ν)) is (m0(ϕ(ν)),
m+(ϕ(ν))) with m+(ϕ(ν)) = ϕ(m+(ν)). Furthermore:

(a) If β = 0, then m+(ϕ(ν)) = ϕ(m+(ν)).
(b) If β = 0, we have that

(i) If A ≥ 0 and αA+ β ≥ 0, then m+(ϕ(ν)) = ϕ(m+(ν)).
(ii) If A ≥ 0 and αA+ β < 0, then m+(ϕ(ν)) = αkν(−α/β) + β.
(iii) If A < 0 and αA+ β ≥ 0, then m+(ϕ(ν)) = ϕ(m+(ν)).
(iv) If A < 0 and αA+ β < 0, then m+(ϕ(ν)) = αkν(−α/β) + β.

(B) Suppose that α < 0. The probability measure ϕ(ν) has support bounded from
below and we are dealing with left sided CSK family. The domain of means of
K−(ϕ(ν)) is (m−(ϕ(ν)),m0(ϕ(ν))) with m−(ϕ(ν)) = ϕ(m+(ν)). Furthermore,

(a) If β = 0, then m−(ϕ(ν)) = ϕ(m+(ν)).
(b) If β = 0, we have that

(i) If A ≥ 0 and αA+ β ≥ 0, then m−(ϕ(ν)) = αkν(−α/β) + β.
(ii) If A ≥ 0 and αA+ β < 0, then m−(ϕ(ν)) = ϕ(m+(ν)).
(iii) If A < 0 and αA+ β ≥ 0, then m−(ϕ(ν)) = αkν(−α/β) + β.
(iv) If A < 0 and αA+ β < 0, then m−(ϕ(ν)) = ϕ(m+(ν)).

3.3.3. The second extension

As indicated by Example 3.14 and Example 3.10, family K+(ν) may have a
further extension. This extension is possible if the density (2.17) is non-negative,
that is, if m+ Vν(m)/m ≥ A and Vν(m)/m ≥ 0 for all m > m0. Define

M+ = inf{m > m0 : Vν(m)/m < 0}. (3.22)
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It is clear that M+ ≥ m+. In fact, M+ ≥ m+. This can be seen from (3.12):
since the mean must be smaller than A(ν) we havem+ ≤ A(ν), so Vν(m)/m ≥ 0
for all m < m+. It is easy to see that M+ = ∞ > m+ in Example 3.14 and in
Example 3.10 while M+ = m+ = m+ in Example 3.9.

We now introduce the second extension of K+(ν) as the family of measures

K+(ν) = {Q(m,ν)(dx) : m ∈ (m0,m+) ∪ (m+,M+(ν))},

with Q(m,ν) given by

Q(m,ν)(dx) = fν(x,m)ν(dx) + p(m)δm+Vν(m)/m, (3.23)

where the weight of the atom is

p(m) =

{
0 if m < m+ := B − 1

Gν(B) ,

1− Vν(m)
m Gν

(
m+ Vν(m)

m

)
if m > m+ and Vν(m)/m ≥ 0.

It is clear that the expression on the right hand side of (3.23) is well defined at
all m such that m+Vν(m)/m > A. We need to show that the expression is well
defined also at the points where m+Vν(m)/m = A; one such point is of course
m+. The argument here relies on the fact that Gν is analytic in the slit plane
C\(−∞, A). Furthermore,Gν(a) is decreasing to 0 and convex on (A,∞). In par-
ticular lima−→A+ Gν(a) exists, and is either ∞ or m+/Vν(m+). Furthermore, if
the limit is ∞, then V(m+)/m+ = 0, which implies that M+ = m+. So without
loss of generality we may assume that lima−→A+ Gν(a) = m+/Vν(m+) < ∞.
and that the integral defining Gν(A) converges.

Suppose m1 < M+ such that m1 + Vν(m1)/m1 = A. Then Vν(m1)/m1 =
A−m1 > 0 and, taking the limit,

p(m1) = 1− A−m1

A−m+
=

m1 −m+

A−m+
∈ [0, 1).

On the other hand,

Vν(m1)

Vν(m1) +m1(m1 − x)
=

A−m1

A− x
.

Therefore, for m ∈ [m+,M+) such that m+Vν(m)/m = A, the right hand side
of (3.23) is well defined and simplifies to

Q(m,ν)(dx) =
A−m

A− x
ν(dx) +

m−m+

A−m+
δA.

Then, the second extension of the family is given by

K+(ν) = {Q(m,ν)(dx) : m ∈ (m0,M+(ν))},

Since formula (2.16) holds for all m ∈ (m0,m+), it is clear that K+(ν) ⊂ K+(ν).
We now verify that the extension satisfies desired conditions.
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Theorem 3.17. [7, Theorem 3.6]Suppose Vν(·) is such that m+Vν(m)/m ≥ A
for all m > m0. Let m+ < m < M+. Then (3.23) defines a probability measure
Q(m,ν)(dx) with mean m, and if ν has finite first moment m0 then the variance

of Q(m,ν) is ∫
(x−m)2Q(m,ν)(dx) =

(m−m0)Vν(m)

m
. (3.24)

Here the use of Vν(m) is based on the assumption the pseudo-variance func-
tion Vν extends as a real analytic function to (m0,+∞).

Example 3.18. Consider the (absolutely continuous, centered) Marchenko-
Pastur law

ν(dx) =

√
4− (x− a)2

2π(1 + ax)
1(a−2,a+2)(x)dx

with a2 < 1. The variance function is Vν(m) = 1+am = Vν(m), and the domain
of means is D+(ν) = (0, 1), with Θ = (0, θ+) = (0, 1/(2 + a)) and A = 2 + a.
Here m+(ν) = m+ = 1 and the function m �→ m + Vν(m)/m is convex on
(0,∞) with minimum at m = m+. Since Vν(m)/m > 0 for all m > m0 = 0, we
have M+ = ∞.

3.3.4. Domain of means under free additive convolution power

One notes that the lower end of the one sided domain of means of the family
K+(ν) satisfies the relation, for α > 0

m0(ν
�α) = αm0(ν),

but, we do not have a general formula of the upper end of the natural domain
of the means for ν�α. The following examples show that there is no “one simple
formula” for m+ under free additive convolution power.

Example 3.19. Let ν be the symmetric Bernoulli distribution. Consider μ =
ν � ν, (Then μ is the arcsine law.)

Here, B(μ) = 2 and Vμ(m) = 2Vν(m/2) = 2 − m2/2. We compute Gμ the
Cauchy Stieltjes transform of μ from Vμ and (2.16). Solving the equation

z = z(m) = m+ Vμ(m)/m =
4 +m2

2m
,

we obtain m = z −
√
z2 − 4. This gives that

Gμ(z) =
1√

z2 − 4

so from (2.10) we get m+(μ) = limB→2(B − 1/Gμ(B)) = 2. So in this case

m+(ν
�2) = 2m+(ν).



430 R. Fakhfakh

Example 3.20. Consider the semicircle law

ν(dx) =
1

2π

√
4− x2 1|x|<2dx.

We have that Vν(m) = 1 and m+(ν) = 1. Then μ = ν � ν is the semicircle law
with density

μ(dx) =
1

4π

√
8− x2 1|x|<2

√
2dx.

The CSK family generated by μ has a pseudo-variance function Vμ(m) = 2.
Since Vμ(m) is quadratic and m0 = 0, formula (2.10) gives m+(μ) =

√
2. In

this case, we have

m+(ν
�2) = 2m+(ν).

It is well known that the domain of means for exponential families scales
nicely under classical additive convolution power, and it is satisfying to note that

the domain of means of the extended CSK family K+(ν) lead to the analogous
formula:

M+(ν
�α) = αM+(ν).

Indeed, since Vν�α(m) = αVν(m/α), the result follows from (3.22).

4. Boolean additive convolution

Let ν ∈ M. The boolean additive convolution is determined by the K-transform
Kν of ν which is given by

Kν(z) = z − 1

Gν(z)
, for z ∈ C

+. (4.1)

The function Kν is usually called self energy and it represent the analytic back-
bone of boolean additive convolution. For two probability measures μ and ν in
M, the boolean additive convolution μ � ν is determined by

Kμ�ν(z) = Kμ(z) +Kν(z), for z ∈ C
+, (4.2)

and μ � ν is again a probability measure.

According to [32], we call a probability measure ν ∈ M is infinitely divisible
in the boolean sense, if for each n ∈ R, there exists νn ∈ M such that

ν = νn � ..... � νn︸ ︷︷ ︸
n times

.

Note that all probability measure ν ∈ M are �-infinitely divisible, see [32,
Theorem 3.6].
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4.1. Boolean additive convolution and variance function

In this paragraph, we deal with boolean additive convolution from the perspec-
tive of CSK families. Next, we give the formula for pseudo-variance function (and
variance function Vν in case of existence) under boolean additive convolution
power.

Theorem 4.1. [16, Theorem 2.3] Suppose Vν is the pseudo-variance function
of the CSK family K+(ν) generated by a non degenerate probability measure ν
with support bounded from above and mean m0(ν). For α > 0, we have that:

(i) The support of ν�α is bounded from above.
(ii) For m close enough to αm0(ν),

Vν�α(m) = αVν(m/α) +m2(1/α− 1). (4.3)

Furthermore, if m0 < +∞, then the variance functions of the CSK families
generated by ν and ν�α exists and

Vν�α(m) = αVν(m/α) +m(m− αm0)(1/α− 1). (4.4)

Remark 4.2. Let ν = 1
2δ−1 +

1
2δ1 be the symmetric Bernoulli distribution, its

Cauchy transform and self energy are respectively

Gν(z) =
z

z2 − 1
and Kν(z) =

1

z
.

With B(ν) = max{0, sup supp(ν)} = 1, we have from (2.10) m+(ν) = 1.
Consider μ = ν�2, then we have Kμ(z) = Kν�2(z) = 2Kν(z) = 2/z and Gμ(z) =

z
z2−2 . So μ = 1

2δ−
√
2+

1
2δ

√
2. With B(μ) = max{0, sup supp(μ)} =

√
2, we have

that m+(μ) =
√
2. This implies that m+(ν

�2) = 2m+(ν). So there is no “simple
formula” for m+ under additive boolean convolution power. For this reason, in
theorem 4.1 we restrict ourself to m close enough to αm0(ν).

The following result gives formulas for pseudo-variance functions (and vari-
ance functions in case of existence) under both free additive convolution and
boolean additive convolution power.

Proposition 4.3. [16, Proposition 2.6] Suppose Vν is the pseudo-variance func-
tion of the CSK family K+(ν) generated by a non degenerate probability measure
ν with support bounded from above. For α > 0 such that probability measures(
ν�1/α

)�α
and

(
ν�1/α

)�α
are well defined, their support are bounded from above

and they generates CSK families with pseudo-variance functions

V(ν�1/α)
�α(m) = Vν(m) + (1/α− 1)m2, (4.5)

and

V
(ν�1/α)

�α(m) = Vν(m) + (1− 1/α)m2. (4.6)
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respectively, for m close enough to m0. Furthermore, if m0 < +∞, then the

variance functions of the CSK families generated respectively by ν,
(
ν�1/α

)�α

and
(
ν�1/α

)�α
exists and for m close enough to m0 we have

V(ν�1/α)
�α(m) = Vν(m) + (1/α− 1)m(m−m0). (4.7)

and

V
(ν�1/α)

�α(m) = Vν(m) + (1− 1/α)m(m−m0). (4.8)

Authors in [2] consider the transformation Bt : M �−→ M defined by, for
every t ≥ 0

Bt(μ) =
(
μ�(1+t)

)� 1
1+t

, μ ∈ M. (4.9)

They prove that for t = 1 the transformation B1 coincides with the canonical
bijection B : M �−→ MInf−div discovered by Bercovici and Pata in their study
of the relations between infinite divisibility in free and in Boolean probability.
Here MInf−div stands for the set of probability distributions in M which are
infinitely divisible with respect to the operation �. As a consequence, we have
that Bt(μ) is �-infinitely divisible for every μ ∈ M and every t ≥ 1. The
following result gives the pseudo-variance function (and variance function in
case of existence) of the CSK family generated by Bt(μ). In fact this easily
follows from (4.5) and (4.7) by choosing α = 1

1+t .

Proposition 4.4. [16, Proposition 2.7] Suppose Vν is the pseudo-variance func-
tion of the CSK family K+(ν) generated by a non degenerate probability measure
ν with support bounded from above. For t ≥ 0, the probability measure

Bt(ν) =
(
ν�(1+t)

)� 1
1+t

(4.10)

has support bounded from above and it generates the CSK family with pseudo-
variance function

VBt(ν)(m) = Vν(m) + tm2. (4.11)

Furthermore, if m0 < +∞, then the variance functions of the CSK families
generated by ν and Bt(ν) exists and

VBt(ν)(m) = Vν(m) + tm(m−m0). (4.12)

Denote by V the class of variance functions corresponding to probability
measures ν such that ν is compactly supported, centered:

∫
xν(dx) = 0, with

variance
∫
x2ν(dx) = 1, so that Vν(0) = 1. Denote V∞ the class of those V ∈ V

that the function m �→ V (cm) is in V for every real c. It was proved in [8,
Corollary 1.1], that the map V (m) �→ V (m) −m2 is a bijection of V∞ onto V
(also the map Vν(m) �−→ Vν(m) +m2 is the inverse bijection). We will see that
this bijection between variance functions correspond to the boolean Bercovici-
Pata bijection between probability measures.
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Proposition 4.5. [16, Proposition 2.8] Suppose Vν(.) is the variance function
of the CSK family generated by a non degenerate probability measure ν with

mean 0 and variance 1. For α > 0 such that probability measures
(
ν�1/α

)�α

and
(
ν�1/α

)�α
are well defined, we have

(i) The bijection Vν(m) �−→ Vν(m) + m2 from V onto V∞ correspond to
boolean Bercovici-Pata bijection between probability measures ν �−→ B1(ν),
in addition (

ν�1/α
)�α α→+∞−−−−−→ B1(ν), in distribution. (4.13)

(ii) The bijection Vν(m) �−→ Vν(m) − m2 from V∞ onto V correspond to
the inverse boolean Bercovici-Pata bijection between probability measures
ν �−→ B

−1
1 (ν), in addition(

ν�1/α
)�α α→+∞−−−−−→ B

−1
1 (ν), in distribution. (4.14)

If ν is a compactly supported probability measure on the real line, the K-
transform Kν of ν admit a Laurent expansion. From [32], one sees that

Kν(z) =

∞∑
n=1

rn(ν)
1

zn−1
. (4.15)

The coefficients rn = rn(ν) are called the boolean cumulants of the measure
ν. In particular r0 = 0, r1 =

∫
xν(dx) = m0. The following result gives the

connection between boolean cumulants and variance functions of CSK families.

Theorem 4.6. [16, Theorem 3.1] Suppose Vν is analytic in a neighborhood of
m0, Vν(m0) > 0, and ν is a probability measure with finite all moments, such
that

∫
xν(dx) = m0. Then the following conditions are equivalent.

(i) ν is non degenerate, compactly supported and there exists an interval
(A,B) � m0 such that {Q(m,ν)(dx) = fν(x,m)ν(dx) : m ∈ (A,B)},
with fν(x,m) given by (2.17), define a family of probability measures pa-
rameterized by the mean with variance function Vν(.).

(ii) The boolean cumulants of the measure ν are r0 = 0, r1 = m0 and for all
n ≥ 1

rn+1 =
1

n!

dn−1

dmn−1
(Vν(m) +m(m−m0))

n

∣∣∣∣
m=m0

. (4.16)

In the following we relate boolean cumulants of the Marchenko Pastur dis-
tribution to Catalan numbers. The centered Marchenko-Pastur distribution is
given by

ν(dx) =

√
4− (x− a)2

2π(1 + ax)
1(a−2,a+2)(x)dx+ p1δx1 .

The discrete part is absent except for a2 > 1, in this case p1 = 1 − 1/a2

and x1 = −1/a. It generates the CSK family with variance function Vν(m) =
1 + am = Vν(m).
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Corollary 4.7. [16, Corollary 3.2] If ν is the centered standardized Marchenko
Pastur distribution with parameter a = 2, i.e. it generates the CSK family with
m0 = 0 and variance function Vν(m) = 1 + 2m, then its boolean cumulants are
r0 = 0, r1 = m0 = 0 and for n ≥ 1,

rn+1(ν) =
1

1 + n

(
2n
n

)
. (4.17)

Next, we relate boolean cumulants of certain probability distribution to Fuss-
Catalan numbers. In combinatorial mathematics and statistics, the Fuss-Catalan
numbers are defined in [21] by the Swiss mathematician Fuss, Nicolaus. They
are numbers of the form

An(p, r) =
r

np+ r

(
np+ r

n

)
. (4.18)

The Fuss-Catalan represents the number of legal permutations or allowed ways
of arranging a number of articles, that is restricted in some way. This means
that they are related to the Binomial coefficient.

On the other hand, some examples of variance functions that are polynomial
in the mean of arbitrary degree are introduced in [8]. In particular a complete
resolution of compactly supported CSK with cubic variance function is given
(see [8, Theorem 1.2]). Next, we relate boolean cumulants of certain probability
distribution generating a cubic CSK family to Fuss-Catalan numbers of the form
(4.18) for p = 3 and r = 1.

Corollary 4.8. [16, Corollary 3.3] The function V (m) = 1 + 3m+ 2m2 +m3

is the variance function the CSK family generated by a compactly supported
probability measure ν, with mean 0, variance 1 and with boolean cumulants given
by: r0 = 0, r1 = m0 = 0 and for n ≥ 1,

rn+1(ν) =
1

3n+ 1

(
3n+ 1

n

)
. (4.19)

4.2. Some approximations in CSK family

In this paragraph, we give an approximation of elements of the CSK family gen-
erated by the boolean Gaussian distribution and an approximation of elements
of the CSK family generated by the boolean Poisson distribution, (see [20] for
more details).

4.2.1. Approximation of boolean Gaussian CSK family

According to [32], the centered boolean Gaussian distribution μ0,σ2 with vari-
ance σ2 (or symmetric Bernoulli distribution)

μ0,σ2 =
1

2
(δ−σ + δσ),
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has a self energy or a Cauchy transform

Kμ0,σ2 (z) =
σ2

z
or Gμ0,σ2 (z) =

1

z − σ2/z
,

respectively. We have, for all θ ∈ (−1/σ, 1/σ)

Mμ0,σ2 (θ) =
1

1− θ2σ2
and kμ0,σ2 (θ) = θσ2.

The inverse of the function kμ0,σ2 (.) is ψμ0,σ2 (m) = m/σ2 for all m ∈ (−σ, σ) =

kμ0,σ2 ((−1/σ, 1/σ)). With m0 = 0, the variance function of the CSK family
generated by μ0,σ2 is

Vμ0,σ2 (m) = Vμ0,σ2 (m) = σ2 −m2.

The two sided CSK family generated by μ0,σ2 is given by

K(μ0,σ2) =

{
Q(m,μ0,σ2 )(dx) = μm,σ2(dx)

=
1

2σ
[(σ −m)δ−σ + (σ +m)δσ] : m ∈ (−σ, σ)

}
.

The family K(μ0,σ2) consists of boolean Gaussian distributions with mean m ∈
(−σ, σ). The following result gives an approximation of elements of the CSK
family K(μ0,σ2).

Theorem 4.9. [20] Suppose the variance function Vν of a CSK family K(ν)
is analytic and strictly positive in a neighborhood of m0 = 0. Then there is
δ > 0 such that if, for α > 0, L(Yα) ∈ K(να), with να = D1/α(ν

�α), has mean
E(Yα) = m/

√
α with |m| < δ, then

√
αYα

α→+∞−−−−−→ μm,σ2 in distribution,

where σ2 = Vν(0).

From Theorem 4.9, we get the boolean central limit theorem (see [32, Theo-
rem 3.4].)

Corollary 4.10 (boolean central limit theorem). If ν is a probability measure
with mean m0 = 0 and variance σ2 = Vν(0), then

D1/
√
n(ν

�n)
n→+∞−−−−−→ μ0,σ2 in distribution.

4.2.2. Approximation of boolean Poisson CSK family

For N ∈ N, s > 0 and 0 < λ < N , consider

μN = (1− λ

N
)δ0 +

λ

N
δs.
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We have that for all θ ∈ (−∞, 1
s ),

MμN
(θ) = 1− λ

N
+

λ/N

1− θs
and kμN

(θ) =
λs

N −Nθs+ λθs
.

As the inverse of the function kμN
(.), we have that for allm ∈ (0, s) = kμN

((−∞,
1
s )),

ψμN
(m) =

λs−Nm

sm(λ−N)
.

Formula (2.13) implies that the pseudo-variance function of the two sided CSK
family K(μN ) is

VμN
(m) =

Nm2(m− s)

λs−Nm
.

With m0(μN ) = λs/N , we see from (2.14) that the variance function of the two
sided CSK family K(μN ) is

VμN
(m) = m(s−m).

The CSK family generated by μN is given by

K(μN ) =

{
Q(m,μN )(dx) =

s−m

s
δ0 +

m

s
δs : m ∈ (0, s)

}
.

The boolean Poisson distribution π
(s)
λ with jump size s and parameter λ (s, λ ≥

0) is given by

π
(s)
λ =

1

λ+ 1
[δ0 + λδs(λ+1)].

We have for all θ ∈ (−∞, 1
s(λ+1) )

M
π
(s)
λ

(θ) =
1− θs

1− θs(1 + λ)
and k

π
(s)
λ

(θ) =
λs

1− θs
.

As the inverse of the function k
π
(s)
λ

(.), we have that for all m ∈ (0, s(1 + λ)) =

k
π
(s)
λ

((−∞, 1
s(λ+1) )),

ψ
π
(s)
λ

(m) =
m− λs

sm
.

Formula (2.13) implies that the pseudo-variance function of the two sided CSK

family K(π
(s)
λ ) is

V
π
(s)
λ

(m) =
m2(s(λ+ 1)−m)

m− λs
.

With m0(π
(s)
λ ) = λs, we see from (2.14) that the variance function of the two

sided CSK family K(π
(s)
λ ) is

V
π
(s)
λ

(m) = m(s(λ+ 1)−m).
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The CSK family generated by π
(s)
λ is given by

K(π
(s)
λ ) =

{
Q

(m,π
(s)
λ )

(dx) =
s(λ+ 1)−m

(λ+ 1)s
δ0

+
m(s(λ+ 1)−m)

(λ+ 1)s2
δs(λ+1) : m ∈ (0, s(λ+ 1))

}
.

The following result gives an approximation of elements of the boolean Poisson
CSK family. In particular we get the boolean Poisson limit theorem, (see [32,
Theorem 3.5]).

Theorem 4.11. [20] For N ∈ N, s > 0 and 0 < λ < N , let

μN = (1− λ

N
)δ0 +

λ

N
δs,

and consider the CSK family generated by μ�N
N , with mean m0(μ

�N
N ) = λs and

variance function Vμ�N
N

(.). We have that

Q(m,μ�N
N )

N→+∞−−−−−→ Q
(m,π

(s)
λ )

, in distribution.

for all m in a neighborhood of m0 = λs. In particular, for m = m0 = λs, we
get the boolean Poisson limit theorem

μ�N
N

N→+∞−−−−−→ π
(s)
λ , in distribution.

5. Free multiplicative convolution

Let ν ∈ M+ such that δ = ν({0}) < 1, and consider the function

Ψν(z) =

∫ +∞

0

zx

1− zx
ν(dx), z ∈ C \ R+. (5.1)

The function Ψν is univalent in the left half-plane iC+ and its image Ψν(iC
+) is

contained in the circle with diameter (ν({0})− 1, 0). Moreover Ψν(iC
+) ∩ R =

(ν({0}) − 1, 0). Let χν : Ψν(iC
+) −→ iC+ be the inverse function of Ψν . Then

the S-transform of ν is the function

Sν(z) = χν(z)
1 + z

z
. (5.2)

The product of S-transforms is an S-transform, so that the multiplicative free
convolution ν1 � ν2 of the measures ν1 and ν2 in M+ is defined by

Sν1�ν2
(z) = Sν1(z)Sν2(z).

We say that a probability measure ν ∈ M+ is infinitely divisible with respect
to �, if for each n ∈ N, there exists νn ∈ M+ such that

ν = νn � .....� νn︸ ︷︷ ︸
n times

.

The multiplicative free convolution power ν�α is defined at least for all α ≥ 1
(see [1, Theorem 2.17]) by Sν�α(z) = Sν(z)

α.
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5.1. Free multiplicative convolution and variance function

In this paragraph, we deal with free multiplicative convolution from a point of
view related to CSK families. We first state the result concerning the effect of
the free multiplicative convolution power on a CSK family.

Theorem 5.1. [22] Let Vν be the pseudo-variance function of the CSK family
K−(ν) generated by a non degenerate probability distribution ν concentrated on
the positive real line with mean m0(ν). Consider α > 0 such that ν�α is defined.
Then

(i) m−(ν
�α) = (m−(ν))

α and m0(ν
�α) = (m0(ν))

α, and for m ∈ (m−(ν
�α),

m0(ν
�α)),

Vν�α(m) = m2−2/α
Vν

(
m1/α

)
. (5.3)

(ii) If m0 < +∞, then the variance functions of the CSK families generated
by ν and ν�α exist and

Vν�α(m) =
m−mα

0

m1/α −m0
m1−1/αVν

(
m1/α

)
. (5.4)

Several limit theorems involving the free additive convolution, the boolean ad-
ditive convolution and the free multiplicative convolution have been established
in [27] and in [30]. The authors in [22] used variance functions to re-derive these
results, this leads to some new variance functions with non usual form.

Theorem 5.2. [22] Let ν be a non degenerate probability distribution concen-
trated on the positive real line with mean m0(ν) > 0. Suppose that ν has a finite

second moment. Then denoting γ = V ar(ν)
(m0(ν))2

= Vν(m0)
m2

0
, we have

(i)

D1/(nmn
0 )

(
ν�n

)�n n→+∞−−−−−→ ηγ in distribution,

where ηγ is such that m0(ηγ) = 1, (m−(ηγ),m0(ηγ)) ⊂ (0, 1) and the
variance function of the CSK family generated by ηγ is given for m ∈
(m−(ηγ),m0(ηγ)),by

Vηγ (m) =
m(m− 1)

m2
0 ln(m)

Vν(m0) =
γm(m− 1)

ln(m)
. (5.5)

(ii)

D1/(nmn
0 )

(
ν�n

)�n n→+∞−−−−−→ σγ in distribution,

where σγ is such that m0(σγ) = 1, (m−(σγ),m0(σγ)) ⊂ (0, 1), and for all
m ∈ (m−(σγ),m0(σγ)), the variance function of the CSK family generated
by σγ is given by

Vσγ (m) =
m(m− 1)

m2
0 ln(m)

Vν(m0)+m(1−m) =
γm(m− 1)

ln(m)
+m(1−m) (5.6)
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Example 5.3. The Wigner’s semicircle (free Gaussian) distribution

μ(dx) =

√
4− x2

2π
1(−2,2)(x)dx,

generates the CSK family with variance function Vμ(m) = 1 = Vμ(m). The one
sided domain of means of the family K−(μ) is (m−(μ),m0(μ)) = (−1, 0). By
the translation f : x �−→ x+ 2, the probability measure

ν(dx) = f(μ)(dx) =

√
x(4− x)

2π
1(0, 4)(x)dx,

generates the CSK family with pseudo-variance function Vν(m) = m
m−2 . We

have that Vν(m) = 1 and m0(ν) = 2. One see that

D1/(n2n)

(
ν�n

)�n n→+∞−−−−−→ η1/4 in distribution,

where η1/4 is such thatm0(η1/4) = 1, (m−(η1/4),m0(η1/4)) ⊂ (0, 1) and the vari-
ance function of the CSK family generated by η1/4 is given for m ∈ (m−(η1/4),
m0(η1/4)), by

Vη1/4
(m) =

m(m− 1)

4 ln(m)
. (5.7)

We also have,

D1/(n2n)

(
ν�n

)�n n→+∞−−−−−→ σ1/4 in distribution,

where σ1/4 is such that m0(σ1/4) = 1, (m−(σ1/4),m0(σ1/4)) ⊂ (0, 1) and
the variance function of the CSK family generated by σ1/4 is given for m ∈
(m−(σ1/4),m0(σ1/4)), by

Vσ1/4
(m) =

m(m− 1)

4 ln(m)
+m(1−m). (5.8)

In what follows, we give the link between the two limit probability measures
ηγ and σγ by mean of the boolean Bercovici-Pata transformation.

Proposition 5.4. [22] Let ν be a non degenerate probability distribution con-
centrated on the positive real line with mean m0(ν) > 0. Suppose that ν has a

finite second moment. Then denoting γ = V ar(ν)
(m0(ν))2

= Vν(m0)
m2

0
, we have

ηγ = B1(σγ).

It is worth mentioning that the R and R- transforms of the limiting distri-
bution ηγ , is given in [30], in terms of the Lambert’s W -function which satisfies
the functional equation

z = W (z) exp(W (z)).

For more details of the Lambert W -function, see [13]. Let W0(z) be the principal
branch of the Lambert W -function.
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Theorem 5.5. [30, Theorem 4.1]

(1) The R and R–transforms of probability measure ηγ are given as follows:

Rηγ (z) =
−W0(−γz)

γz
,

Rηγ (z) =
−1

γ
W0(−γz).

(2) ηγ is both �-infinitely divisible and �-infinitely divisible.

(3) The free cumulant sequence of ηγ is
{

(γn)n−1

n!

}
n∈N

.

(4) The Lévy measure νηγ of ηγ is given by

νηγ (ds) =
1

γπ
sg−1(γ/s)1[0,γe](s)ds,

where g(u) = csc(u) exp(−u cot(u)).
(5) It holds the following formulas:

η�t
γ = Dt(η

�1/t
γ ),

η�t
γ = Dt(η

�1/t
γ ).

Let σ := σ1. We have the following result, see [30, Proposition 4.5].

Proposition 5.6. The probability density ωσ of the measure σ can be given in
the implicit form as:

ωσ

(
sin(v)

v
exp(v cot(v))

)
=

1

π

v2 exp(−v cot(v))

sin(v) ((1− v cot(v))2 + v2)
, 0 < v < π.

5.2. Explicit free multiplicative law of large numbers

The limit probability measure for the free multiplicative law of large num-
bers was proved by Tucci [33] for probability measures with bounded support.
Haagerup and Möller [34] extend Tucci’s result to probability measures with
unbounded support and at the same time they give a more elementary proof for
the case of probability measures with bounded support. In contrast to the classi-
cal multiplicative convolution case, the limit measure for the free multiplicative
law of large numbers is not a Dirac measure, unless the original measure is a
Dirac measure. More precisely we have (see [34, Theorem 2]):

Theorem 5.7. Let ν ∈ M+ and let φn : [0,∞) −→ [0,∞) be the map φn(x) =
x1/n. Set α = ν({0}). If we denote

μn = φn(ν � .....� ν︸ ︷︷ ︸
n times

)
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then μn converge weakly to a probability measure μ ∈ M+. If ν is a Dirac
measure on [0,∞) then μ = ν. Otherwise μ is the unique probability measure on
[0,∞) characterized by

μ

([
0,

1

Sν(t− 1)

])
= t (5.9)

for all t ∈ (α, 1) and μ({0}) = α. The support of the measure μ is the closure
of the interval

(a, b) =

((∫ ∞

0

x−1ν(dx)

)−1

,

∫ ∞

0

xν(dx)

)

where 0 ≤ a < b ≤ ∞.

Consider Vν the pseudo-variance function of the CSK family K−(ν) generated
by a non degenerate probability measure ν ∈ M+. We give explicitly the law
of large numbers μ for free multiplicative convolution in terms of the pseudo-
variance function Vν .

Theorem 5.8. [19, Theorem 3.1] Let ν a non degenerate probability measure on
[0,∞) and let φn : [0,∞) −→ [0,∞) be the map φn(x) = x1/n. Set α = ν({0}).
If we denote

μn = φn(ν � .....� ν︸ ︷︷ ︸
n times

)

then μn converge weakly to a probability measure μ on [0,∞) which is given by

μ(dm) = αδ0 +

(
m2

Vν(m)

)′
1(m−(ν),m0(ν))(m)dm. (5.10)

The following examples illustrate the usefulness of Theorem 5.8 and pro-
vide examples of the free multiplicative law of large numbers μ for probability
measures ν of importance in free probability. However probability measures ν
presented in the following examples generates CSK families having quadratic
and cubic pseudo-variance functions.

Example 5.9. Let γ = 1
2δ−1 + 1

2δ1 be the symmetric Bernoulli distribution.
It generates the CSK family with variance function Vγ(m) = 1 −m2 = Vγ(m)
and m0(γ) = 0. By the translation f : x �−→ x + 1, the probability measure
ν = f(γ) = 1

2δ0 +
1
2δ2 generates the CSK family with m0(ν) = 1 and pseudo-

variance function

Vν(m) =
m2(2−m)

m− 1
.

The one sided domain of means of the family K−(ν) is (m−(ν),m0(ν)) = (0, 1).
In this case

μ(dm) =
1

2
δ0 +

1

(2−m)2
1(0, 1)(m)dm.
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Example 5.10. The Wigner’s semicircle (free Gaussian) distribution

γ(dx) =

√
4− x2

2π
1(−2,2)(x)dx,

generates the CSK family with variance function Vγ(m) = 1 = Vγ(m). The one
sided domain of means of the family K−(γ) is (m−(γ),m0(γ)) = (−1, 0). By
the translation f : x �−→ x+ 2, the probability measure

ν(dx) = f(γ)(dx) =

√
x(4− x)

2π
1(0, 4)(x)dx,

generates the CSK family with m0(ν) = 2 and pseudo-variance function

Vν(m) =
m

m− 2
.

Solving z(m) = m + Vν(m)/m = 0 for m > 0, we obtain that m = 1. Using
relation (2.16), we get Gν(0) = −1. The domain of means of the family K−(ν)
is (m−(ν),m0(ν)) = (1, 2). In this case

μ(dm) = 2(m− 1)1(1, 2)(m)dm.

Example 5.11. For 0<a2<1, the (absolutely continuous) centered Marchenko-
Pastur distribution

γ(dx) =

√
4− (x− a)2

2π(1 + ax)
1(a−2,a+2)(x)dx

generates the CSK family with variance function V (m) = 1+ am = V(m). This
with the affine transformation f : x �−→ ax + 1 leads to the distribution given
by,

ν(dx) = f(γ)(dx) =

√
((a+ 1)2 − x) (x− (a− 1)2)

2πa2x
1((a−1)2,(a+1)2)(x)dx.

It generates the CSK family with m0(ν) = 1, and pseudo-variance function of
the form

Vν(m) =
a2m2

m− 1
.

Solving z(m) = m+Vν(m)/m = 0 for m > 0, we obtain that m = 1−a2. Using
relation (2.16), we get Gν(0) = − 1

1−a2 . The domain of means of the family

K−(ν) is (m−(ν),m0(ν)) = (1− a2, 1). In this case

μ(dm) =
1

a2
1(1−a2, 1)(m)dm.

Example 5.12. For a2 > 1, the Marchenko-Pastur distribution is

γ(dx) =

√
4− (x− a)2

2π(1 + ax)
1(a−2,a+2)(x)dx+ (1− 1/a2)δ−1/a(dx)
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It generates the CSK family with quadratic variance function Vγ(m) = 1 +
am = Vγ(m). By the affine transformation f : x �−→ ax + 1, the probability
distribution given by

ν(dx) = f(γ)(dx)

=

√
((a+ 1)2 − x) (x− (a− 1)2)

2πa2x
1((a−1)2,(a+1)2)(x)dx+ (1− 1/a2)δ0

generates the CSK family with m0(ν) = 1, and pseudo-variance function of the
form

Vν(m) =
a2m2

m− 1
.

In this case m−(ν) = 0 and

μ(dm) = (1− 1/a2)δ0 +
1

a2
1(0, 1)(m)dm.

Example 5.13. If ν is the standard free gamma distribution,

γ(dx) =

√
4(1 + a2)− (x− 2a)2

2π(a2x2 + 2ax+ 1)
1(2a−2

√
1+a2,2a+2

√
1+a2)(x),

for a = 0, it generate the CSK family withm0 = 0, and pseudo-variance function
equal to the variance function Vγ(m) = Vγ(m) = (1+am)2. Suppose that a > 0.
By the affine transformation f : x �−→ ax+ 1, the probability distribution

ν(dx) = f(γ)(dx)

=

√
((
√
a2+1+a)2−x)(x− (

√
a2+1−a)2)

2πa2x2
1((

√
a2+1−a)2,(

√
a2+1+a)2)(x)dx,

generates the CSK family with m0(ν) = 1, and pseudo-variance function of the
form

Vν(m) =
a2m3

m− 1
.

Solving z(m) = m+ Vν(m)/m = 0 for m > 0, we obtain that m = 1
1+a2 . Using

relation (2.16) wee get Gν(0) = −(1 + a2). The one sided domain of means of

the family K−(ν) is (m−(ν),m0(ν)) =
(

1
1+a2 , 1

)
. We have that

μ(dm) =
1

a2m2
1( 1

1+a2 , 1
) (m)dm.

Example 5.14. The inverse semicircle distribution

γ(dx) =

√
−1− 4x

2πx2
1(−∞,− 1

4 )
(x)dx,
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generates the CSK family with pseudo-variance function Vγ(m) = m3, and
with domain of means (m0(γ),m+(γ)) = (−∞,−1). By the transformation
f : x �−→ −x, the probability distribution

ν(dx) = f(γ)(dx) =

√
−1 + 4x

2πx2
1( 1

4 ,+∞)(x)dx,

generates the CSK family K−(ν) with pseudo-variance function Vν(m) = −m3

and the domain of means is (m−(ν),m0(ν)) = (1,+∞). In this case

μ(dm) =
1

m2
1(1, +∞)(m)dm.

Example 5.15. The free Ressel (or free Kendall) distribution

γ(dx) =
−1

πx
√
−1− x

1(−∞,−1)(x)dx

generates the CSK family with domain of means (m0(γ),m+(γ)) = (−∞,−2)
and pseudo-variance function Vγ(m) = m2(m + 1). With the transformation
f : x �−→ −x the probability distribution

ν(dx) = f(γ)(dx) =
1

πx
√
x− 1

1(1,+∞)(x)dx.

generates the CSK family K−(ν) with pseudo-variance function Vν(m) = m2(1−
m), and domain of means (m−(ν),m0(ν)) = (2,+∞). We have that

μ(dm) =
1

(1−m)2
1(2, +∞)(m)dm.

Example 5.16. The Free Abel (or Free Borel-Tanner) distribution

γ(dx) =
1

π(1− x)
√
−x

1(−∞,0)(x)dx

generates the CSK family with domain of means (m0(γ),m+(γ)) = (−∞, 0) and
pseudo-variance function Vγ(m) = m2(m− 1). By the transformation f : x �−→
−x the probability distribution

ν(dx) = f(γ)(dx) =
1

π(1 + x)
√
x
1(0,+∞)(x)dx,

generates the CSK familyK−(ν) with pseudo-variance function Vν(m)=−m2(1+
m) and domain of means (m−(ν),m0(ν)) = (0,+∞). We have that

μ(dm) =
1

(1 +m)2
1(0, +∞)(m)dm.
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Example 5.17. The free strict arcsine distribution

γ(dx) =

√
3− 4x

2π(1 + x2)
1(−∞,3/4)(x)dx

generates the CSK family with domain of means (m0(γ),m+(γ)) = (−∞,−1/2)
and pseudo-variance function Vγ(m) = m(1+m2). By the affine transformation
f : x �−→ −x+ 3/4 the probability distribution

ν(dx) = f(γ)(dx) =

√
x

π(1 + (3/4− x)2)
1(0,+∞)(x)dx,

generates the CSK family K−(ν) with pseudo-variance function Vν(m) = −m
(m2 − 3

2m+ 25
16 ). Solving z(m) = m+ Vν(m)/m = 0 for m > 0, we obtain that

m = 5/4. Using relation (2.16) we get Gν(0) = −4
5 . The domain of means of

K−(ν) is (m−(ν),m0(ν)) = (5/4,+∞). We have that

μ(dm) =
m2 − 25

16

(m2 − 3
2m+ 25

16 )
2
1(5/4, +∞)(m)dm.

6. Boolean multiplicative convolution

For ν ∈ M+, the η-transform of ν is defined by:

ην : C\R+ −→ C\R+; z �→ ην(z) =
Ψν(z)

1 + Ψν(z)
. (6.1)

where the function Ψν(.) is given by (5.1). It is clear that ν is determined
uniquely from the function ην . For ν ∈ M+, it is known that ην((−∞, 0)) ⊂
(−∞, 0), limx→0, x<0 ην(x) = ην(0

−) = 0 and ην(z) = ην(z), for z ∈ C\R+.
Also arg(z) ≤ arg(ην(z)) < π, for z ∈ C+.

The analytic function

Bν(z) =
z

ην(z)
(6.2)

is well defined in the region z ∈ C\R+. Now for μ, ν ∈ M+, their multiplicative
boolean convolution μ ∪× ν is defined as the unique probability measure in M+

that satisfies
Bμ∪×ν(z) = Bμ(z)Bν(z), for z ∈ C\R+ (6.3)

Note that for μ, ν ∈ M+ which satisfies

(i) arg(ημ(z)) + arg(ην(z))− arg(z) < π for z ∈ C+ ∪ (−∞, 0)
(ii) at least one of the first moments of one of the measures μ or ν exists

finitely,

then μ ∪× ν ∈ M+ is well defined.
We now state the result concerning the effect of the boolean multiplica-

tive convolution on a CSK family. According to [4], the boolean multiplicative
boolean convolution power ν∪×α is defined for 0 ≤ α ≤ 1 by B

ν∪×α(z) = Bν(z)
α.
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Theorem 6.1. [17, Theorem 3.2] Suppose Vν is the pseudo-variance function
of the CSK family K−(ν) generated by a non degenerate probability measure
ν ∈ M+ with mean m0(ν) < +∞. For α ∈ [0, 1], we have

(i) m−(ν
∪×α) = (m−(ν))

α and m0(ν
∪×α) = (m0(ν))

α, and for m ∈ (m−(ν
∪×α),

m0(ν
∪×α))

V
ν∪×α(m) = m1+1/α −m2 +m1−1/α

Vν

(
m1/α

)
. (6.4)

(ii) The variance functions of the CSK families generated by ν and ν∪×α exists
and

V
ν∪×α(m) =

m−mα
0

m1/α −m0
Vν

(
m1/α

)
+ (m−mα

0 )(m
1/α −m). (6.5)

The following result show how the permutation of power between free and
boolean multiplicative convolutions affect the variance functions.

Theorem 6.2. [17, Theorem 3.3] Suppose Vν is the pseudo-variance function
of the CSK family K−(ν) generated by a non degenerate probability measure

ν ∈ M+ with mean m0(ν) < +∞. For α > 0 such that
(
ν�α

)∪×1/α
and(

ν∪×α
)�1/α

are defined, they generates respectively CSK families with pseudo-

variance functions given by

V
(ν�α)

∪×1/α(m) = m1+α −m2 +mα−1
Vν(m) (6.6)

and
V(

ν∪×α
)�1/α(m) = m−α+3 −m2 +m1−α

Vν(m), (6.7)

for m ∈ (m−(ν),m0(ν)). Furthermore, the variance functions of the CSK fam-

ilies generated by ν,
(
ν�α

)∪×1/α
and

(
ν∪×α

)�1/α

exists and

V
(ν�α)

∪×1/α(m) = (m−m0)(m
α −m) +mα−1Vν(m) (6.8)

and
V(

ν∪×α
)�1/α(m) = (m−m0)(m

−α+2 −m) +m1−αVν(m). (6.9)

Authors in [31] introduce the analogue of Bercovici-Pata map for the multi-
plicative convolutions: that is for t ≥ 0,

Mt : M+ → M+

μ �→
(
μ�(t+1)

)∪× 1
t+1

.

μ∪×t ∈ M+ is defined for any probability measure μ ∈ M+ and 0 ≤ t ≤ 1. The
following result gives the pseudo-variance function and variance function of the
CSK family generated by Mt(μ). In fact this easily follows from (6.6) and (6.8)
by choosing α = 1 + t.
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Proposition 6.3. [17, Proposition 3.4] Suppose Vν is the pseudo-variance func-
tion of the CSK family K−(ν) generated by a non degenerate probability measure
ν ∈ M+ with mean m0(ν) < +∞. For t ≥ 0, the probability measure

Mt(ν) =
(
μ�(t+1)

)∪× 1
t+1

(6.10)

generates the CSK family with pseudo-variance function given by

VMt(ν)(m) = mt
Vν(m) +m2(mt − 1), (6.11)

for m ∈ (m−(ν),m0(ν)). Furthermore, the variance functions of the CSK fam-
ilies generated by ν and Mt(ν) exists and

VMt(ν)(m) = mt Vν(m) +mt+2 −m0m
t+1 −m2 +mm0. (6.12)

Authors in [8] construct a class of examples which exhausts all cubic variance
functions, and provide examples of polynomial variance functions of arbitrary
degree. In fact, they use some algebraic operations that allow to build new
variance functions from known ones. Formula (6.12) gives a relation between
variance function via the multiplicative analog of Belinschi-Nica type semigroup.
One see that some of polynomial variance functions can be obtained from known
variance functions by applying the multiplicative analog of Belinschi-Nica type
semigroup to the generating probability measure.
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[34] Uffe Haagerup and Sören Möller. The law of large numbers for
the free multiplicative convolution. In Operator algebra and dynamics, vol.
58 of Springer Proc. Math. Stat. Springer, Heidelberg, 2013, pp. 157–186.
MR3142036

[35] Voiculescu, D. Lectures on free probability theory, in: Lectures on prob-
ability the- ory and statistics (Saint-Flour, 1998), Lecture Notes in Math.
1738, pages 279–349. Springer, Berlin, 2000. MR1775641

[36] Wesolowski, J. Kernels families. Unpublished manuscript (1999).

https://www.ams.org/mathscinet-getitem?mr=0208649
https://www.ams.org/mathscinet-getitem?mr=2745687
https://www.ams.org/mathscinet-getitem?mr=0642719
https://www.ams.org/mathscinet-getitem?mr=1400060
https://www.ams.org/mathscinet-getitem?mr=3061512
https://www.ams.org/mathscinet-getitem?mr=3071490
https://www.ams.org/mathscinet-getitem?mr=1426845
https://www.ams.org/mathscinet-getitem?mr=2666470
https://www.ams.org/mathscinet-getitem?mr=3142036
https://www.ams.org/mathscinet-getitem?mr=1775641

	Introduction
	Cauchy-Stieltjes Kernel families
	About NEFs
	About CSK families
	Iterated CSK families

	 Free additive convolution
	 Free additive convolution and variance function
	 Marchenko-Pastur approximation
	Extending the domain for parametrization by the mean
	The first extension
	Domain of means under affine transformation
	The second extension
	Domain of means under free additive convolution power


	Boolean additive convolution 
	Boolean additive convolution and variance function 
	Some approximations in CSK family
	Approximation of boolean Gaussian CSK family
	 Approximation of boolean Poisson CSK family


	Free multiplicative convolution 
	Free multiplicative convolution and variance function
	Explicit free multiplicative law of large numbers

	Boolean multiplicative convolution
	References

