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Abstract: This paper explores the equivalences between four definitions
of uniform large deviations principles and uniform Laplace principles found
in the literature. Counterexamples are presented to illustrate the differences
between these definitions and specific conditions are described under which
these definitions are equivalent to each other. A fifth definition called the
equicontinuous uniform Laplace principle (EULP) is proposed and proven
to be equivalent to Freidlin and Wentzell’s definition of a uniform large
deviations principle. Sufficient conditions that imply a measurable function
of infinite dimensional Wiener process satisfies an EULP using the vari-
ational methods of Budhiraja, Dupuis and Maroulas are presented. This
theory is applied to prove that a family of Hilbert space valued stochastic
equations exposed to multiplicative noise satisfy a uniform large deviations
principle that is uniform over all initial conditions in bounded subsets of
the Hilbert space, and under stronger assumptions is uniform over initial
conditions in unbounded subsets too. This is an improvement over previous
weak convergence methods which can only prove uniformity over compact
sets.
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1. Introduction

The theory of large deviations principles, developed in the 1960s by Freidlin,
Wentzell, Varadhan and others, characterizes the asymptotic decay rate of rare
probabilities. There are a several manuscripts on the theory of large deviations
including [11, 12, 13, 14, 21]. One setting for the problem is as follows. Let (E , ρ)
be a Polish space. Let {Xε}ε>0 be a collection of E-valued random variables, let
a(ε) be a positive real-valued function with the property that limε→0 a(ε) = 0
and let I : E → [0,+∞] be a lower semi-continuous function. A family of E-
valued random variables {Xε}ε>0 is said to satisfy a large deviations principle
with respect to a rate function I and speed a(ε) if [11]

(a) For any open G ⊂ E ,

lim inf
ε→0

a(ε) logP(Xε ∈ G) ≥ − inf
ϕ∈G

I(ϕ) (1.1)
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(b) and for any closed F ⊂ E ,

lim sup
ε→0

a(ε) logP(Xε ∈ F ) ≤ − inf
ϕ∈F

I(ϕ). (1.2)

By Theorem 4.2 of [8] (see also Theorems 1.2.1 and 1.2.3 of [12]), the large
deviations principle is equivalent to the so-called Laplace principle, which says
that for any bounded and continuous h : E → R,

lim
ε→0

a(ε) logE exp

(
−h(Xε)

a(ε)

)
= − inf

ϕ∈E
{h(ϕ) + I(ϕ)}. (1.3)

For any s ≥ 0 define the level sets of I by Φ(s) := {ϕ ∈ E : I(ϕ) ≤ s}.
If Φ(s) is a compact subset of E for any s ≥ 0, then I is called a good rate
function. If I is a good rate function, then an equivalent formulation of the
large deviations principles [14, Theorem 3.3.3] is the following formulation by
Freidlin and Wentzell

(a) For any δ > 0 and s0 > 0,

lim inf
ε→0

inf
ϕ∈Φ(s0)

(a(ε) logP(ρ(Xε, ϕ) < δ) + I(ϕ)) ≥ 0. (1.4)

(b) For any δ > 0 and s0 > 0,

lim sup
ε→0

sup
s∈[0,s0]

(a(ε) logP(dist(Xε,Φ(s)) ≥ δ) + s) ≤ 0. (1.5)

where for any point ϕ ∈ E and any set B ⊂ E , we defined the distance
function by dist(ϕ,B) = infψ∈B ρ(ϕ, ψ).

While these three formulations of the large deviations principle are all known
to be equivalent when I is a good rate function, the situation is more complicated
when the random variables depend on another parameter in addition to ε. As
a motivating example, consider the family of small noise stochastic differential
equations

dXε
x(t) = b(Xε

x(t))dt+
√
εσ(Xε

x(t))dW (t), Xε
x(0) = x ∈ R

d. (1.6)

In the above equation, W (t) is a d-dimensional Wiener process, b : Rd → R
d is

a Lipschitz continuous vector field and σ : Rd → R
d×d is a Lipschitz continuous

d × d matrix valued function. Notice that the Xε
x are indexed both by the size

of the noise ε and the initial condition x. We consider Xε
x as E = C([0, T ] : Rd)-

valued random variables where C([0, T ] : Rd) is the space of continuous R
d-

valued functions endowed with the supremum norm.
For several applications, such as characterizing the exit time of Xε

x from a
domain, the large deviations of Xε

x must be uniform with respect to the initial
conditions in certain bounded subsets of the space [11, 14]. In this paper we
compare several definitions of uniform large deviations principles that are found
in the literature. The first definition of a uniform large deviations principle is due
to Freidlin and Wentzell [14] (Definition 2.1 below). We will call this the Freidlin-
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Wentzell uniform large deviations principle (FWULDP). The next definition
can be found in [11] (Definition 2.2 below). We will call it the Dembo-Zeitouni
uniform large deviations principle (DZULDP). The third definition is called the
uniform Laplace principle (ULP) and can be found in [12] (Definition 2.3 below).

Each of these definitions has been widely used in the literature. The following
lists of references are by no means complete, but they give examples of the
wide varieties of problems in which these different definitions of uniform large
deviations have been used. The FWULDP has been used in the work of Cerrai
and Röckner [6], Peszat [18], and Sowers [20]. The DZULDP has been used by
Chenal and Millet [7], Gautier [15], and Veretennikov [22]. A very general weak
convergence approach that is sufficient to prove the uniform Laplace principle
was introduced by Budhiraja, Dupuis, and Maroulas [4]. Since then, the ULP
has been used by many authors including Budhiraja and Biswas [1], Wu [23],
and Cai, Huang and Maroulas [5].

The main question of this paper is whether the FWULDP, the DZULDP,
and the ULP are equivalent. Without further assumptions, the answer is no. In
section 3 we illustrate this lack of equivalence with simple counter-examples. We
study stochastic processes Xε

x(t) = x+
√
εW (t), where x ∈ R and W (t) is a one-

dimensional Brownian motion. First, we show in Theorem 3.2 that {Xε
x} satisfies

a FWULDP that is uniform over x in the whole space. On the other hand, Xε
x

does not satisfy either a DZULDP or a ULP over the whole space (Propositions
3.4 and 3.3). In fact, the DZULDP fails to hold for Xε

x uniformly over x in a
set A if A fails to be compact. We give an example where the DZULDP fails
to hold for the bounded, pre-compact, but not compact set A = {2−n}n∈N

(Remark 3.5). These counterexamples prove that these three definitions are not
exactly the same. Their equivalences requires certain compactness criteria.

The general setting for this problem is to let (E , ρ) be a Polish space and E0
be a set used for indexing. At first, we make no assumptions about topology on
E0. We consider a family of E-valued random variables {Xε

x} indexed by ε > 0
and x ∈ E0. For example, if the random variables are the solutions to the small
noise SDE (1.6), we set E = C([0, T ] : Rd) to be the space of trajectories and
we index the trajectories by their initial conditions by setting E0 = R

d.
For each x ∈ E0 there is a function Ix : E → [0,+∞] called a rate function.

For x ∈ E0 and s ≥ 0, the level sets of Ix are denoted by Φx(s) = {ϕ ∈
E : Ix(ϕ) ≤ s}. A denotes a collection of subsets of E0 over which the large
deviations principles are uniform.

In Theorem 2.5, we prove that the FWULDP and the ULP are equivalent
under the assumption that

⋃
x∈A Φx(s) is a pre-compact subset of E for any

A ∈ A and s ≥ 0 (Assumption 2.4). Neither the definitions of the FWULDP
and ULP, nor their equivalence theorem require any kind of topology on the
index set E0. The equivalence between FWULDP and the DZULDP, on the
other hand, requires that E0 be metrizable and that whenever xn → x in E0,
the level sets Φxn(s) converge to Φx(s) in an appropriate Hausdorff metric (As-
sumption 2.6). Under that assumption along with the assumption that A is the
collection of compact subsets of E0, the FWULDP and DZULDP are equivalent
(Theorem 2.7). In the case where x encodes the initial condition of a stochastic
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process Xε
x, Assumption 2.6 requires that A contains only compact sets of ini-

tial conditions and Assumption 2.4 requires that A contains only pre-compact
sets of initial conditions.

In the setting of finite dimensional stochastic differential equations such as
(1.6), the restriction to compact or pre-compact subsets of initial conditions is
usually not terribly restrictive. For example, when studying the exit time of Xε

x

from a bounded domain, it is sufficient to prove uniformity of the large deviations
principle over initial conditions in compact sets because all closed bounded sets
are compact. In infinite dimensional spaces, on the other hand, bounded sets
are not generally compact. Furthermore, compact subsets of infinite dimensional
Banach spaces have no interior. This means that compact sets are not very
helpful for studying exit problems because exterior points of a compact set are
arbitrarily close to every element of the set. The reliance on the compactness or
pre-compactness of sets of initial conditions when using the ULP and DZULDP
demonstrates some limitations of these two approaches.

There are various possible modifications to the ULP and DZULDP that re-
move this reliance on compactness. Recently, David Lipshutz [16] studied exit
problems for stochastic delay equations with small noise. The initial conditions
belong to the space of continuous functions C([−τ, 0]), which is an infinite di-
mensional space. To prove the exit time asymptotics, Lipshutz proposed a mod-
ification of the DZULDP that we call the LULDP (Definition 3.8 below). This
definition fixes the problems pointed out by our counterexamples and in partic-
ular, the LULDP can be valid for A that are not compact. Unfortunately, the
LULDP is not equivalent to the FWULDP as we show in Proposition 3.10. This
counterexample involves the process Y ε

x (t) = (1+ε)x+
√
εW (t), which does not

satisfy a FWULDP but does satisfy a LULDP over the whole space.
The pre-compactness of

⋃
x∈A Φx(s) is required to prove the equivalence be-

tween the FWULDP and the ULP precisely because continuous functions on
compact sets are uniformly continuous. When this compactness is lacking, as is
the case for Xε

x(t) = x+
√
εW (t) with A = R, we build our counterexample by

choosing a function h : E → R that is continuous, but not uniformly continuous.
Based on this observation, we propose the new definition of the equicontinuous
uniform Laplace principle (EULP) (Definition 2.9 below). The equicontinuous
uniform Laplace principle is like the uniform Laplace principle with the added
requirement that the limit must also be uniform over any family of equibounded,
equicontinuous test functions from E → R.

We show in Theorem 2.10 that the EULP and FWULDP are equivalent
with no extra assumptions. In particular, this equivalence does not require the
compactness of initial conditions or of level sets. The benefit of the EULP is
that it can be proven via the variational methods of Budhiraja, Dupuis, and
collaborators [2, 3, 4]. In those papers, they used a variational method to study
the uniform Laplace principle for a family of measurable mappings of infinite
dimensional Wiener processes. The method was sufficient for proving that a ULP
held uniformly with respect to initial conditions in compact sets. In Section 8 we
modify this method to be applicable for initial conditions that are not in compact
sets. Specifically, in [4], Budhiraja, Dupuis, and Maroulas assumed that for all
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ε ≥ 0 there were measurable mappings G ε, such that Xε
x = G ε(x,

√
εβ), where

β is some infinite dimensional Wiener process. They assume that if xn → x and
un converge in distribution to u in the weak topology on L2([0, T ] : H0) for
an appropriately defined space H0, that G ε

(
xn,

√
εβ +

∫ ·
0
un(s)ds

)
converges in

distribution to G 0
(
x,

∫ ·
0
u(s)ds

)
.

If the initial conditions do not belong to a compact set, such a weak conver-
gence approach is impossible. For an example, consider Xε

x(t) = x +
√
εW (t)

where we take an unbounded sequence of initial conditions. If xn = n, and
G ε(x,

√
εW ) = x+

√
εW , then for a sequence un ∈ L2([0, T ]) almost surely, it is

impossible for G ε
(
xn,

√
εW +

∫ ·
0
un(s)ds

)
= n+

√
εW +

∫ ·
0
un(s)ds to converge

in distribution to anything because the initial conditions diverge.
In this paper, we do not assume that E0 has any topology and we do not

even require that the mapping x 	→ G ε(x,w) be measurable. To emphasize
this we consider for any ε > 0 and x ∈ E0 measurable mappings G ε

x : C([0, T ] :
R

∞) → E . Instead of working with weak convergence, we require that G ε
x (
√
εβ+∫ ·

0
u(s)ds) converges to G 0

x

(∫ ·
0
u(s)ds

)
in probability uniformly with respect to

x and u. Specifically, we prove that the EULP will hold if for any δ > 0,

lim
ε→0

sup
x∈A

sup
u∈PN

2

P

(
ρ

(
G ε
x

(√
εβ +

∫ ·

0

u(s)ds

)
,G 0

x

(∫ ·

0

u(s)ds

))
> δ

)
= 0,

where PN
2 is a family of progressively measurable processes in an appropriate

space whose L2 norms are bounded by N with probability one (Assumption
2.11).

In Section 4, we apply this theory to study the uniform large deviations of a
Hilbert space valued family of stochastic process. Let H be a separable infinite
dimensional Hilbert space and study the mild solutions to the abstract stochastic
differential equations (see [10, Chapter 7.1.1])

dXε
x(t) = [AXε

x(t) +B(Xε
x(t))]dt+

√
εG(Xε

x(t))dw(t), Xε
x(0) = x ∈ H.

In this equation, A is an unbounded linear operator that generates a C0 semi-
group onH and w(t) is a cylindrical Wiener process on another separable Hilbert
space U . We show that if B and G are globally Lipschitz continuous in an ap-
propriate sense, then the mild solutions to Xε

x satisfy a EULP (and therefore
also a FWULDP) in E = C([0, T ] : H) that is uniform over initial conditions
in bounded subsets of H. Note that bounded subsets of H are generally not
compact. Furthermore, we show that if the multiplicative noise coefficient G
is bounded in an appropriate sense, then the FWULDP is uniform over initial
conditions in any subset of H including unbounded subsets (and including the
entire space). This result demonstrates the power of the EULP because previous
variational methods could only be used to prove uniformity over compact sets
of initial conditions.

The outline of this paper is as follows. In Section 2 we state the assump-
tions and main results of this paper. In Section 3, we present counterexamples
to demonstrate the lack of equivalence between the FWULDP, DZULDP, ULP,
and LULDP. In Section 4, we use the EULP to prove that a Hilbert space valued
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stochastic process satisfies a FWULDP that is uniform over initial conditions
in bounded (but not necessarily compact) subsets of the infinite dimensional
Hilbert space. We also give a conditions under which the Hilbert space valued
process satisfies a FWULDP that is uniform over initial conditions in any (in-
cluding unbounded) subsets of H. In Sections 5–7, we prove the equivalence
between the FWULDP and the ULP, DZULDP, and EULP under appropriate
assumptions. In Section 8, we prove that uniform convergence in probability for
certain measurable functionals of infinite dimensional Wiener processes implies
that the processes satisfy an EULP. In Appendix A we recall some useful prop-
erties about rate functions. Appendices B and C include some proofs about the
Hilbert space valued process from Section 4.

2. Assumptions and main results

Let (E , ρ) be a Polish space and let E0 be a set. For now we do not make any
topological assumptions about E0. For any ϕ ∈ E and B ⊂ E , let

dist(ϕ,B) = inf
ψ∈B

ρ(ϕ, ψ). (2.1)

We recall the definition of the Hausdorff metric on nonempty closed subsets of E .
For any nonempty, closed subsets B1, B2 ⊂ E , the Hausdorff metric is given by

λ(B1, B2) = max

{
sup
ϕ∈B1

dist(ϕ,B2), sup
ϕ∈B2

dist(ϕ,B1)

}
. (2.2)

The space of bounded continuous functions h : E → R is denoted by Cb(E).
This is a Banach space under the sup-norm ‖h‖Cb(E) = supϕ∈E |h(ϕ)|.

2.1. Equivalences between different definitions of uniform large
deviations principles

Let (Ω,F ,P) be a probability space and let {Xε
x : ε > 0, x ∈ E0} be a collection

of E-valued random variables. We denote the expectation in (Ω,F ,P) by E. Let
{Ix : x ∈ E0} be a collection of lower-semicontinuous rate functions Ix : E →
[0,+∞]. Let Φx(s) = {ϕ ∈ E : Ix(ϕ) ≤ s} be the level sets of Ix. If Φx(s) is a
compact subset of E for all s ≥ 0, then Ix is called a good rate function.

The first definition of a uniform large deviations principle is due to Freidlin
and Wentzell and is defined at the end of Section 3.3 of [14].

Definition 2.1 (Freidlin-Wentzell uniform large deviations principle
(FWULDP)). Let A be a collection of subsets of E0 and a(ε) be a function
converging to zero as ε converges to zero. The random variables {Xε

x} are said
to satisfy a Freidlin-Wentzell uniform large deviations principle with respect to
the rate functions Ix with speed a(ε) uniformly over A , if

(a) For any A ∈ A , s0 > 0, and δ > 0,

lim inf
ε→0

inf
x∈A

inf
ϕ∈Φx(s0)

(a(ε) logP(ρ(Xε
x, ϕ) < δ) + Ix(ϕ)) ≥ 0. (2.3)
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(b) For any A ∈ A , s0 > 0, and δ > 0,

lim sup
ε→0

sup
x∈A

sup
s∈[0,s0]

(a(ε) logP(dist(Xε
x,Φx(s)) ≥ δ) + s) ≤ 0. (2.4)

The next definition of uniform large deviations principle can be found in
Corollary 5.6.15 of [11]. For the purposes of this paper, we will consider this as
a definition. For any set G ⊂ E , let Ix(G) := infϕ∈G Ix(ϕ).

Definition 2.2 (Dembo-Zeitouni uniform large deviations principle
(DZULDP)). Let A be a collection of subsets of E0 and a(ε) be a function
converging to zero as ε converges to zero. The random variables {Xε

x} are said
to satisfy a Dembo-Zeitouni uniform large deviations principle with respect to
the rate functions Ix with speed a(ε) uniformly over A , if

(a) For any A ∈ A and any open G ⊂ E ,

lim inf
ε→0

inf
x∈A

(a(ε) logP(Xε
x ∈ G)) ≥ − sup

x∈A
Ix(G). (2.5)

(b) For any A ∈ A and any closed F ⊂ E ,

lim sup
ε→0

sup
x∈A

(a(ε) logP(Xε
x ∈ F )) ≤ − inf

x∈A
Ix(F ). (2.6)

The third definition of a uniform large deviations principle is called the uni-
form Laplace principle. The uniform Laplace principle can be found in Definition
1.2.6 of [12]. Based on the variational principle and the weak convergence ap-
proach in the papers by Budhiraja, Boué, Dupuis, and Maroulas [2, 3, 4], the
uniform Laplace principle can be easier to verify directly than either of the
uniform large deviations principles.

Definition 2.3 (Uniform Laplace principle (ULP)). Let A be a collection of
subsets of E0 and a(ε) be a function converging to zero as ε converges to zero.
The random variables {Xε

x} are said to satisfy a uniform Laplace principle with
respect to the rate functions Ix with speed a(ε) uniformly over A , if for any
A ∈ A and any bounded, continuous h : E → R,

lim
ε→0

sup
x∈A

∣∣∣∣a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

∣∣∣∣ = 0. (2.7)

We now state the main assumptions and results of this paper.

Assumption 2.4. A is a collection of subsets of E0 with the property that for
any s ≥ 0 and A ∈ A ,

⋃
x∈A Φx(s) is a pre-compact subset of E.

Theorem 2.5. Under Assumption 2.4, the FWULDP and ULP are equivalent.

Theorem 2.5 is proven in Section 5.

The equivalence between the FWULDP and DZULDP requires extra topo-
logical assumptions on E0.



106 M. Salins

Assumption 2.6.

(a) E0 is a Polish space with metric ρ0.
(b) A is the collection of compact subsets of E0.
(c) For every x ∈ E0, Ix is a good rate function.
(d) The level sets are continuous in the Hausdorff metric in the sense that for

any s ≥ 0,

lim
n→+∞

ρ0(xn, x) = 0 implies lim
n→+∞

λ(Φxn(s),Φx(s)) = 0.

Theorem 2.7. Under Assumption 2.6, the FWULDP and DZULDP are equiv-
alent.

Theorem 2.7 is proven in Section 6.

Corollary 2.8. Under Assumption 2.6, the ULP and the DZULDP are equiv-
alent.

Corollary 2.8 is an immediate consequence of Theorems 2.5 and 2.7 and the
fact that Assumption 2.6 implies Assumption 2.4.

As we will show in the counterexamples (Section 3), the main reason that
the ULP can fail if the FWULDP holds is that the test function h : E →
R is continuous but not uniformly continuous. This observation inspires the
introduction of the equicontinuous uniform Laplace principle (EULP). A family
L ⊂ Cb(E) of functions from E to R is equibounded and equicontinuous if

sup
h∈L

sup
ϕ∈E

|h(ϕ)| < +∞ and lim
δ→0

sup
h∈L

sup
ρ(ϕ,ψ)<δ

|h(ϕ)− h(ψ)| = 0.

Definition 2.9 (Equicontinuous uniform Laplace principle). Let A be a collec-
tion of subsets of E0 and a(ε) be a function converging to zero as ε converges to
zero. The random variables {Xε

x} are said to satisfy an equicontinuous uniform
Laplace principle with respect to the rate functions Ix with speed a(ε) uniformly
over A , if for any A ∈ A and any collection L ⊂ Cb(E) of equibounded and
equicontinuous functions from E to R,

lim
ε→0

sup
x∈A

sup
h∈L

∣∣∣∣a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

∣∣∣∣ = 0. (2.8)

Theorem 2.10. The EULP and the FWULDP are equivalent with no extra
assumptions.

Theorem 2.10 is proven in Section 7.

We summarize the results of this section regarding equivalence between the
FWULDP, DZULDP, and ULP in Table 1. Because the EULP and FWULDP
are equivalent with no extra assumptions, we do not include the EULP sepa-
rately in the table.
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Table 1

Equivalences between the FWULDP, ULP, and DZULDP: The third column refers to the
sufficient condition under which the definitions in the first two columns are equivalent. The

fourth column refers to the result in the paper that proves their equivalence.

Definition Definition Assumption Equivalence Result
FWULDP ULP Assumption 2.4 Theorem 2.5
FWULDP DZULDP Assumption 2.6 Theorem 2.7
DZULDP ULP Assumption 2.6 Corollary 2.8

2.2. Sufficient conditions that imply the EULP for measurable
functions of infinite dimensional Wiener processes

Now that we have established the equivalence of the EULP and the FWULDP,
we present some sufficient conditions that imply the EULP when Xε

x can be
written as measurable mappings of an infinite dimensional Wiener process. This
setting is inspired by the weak convergence approach of Budhiraja, Dupuis, and
Maroulas [4], but requires some modifications when we require uniformity over
subsets of E0 that are not compact.

Let β = {βk(t)}∞k=1 be a collection of i.i.d. one-dimensional Brownian motions
on a filtered probability (Ω,F , {Ft},P). Define the space R

∞ to be the space
of sequences of real numbers endowed with the topology of componentwise con-
vergence. Fix some T > 0 and let C([0, T ] : R∞) be the space of continuous
functions from [0, T ] → R

∞ endowed with the topology of uniform convergence
in time for each component. β is C([0, T ] : R∞)-valued with probability one.
Let U ⊂ R

∞ be the subspace

U =

{
v = {vk}∞k=1 ∈ R

∞ :

∞∑
k=1

v2k < +∞
}
.

When endowed with the inner product 〈v, y〉U :=
∑∞

k=1 vkyk, U is a separable
Hilbert space. Let L2([0, T ] : U) be the set of twice differentiable U -valued
functions on [0, T ] endowed with the norm

|u|2L2([0,T ]:U) =

∫ T

0

|u(s)|2Uds.

Let P2 be the collection of Ft-adapted U -valued processes u(t) with the property
that P(|u|L2([0,T ]:U) < +∞) = 1. Let SN = {u ∈ L2([0, T ] : U) : |u|2L2([0,T ]:U) ≤
N}. Let PN

2 be the collection of Ft-adapted U -valued processes u(t) such that
P(u ∈ SN ) = 1.

For ε > 0 and x ∈ E0, let G ε
x be measurable maps from C([0, T ] : R∞) → E .

In this section we establish a set of conditions on G ε
x guaranteeing that Xε

x =
G ε
x (
√
εβ) satisfies an EULP.

Assumption 2.11. Assume that for any x ∈ E0, there exists a measurable
mapping G 0

x : C([0, T ] : R∞) → E and a collection A of subsets of E0 such that
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for any A ∈ A , N > 0 and δ > 0,

lim
ε→0

sup
x∈A

sup
u∈PN

2

P

(
ρ

(
G ε
x

(√
εβ(·) +

∫ ·

0

u(s)ds

)
,G 0

x

(∫ ·

0

u(s)ds

))
> δ

)
= 0.

Define the rate functions Ix : E → R for x ∈ E0 by

Ix(ϕ) = inf

{
1

2

∫ T

0

|u(s)|2Uds : ϕ = G 0
x

(∫ ·

0

u(s)ds

)}
. (2.9)

The infimum is taken over all u in L2([0, T ] : U). We use the convention that
the infimum of the empty set is +∞.

Remark 2.12. If for fixed x ∈ E0 and any N > 0, the level set

Φx(N) = {ϕ ∈ E : Ix(ϕ) ≤ N} =

{
G 0
x

(∫ ·

0

u(s)ds

)
: u ∈ S2N

}

is a compact subset of E , then Ix is a good rate function.

Theorem 2.13. Under Assumption 2.11, the E-valued random variables Xε
x =

G ε
x (
√
εβ) satisfy an EULP with respect to the rate function Ix with speed a(ε) = ε

uniformly over A .

The proof is presented in Section 8.

The main difference between the weak convergence approach of [4] and As-
sumption 2.11 is that the weak convergence approach requires that the mapping
(ε, x, u) 	→ G ε

x

(√
εβ +

∫ ·
0
u(s)ds

)
be jointly continuous in an appropriate topol-

ogy and that the x belong to a compact set. When these continuity and com-
pactness conditions are met Assumption 2.11 will follow. The EULP approach,
on the other hand, does not require any continuity in x or u. Instead, we merely
require that the convergence of G ε

x to G 0
x in probability must be uniform with

respect to x and u. In Section 4 we show how this theory can be applied to
prove that a family of Hilbert space valued stochastic equations exposed to
small multiplicative noise satisfies an EULP that is uniform over initial con-
ditions in bounded subsets of an infinite dimensional Hilbert space. The weak
convergence approach cannot be used for such an example because bounded
subsets of infinite dimensional Hilbert spaces are not generally compact.

3. Counterexamples

Before proving the main results of the paper, we illustrate why Assumption 2.4 is
needed for Theorem 2.5 to hold and why Assumption 2.6 is needed for Theorem
2.7 and Corollary 2.8 to hold. Using a simple example, we can demonstrate the
FWULDP is not equivalent to the ULP when Assumption 2.4 fails to hold and
the DZULDP is not equivalent to the FWULDP or the ULP when Assumption
2.6 fails to hold.
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The counterexamples are based on the simplest possible small noise equation
Xε

x(t) := x+
√
εW (t), whereW (t) is a one-dimensional Brownian motion and the

initial condition x ∈ R. For any T > 0 let C([0, T ]) be the space of continuous
functions from [0, T ] → R. We will consider the trajectories of Xε

x as E =
C([0, T ])–valued random variables. Let |ϕ|C([0,T ]) = supt∈[0,T ] |ϕ(t)| denote the
supremum norm. For any ϕ ∈ C([0, T ]) and B ⊂ C([0, T ]), let dist(ϕ,B) =
infψ∈B |ϕ− ψ|C([0,T ]).

By Schilder’s Theorem, for any T > 0, the processes {√εW (·) : ε > 0} satisfy
a large deviations principle in C([0, T ]) with rate function I0 : C([0, T ]) → R

given by

I0(ϕ) = inf

{
1

2

∫ T

0

|u(s)|2ds : ϕ(t) =
∫ t

0

u(s)ds

}
.

The infimum is taken over all u ∈ L2([0, T ]) and I0(ϕ) = +∞ if ϕ cannot be

written as ϕ(t) =
∫ t

0
u(s)ds (meaning ϕ is not absolutely continuous) or if the

derivative of ϕ is not square integrable. Let Φ0(s) = {ϕ ∈ E : I0(ϕ) ≤ s} be the
level sets of I0. We state this result without proof in the next theorem.

Theorem 3.1 (Theorems 3.2.1–3.2.2 of [14]). For any fixed T > 0, {√εW}ε>0

satisfies a large deviations principle with respect to the rate function I0 with
speed a(ε) = ε. In particular,

1. For any δ > 0 and s0 > 0,

lim inf
ε→0

inf
ϕ∈Φ0(s0)

(
ε logP(|

√
εW − ϕ|C([0,T ]) < δ) + I0(ϕ)

)
≥ 0. (3.1)

2. For any δ > 0 and s0 > 0

lim sup
ε→0

sup
s∈[0,s0]

(
ε logP(dist(

√
εW,Φ0(s)) ≥ δ) + s

)
≤ 0. (3.2)

The next theorem shows that the processes Xε
x(t) satisfy a Freidlin-Wentzell

uniform large deviations principle that is uniform over any subset of R with
respect to the rate function

Ix(ϕ) = inf

{
1

2

∫ T

0

|u(s)|2ds : ϕ(t) = x+

∫ t

0

u(s)ds

}
. (3.3)

Let Φx(s) = {ϕ ∈ C([0, T ]) : Ix(ϕ) ≤ s}.

Theorem 3.2. Let A be the collection of all subsets of R. Let T > 0 The
process {Xε

x} satisfies a FWULDP in E = C([0, T ]) with respect to the good rate
functions Ix and speed a(ε) = ε uniformly over A . That is

1. For any A ∈ A , δ > 0, and s0 > 0,

lim inf
ε→0

inf
x∈A

inf
ϕ∈Φx(s0)

(
ε logP(|Xε

x − ϕ|C([0,T ]) < δ) + Ix(ϕ)
)
≥ 0. (3.4)
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2. For any A ∈ A , δ > 0 and s0 > 0,

lim sup
ε→0

sup
x∈A

sup
s∈[0,s0]

(ε logP(dist(Xε
x,Φx(s)) ≥ δ) + s) ≤ 0. (3.5)

Proof. It is sufficient to prove this theorem with A = R. If (3.4) and (3.5) hold
with A = R, then they also hold for any subset of R. Fix s0 > 0. For any x ∈ R,
the elements of Φx(s0) are translations of elements of Φ0(s0). In particular, for
any ϕ ∈ Φx(s0), ψ(t) := ϕ(t) − x is in Φ0(s0) and Ix(ϕ) = I0(ψ). Similarly,
Xε

x(t) − x =
√
εW (t). Therefore, for any ϕ ∈ Φx(s0), and ψ(t) = ϕ(t) − x, it

follows that |Xε
x − ϕ|C([0,T ]) = |√εW − ψ|C([0,T ]). Therefore,

lim inf
ε→0

inf
x∈R

inf
ϕ∈Φx(s0)

(
ε logP(|Xε

x − ϕ|C([0,T ]) < δ) + Ix(ϕ)
)

≥ lim inf
ε→0

inf
ψ∈Φ0(s0)

(
ε logP(|

√
εW − ψ|C([0,T ]) < δ) + I0(ψ)

)
≥ 0

where the last line follows from (3.1). Therefore, the FWULDP lower bound
(3.4) holds.

The upper bound is similar. Because of the definitions of Xε
x and the rate

functions,

{dist(Xε
x,Φx(s)) ≥ δ} =

{
dist(

√
εW,Φ0(s)) ≥ δ

}
.

Therefore

lim sup
ε→0

sup
x∈R

sup
s∈[0,s0]

(ε logP(dist(Xε
x,Φx(s)) ≥ δ) + s)

= lim sup
ε→0

sup
s∈[0,s0]

(
ε logP(dist(

√
εW,Φ0(s)) ≥ δ) + s

)
≤ 0.

The last line follows from (3.2).

While the processes Xε
x(t) = x +

√
εW (t) satisfy a FWULDP in C([0, T ])

that is uniform over initial conditions in all of R, they do not satisfy a DZULDP
or ULP over all initial conditions in R. It is clear that Assumption 2.6 cannot
hold when the set A of initial conditions is not a compact set and Assumption
2.4 cannot hold when the set A of initial conditions is not a pre-compact set.

Proposition 3.3. The processes {Xε
x} satisfy a FWULDP but do not satisfy a

ULP uniformly over all subsets of R.

Proof. Let A = N. For n ∈ A, let fn(t) = n+ t. There is nothing special about
fn. The proof could use any set of functions that are just translated by initial
condition. Let j > T

2 . Define h : C([0, T ]) → R by

h(ϕ) = jmin

{
1,min

n∈A
{2n|ϕ− fn|C([0,T ])}

}
.
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This function has the properties that h(fn) = 0 for all n ∈ A and h(ϕ) = j if
|ϕ− fn|C([0,T ]) ≥ 2−n for all n ∈ A. Otherwise h(ϕ) ∈ [0, j].

For any n ∈ A,

inf
ϕ∈C([0,T ])

{h(ϕ) + In(ϕ)} ≤ h(fn) + In(fn) =
1

2

∫ T

0

12dt =
T

2
.

Because Xε
n(0) = n, −h(Xε

n) = −j when |Xε
n−fn|C([0,T ]) ≥ 2−n and because

h ≥ 0, −h(Xε
n) ≤ 0 when |Xε

n − fn| ≤ 2−n. Therefore,

inf
n∈A

E exp

(
−h(Xε

n)

ε

)
≤ e−

j
ε + inf

n∈A
P(|Xε

n − fn| < 2−n)

≤ e−
j
ε + inf

n∈A
P

(
sup

t∈[0,T ]

|
√
εW (t)− t| < 2−n

)

≤ e−
j
ε + P

(
sup

t∈[0,T ]

|
√
εW (t)− t| = 0

)
≤ e−

j
ε .

Therefore, for any ε > 0,

inf
n∈A

(
ε logE exp

(
−h(Xε

n)

ε

)
+ inf

ϕ∈C([0,T ])
{h(ϕ) + In(ϕ)}

)
≤ −j +

T

2
< 0.

Xε
n does not satisfy a ULP over A because (2.7) fails.

Xε
x fails to satisfy a ULP over unbounded sets of initial conditions because

of a lack of uniform continuity of applicable test functions. The test function
h : C([0, T ]) → R in the proof of Proposition 3.3 is continuous but not uni-
formly continuous. This counterexample inspires the formulation of the EULP
in Definition 2.9.

Proposition 3.4. The processes Xε
x satisfy a FWULDP but do not satisfy a

DZULDP when A contains all subsets of R.

Proof. We demonstrate that neither the lower bound (2.5) nor the upper bound
(2.6) are satisfied when A is an unbounded set. Let A = N. For any n ∈ A, let
fn(t) = n+ t. Define the open set

G =
⋃
n∈A

{ϕ ∈ C([0, T ]) : |ϕ− fn|C([0,T ]) < 2−n}.

G is an open set because it is the union of open sets. Unfortunately, because
Xε

n(t)− fn(t) =
√
εW (t)− t, for every ε > 0,

inf
n∈A

P(Xε
n ∈ G) = inf

n∈A
P

(
sup

t∈[0,T ]

|
√
εW (t)− t| < 2−n

)

= P

(
sup

t∈[0,T ]

|
√
εW (t)− t| = 0

)
= 0.
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It follows that for every ε > 0

inf
n∈A

(ε logP(Xε
n ∈ G)) = −∞,

while

sup
n∈A

In(G) ≤ sup
n

In(fn) =
1

2

∫ T

0

12dt =
T

2
.

This analysis shows that Xε
x(t) = x+

√
εW (t) does not satisfy (2.5).

For the upper bound, consider the closed set

F =
⋃
n∈A

{
ϕ ∈ C([0, T ]) : ϕ(0) = n and dist(ϕ,Φn(1)) ≥ 2−n

}
.

This is closed because it is a union of disjoint closed sets each of which is at least
distance 1 from the others (because the initial conditions are at least distance 1
from each other). Because dist(Xε

x,Φx(1)) = dist(
√
εW,Φ0(1)), it follows that

sup
n∈A

P(Xε
n ∈ F ) = sup

n∈A
P(dist(

√
εW,Φ0(1)) ≥ 2−n)

= P(dist(
√
εW,Φ0(1)) > 0) = 1.

The above is equal to 1 because Φ0(1) contains only differentiable functions and√
εW has rough paths, so P(

√
εW ∈ Φ0(1)) = 1. Then

sup
n∈A

ε logP(Xε
n ∈ F ) = 0 and inf

n∈A
In(F ) ≥ 1,

so the upper bound (2.6) cannot be true.

Remark 3.5. An unbounded set is not required for the above counterexample
proof. The bounded but non-compact set A = {2−n}∞n=1 with the open set equal
to the disjoint union of open balls

G =

∞⋃
n=1

{
ϕ ∈ C([0, T ]) : sup

t∈[0,T ]

|ϕ(t)− (2−n + t)| < 4−n

}
(3.6)

is sufficient to prove that (2.5) does not hold via the same arguments as the proof

of Proposition 3.4. For any x ∈ A, Ix(G) ≤
∫ T

0
12dt = T

2 , but because of the
degeneracy of the open balls, infx∈A P(Xε

x ∈ G) = 0. Therefore, the DZULDP
lower bound (2.5) cannot hold. Because A is pre-compact but not compact, we
have demonstrated that Theorem 2.7 truly requires compactness of the initial
conditions in Assumption 2.6. Note that (2.5) does hold in the case where A is
the compact set {2−n}∞n=1 ∪ {0} and G is given by (3.6) because I0(G) = +∞.

Remark 3.6. Even if A is compact, we can build a counterexample to the
DZULDP if the mapping x 	→ Φx(s) is not continuous in the Hausdorff metric as
required in Assumption 2.6. Consider the family of processes Zε

x(t) = Xε
x(t) =

x+
√
εW (t) if x = 0 and Zε

0(t) = Xε
1/2(t) =

1
2+

√
εW (t). Let A = {2−n}∞n=1∪{0},

which is a compact set. Let G be as in (3.6).
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The rate function for Z is Ĩx = Ix for x = 0 and Ĩ0 = I1/2. Let Φ̃x = {ϕ ∈ E :

Ĩx(ϕ) ≤ s}. In this case, for any x ∈ A, Ĩx(G) ≤ T
2 but infx∈A P(Zε

x ∈ G) = 0.

The fact that A is compact does not help because the map x 	→ Φ̃x(s) is
discontinuous at 0 in the Hausdorff metric.

Remark 3.7. For any bounded set A ∈ R, the union of level level sets
⋃

x∈A Φx(s)
is pre-compact for any s ≥ 0. In particular, Assumption 2.4 holds for any A that
is a collection of bounded subsets. Theorems 3.2 and 2.5 imply that Xε

x(t) =
x +

√
εW (t) satisfies a ULP in C([0, T ]) when A is a collection of bounded

subsets of R. The examples in Remarks 3.5 and 3.6, therefore, also provide
examples where Xε

x satisfies a ULP but not a DZULDP.

The set G in the proof of Proposition 3.4 is open, but it is degenerate in the
sense that G is a disjoint union of open C([0, T ])-balls of arbitrarily small radii.

A generalization on the DZULDP was introduced by Lipshutz [16] to exclude
testing on sets like those in the proof of Proposition 3.4. For any open set G ⊂ E ,
let

Gη = {ϕ ∈ G : dist(ϕ, E \G) > η}, (3.7)

and for any closed set F ⊂ E let

F η = {ϕ ∈ E : dist(ϕ, F ) ≤ η}. (3.8)

Definition 3.8 (Lipshutz uniform large deviations principle (LULDP)). Let
A be a collection of subsets of E0 and a(ε) be a function converging to zero as
ε converges to zero. The random variables {Xε

x} are said to satisfy a uniform
large deviations principle with respect to the rate functions Ix with speed a(ε)
uniformly over A , if

(a) For any A ∈ A and G ⊂ E open,

lim inf
ε→0

inf
x∈A

(a(ε) logP(Xε
x ∈ G)) ≥ − lim

η→0
sup
x∈A

Ix(Gη). (3.9)

(b) For any A ∈ A and F ⊂ E closed, and s ≤ Ix(F ),

lim sup
ε→0

sup
x∈A

(a(ε) logP(Xε
x ∈ F )) ≤ − lim

η→0
inf
x∈A

Ix(F
η). (3.10)

This definition enables the LULDP to be used over non-compact sets, but it
is not equivalent to the FWULDP. We give an example where the FWULDP
(Definition 2.1) is not satisfied but the LULDP (Definition 3.8) is satisfied.
Consider the process for ε > 0 and x ∈ R

Y ε
x (t) := (1 + ε)x+

√
εW (t) = Xε

(1+ε)x. (3.11)

Let Ix be the same rate function defined in (3.3). It is not difficult to show that
Y ε
x satisfies a FWULDP in C([0, T ]) with respect to Ix that is uniform with

respect to initial conditions x in bounded subsets of R. We will show that Y ε
x

does not satisfy a FWULDP over initial conditions in unbounded sets. On the
other hand, Y ε

x does satisfy a LULDP over the whole space.



114 M. Salins

Proposition 3.9. {Y ε
x } does not satisfy a FWULDP over x ∈ R with respect

to its rate function Ix.

Proof. If ϕ ∈ Φx(s), then ϕ(0) = x. It follows that

|Y ε
x − ϕ|C([0,T ]) ≥ |Y ε

x (0)− ϕ(0)| = |(1 + ε)x− x| = ε|x|.

For any δ > 0 and ε > 0, there exists x ∈ R such that ε|x| > δ. Therefore,

inf
x∈R

inf
ϕ∈Φx(s)

P(|Y ε
x − ϕ|C([0,T ]) < δ) = 0

and
inf
x∈R

inf
ϕ∈Φx(s)

ε logP(|Y ε
x − ϕ|C([0,T ]) < δ) = −∞.

This proves that (2.3) fails. Along the same lines,

sup
x∈R

sup
s∈[0,s0]

ε logP(dist(Y ε
x ,Φx(s)) ≥ δ) = 0

and (2.4) fails.

Despite the fact that Y ε
x does not satisfy a FWULDP over x ∈ R, it does

satisfy a LULDP.

Proposition 3.10. For any G ⊂ C([0, T ]) open and any η > 0, let Gη be as in
(3.7), then

lim inf
ε→0

inf
x∈R

P(Y ε
x ∈ G) ≥ − sup

x∈R

Ix(Gη). (3.12)

For any F ⊂ C([0, T ]) closed and any η > 0, let F η be as in (3.8), then

lim sup
ε→0

sup
x∈R

P(Y ε
x ∈ F ) ≤ − inf

x∈R

Ix(F
η). (3.13)

Proof. Fix η > 0. If supx∈R Ix(Gη) = +∞, then (3.12) is trivially true. Assume
that supx∈R Ix(Gη) =: s0 < +∞. This means that for any s > s0 and x ∈ R,
there exists ϕx ∈ Gη such that Ix(ϕx) ≤ s. Because ϕx ∈ Gη, the η-open balls

{ϕ ∈ C([0, T ]) : |ϕ− ϕx|C([0,T ]) < η} ⊂ G.

For any x ∈ R and ε > 0,

P(Y ε
x ∈ G) = P(Xε

(1+ε)x ∈ G)

≥ P(|Xε
(1+ε)x − ϕ(1+ε)x|C([0,T ]) < η)

≥ inf
ϕ∈Φ(1+ε)x(s)

P(|Xε
(1+ε)x − ϕ|C([0,T ]) < η).

For any fixed ε > 0, it is clear that

inf
x∈R

inf
ϕ∈Φ(1+ε)x(s)

P(|Xε
(1+ε)x − ϕ|C([0,T ]) < η)

= inf
x∈R

inf
ϕ∈Φx(s)

P(|Xε
x − ϕ|C([0,T ]) < η)
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By the previous two displays and (3.4),

lim inf
ε→0

inf
x∈R

P(Y ε
x ∈ G)

≥ lim inf
ε→0

inf
x∈R

inf
ϕ∈Φx(s)

P(|Xε
x − ϕ|C([0,T ]) < η)

≥ −s.

Recall that s > s0 was arbitrary so it follows that

lim inf
ε→0

inf
x∈R

P(Y ε
x ∈ G) ≥ −s0 = sup

x∈R

Ix(Gη)

which proves (3.12).
The upper bound (3.13) is trivially true if infx∈R Ix(F

η) = 0. Assume that
infx∈R Ix(F

η) =: s1 > 0. A consequence is that for any x ∈ R and s ∈ [0, s1),
F η ∩ Φx(s) = ∅. By the definition of F η, it follows that for any s ∈ [0, s1) and
x ∈ R,

F ⊂ {ϕ ∈ C([0, T ]) : dist(ϕ,Φx(s)) ≥ η}.
Recalling that Y ε

x = Xε
(1+ε)x, we see that

P(Y ε
x ∈ F ) = P(Xε

(1+ε)x ∈ F ) ≤ P(dist(Xε
(1+ε)x,Φ(1+ε)x(s)) ≥ η).

Then by (3.5),
lim sup

ε→0
sup
x∈R

ε logP(Y ε
x ∈ F ) ≤ −s.

The choice of s < s1 was arbitrary, so

lim sup
ε→0

sup
x∈R

ε logP(Y ε
x ∈ F ) ≤ −s1.

Because of our choice of s1, this proves (3.13).

This Y ε
x (t) = (1 + ε)x +

√
εW (t) example illustrates the important differ-

ence between the FWULDP and the LULDP. In the FWULDP, (see (2.3)),
the probability divergence rate a(ε) logP(ρ(Y ε

x , ϕ) < δ) is always compared to
Ix(ϕ). In (3.9), a(ε) logP(Y ε

x ∈ G) is compared to supx∈A Ix(G). In the proof of
Proposition 3.10, this allowed us to compare ε logP(Y ε

x ∈ G) to I(1+ε)x(G). The
FWULDP insists that exponential decay of probabilities about Xε

x are described
by Ix, but the LULDP allows us to describe the decay of these probabilities with
Iy for y = x.

4. Example – Hilbert space valued process

The EULP will be most useful for studying large deviations principles for infinite
dimensional systems. Let H be an infinite dimensional separable Hilbert space.
Let C([0, T ] : H) be the Banach space of continuous functions from [0, T ] → H
endowed with the norm

|ϕ|C([0,T ]:H) = sup
t∈[0,T ]

|ϕ(t)|H .
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We will show under very general assumptions that an H-valued family of sto-
chastic processes satisfies a FWULDP uniformly over bounded sets of initial
conditions in the Hilbert space. If we assume that the multiplicative noise coef-
ficient is bounded in an appropriate sense then the FWULDP will be uniform
over initial conditions in the entire space. These results show that there is no
reason to restrict the study of uniform large deviations principles to compact
sets of initial condition.

We consider the following small noise H-valued stochastic equation with Lip-
schitz continuous coefficients. See Chapter 7.1.1 of [10] for more information
about such a system.

dXε
x(t) = [AXε

x(t) +B(Xε
x(t))]dt+

√
εG(Xε

x(t))dw(t), Xε
x(0) = x. (4.1)

In the above equation, Xε
x(t) and x are H-valued. A : D(A) ⊂ H → H is an

unbounded linear operator that generates a C0 semigroup on H called S(t). The
mild solution to (4.1) is defined to be the Ft-adapted C([0, T ] : H) solution to
the integral equation

Xε
x(t) = S(t)x+

∫ t

0

S(t−s)B(Xε
x(s))ds+

√
ε

∫ t

0

S(t−s)G(Xε
x(s))dw(s). (4.2)

The noise w(t) is a cylindrical Wiener process. Let R
∞ be the collection of

sequences of real numbers endowed with the metric of componentwise conver-
gence. Let w(t) = {βk(t)}∞k=1 be a family of i.i.d. one-dimensional Brownian
motions on a filtered probability space (Ω,F , {Ft},P). Define the Hilbert space
U = {u = {vk}∞k=1 ∈ R

∞ :
∑∞

k=1 v
2
k < +∞} endowed with the inner product

〈v, y〉U =
∑∞

k=1 vkyk, as in Subsection 2.2.
Let L2 := L2(U,H) denote the space of Hilbert-Schmidt operators from U to

H. The Hilbert-Schmidt norm of a bounded linear operator M : U → H is

‖M‖2L2
=

∞∑
k=1

|Mek|2H (4.3)

where {ek} is any complete any orthonormal basis of U .
We assume that for any t > 0 and x ∈ H, S(t)G(x) is a Hilbert-Schmidt

operator from U to H.
The next assumptions describe that both B and G are Lipschitz continuous

in an appropriate sense.

Assumption 4.1. The nonlinear operator B : H → H is Lipschitz continuous.
There exists a constant κ > 0 such that

(a) For any x, y ∈ H,

|B(x)−B(y)|H ≤ κ|x− y|H . (4.4)

(b) For any x ∈ H,

|B(x)| ≤ κ(1 + |x|H). (4.5)
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Assumption 4.2. There exists a locally square integrable mapping K :
[0,+∞) → [0,+∞) and a constant α ∈ (0, 1/2) such that for any t > 0∫ t

0

s−2αK2(s)ds < +∞ (4.6)

such that

(a) For any x, y ∈ H and t > 0,

‖S(t)G(x)− S(t)G(y)‖L2 ≤ K(t)|x− y|H . (4.7)

(b) We either assume

(i) G is bounded in the sense that for any x ∈ H and t > 0

‖S(t)G(x)‖L2 ≤ K(t) (4.8)

or

(ii) G has linear growth in the sense that

‖S(t)G(x)‖L2 ≤ K(t)(1 + |x|H). (4.9)

Under these assumptions, the C([0, T ] : H) solution of (4.2) exists and is
unique for any x ∈ H and ε > 0 [10, Theorem 7.5]. Furthermore, for every
x ∈ H there exists a measurable map Gx : C([0, T ] : R∞) → C([0, T ] : H) such
that for any x ∈ H and ε > 0, Xε

x = Gx(
√
εw).

Define the space L2([0, T ] : U) to be the space of U valued processes such

that |u|2L2([0,T ]:U) :=
∫ T

0
|u(s)|2Uds < +∞. Let P2 be the collection of Ft-adapted

U -valued controls u(t) such that P(|u|L2([0,T ]:U) < +∞) = 1. Let SN = {u ∈
L2([0, T ] : U) : |u|2L2([0,T ]:U) ≤ N}. Let PN

2 = {u ∈ P2 : P(u ∈ SN ) = 1}.
For any u ∈ P2 and ε ≥ 0, let Xε,u

x := Gx

(√
εW +

∫ ·
0
u(s)ds

)
. Such a process

solves

Xε,u
x (t) =S(t)x+

∫ t

0

S(t− s)B(Xε,u
x (s))ds

+
√
ε

∫ t

0

S(t− s)G(Xε,u
x (s))dw(s)

+

∫ t

0

S(t− s)G(Xε,u
x (s))u(s)ds. (4.10)

We will prove in Lemma 4.9 that Xε,u
x is well-posed for any x ∈ H, ε > 0,

N > 0, and u ∈ PN
2 .

For any x ∈ H define the rate function Ix : C([0, T ] : H) → [0,+∞] by

Ix(ϕ) = inf

{
1

2

∫ T

0

|u(s)|2Uds : ϕ = X0,u
x

}
. (4.11)

We use the convention that the infimum over the empty set is +∞.
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Theorem 4.3. For any x ∈ H, Ix is a good rate function

The proof is given in Appendix C.

The main theorem of this section is below.

Theorem 4.4. If we assume (4.8), then let A be the collection of all subsets of
H. If we assume (4.9), then let A be the collection of all bounded subsets of H.
For any T > 0, Xε

x satisfies a FWULDP in E = C([0, T ] : H) with rate function
Ix and speed a(ε) = ε uniformly over A .

This theorem demonstrates that compact sets are not required for the large
deviations principle to hold. Bounded subsets of infinite dimensional Hilbert
spaces are not generally compact. Furthermore, if G is bounded in such a way
that (4.8) holds, then the large deviations principle is uniform over all sets of
initial conditions, including uniformity over the whole space H.

Based on the equivalence of the EULP and the FWULDP (Theorem 2.10)
along with Theorem 2.13, Theorem 4.4 will be an immediate consequence of the
following result.

Theorem 4.5. If we assume (4.8), then let A be the collection of all subsets
of H. If we assume (4.9), then let A be the collection of all bounded subsets of
H. For any T > 0, N > 0, and A ∈ A ,

lim
ε→0

sup
x∈A

sup
u∈PN

2

P

(∣∣Xε,u
x −X0,u

x

∣∣
C([0,T ]:H)

> δ
)
= 0. (4.12)

The proof of Theorem 4.5 is based on the following lemmas whose proofs
we sketch in Appendix B. For any Ft-adapted ϕ ∈ C([0, T ] : H) define the
stochastic convolution by

Γ(ϕ)(t) =

∫ t

0

S(t− s)G(ϕ(s))dw(s). (4.13)

For any ϕ ∈ C([0, T ] : H) and u ∈ L2([0, T ] : U) define the controlled convolu-
tion

[Λ(ϕ)u](t) =

∫ t

0

S(t− s)G(ϕ(s))u(s)ds. (4.14)

For any ϕ ∈ C([0, T ] : H) define the nonlinear convolution

Θ(ϕ)(t) =

∫ t

0

S(t− s)B(ϕ(s))ds. (4.15)

In this notation the mild formulation for the stochastic controlled equation
(4.10) can be written as

Xε,u
x (t) = S(t)x+Θ(Xε,u

x )(t) +
√
εΓ(Xε,u

x )(t) + [Λ(Xε,u
x )u](t). (4.16)

Lemma 4.6. For any T > 0 and p > 1
α where α is from (4.6), there exists a

constant C = C(T, p) such that
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1. For any Ft-adapted ϕ, ψ ∈ C([0, T ] : H) and t ∈ [0, T ]

E|Γ(ϕ)− Γ(ψ)|pC([0,t]:H) ≤ CE

∫ t

0

|ϕ− ψ|pC([0,s]:H)ds. (4.17)

2. If (4.8) holds, then for any Ft-adapted ϕ ∈ C([0, T ] : H) and t ∈ [0, T ],

E|Γ(ϕ)|pC([0,t]:H) ≤ C. (4.18)

3. If (4.9) holds, then for any Ft-adapted ϕ ∈ C([0, T ] : H) and t ∈ [0, T ],

E|Γ(ϕ)|pC([0,t]:H) ≤ C

(
1 + E

∫ t

0

|ϕ|pC([0,s]:H)ds

)
. (4.19)

Lemma 4.7. For any T > 0 and p > 1
α where α is from (4.6), there exists

C = C(T, p) such that

1. For any ϕ, ψ ∈ C([0, T ] : H), u ∈ L2([0, T ] : U), and t ∈ [0, T ],

|Λ(ϕ)u− Λ(ψ)u|pC([0,t]:H) ≤ C|u|pL2([0,t]:U)

∫ t

0

|ϕ− ψ|pC([0,s]:H)ds. (4.20)

2. If (4.8) holds, then for any ϕ ∈ C([0, T ] : H), u ∈ L2([0, T ] : U), and
t ∈ [0, T ],

|Λ(ϕ)u|pC([0,t]:H) ≤ C|u|pL2([0,t]:U). (4.21)

3. If (4.9) holds, then for any ϕ ∈ C([0, T ] : H), u ∈ L2([0, T ] : U), and
t ∈ [0, T ],

|Λ(ϕ)u|pC([0,t]:H) ≤ C|u|pL2([0,t]:U)

(
1 +

∫ t

0

|ϕ|pC([0,s]:H)ds

)
. (4.22)

Lemma 4.8. For any T > 0 and p > 1, there exists C = C(T, p) such that

1. For any ϕ, ψ ∈ C([0, T ] : H) and t ∈ [0, T ],

|Θ(ϕ)−Θ(ψ)|pC([0,t]:H) ≤ C

∫ t

0

|ϕ− ψ|pC([0,s]:H)ds. (4.23)

2. For any ϕ ∈ C([0, T ] : H) and t ∈ [0, T ],

|Θ(ϕ)|pC([0,t]:H) ≤ C

(
1 +

∫ t

0

|ϕ|pC([0,s]:H)ds

)
. (4.24)

Lemma 4.9. Assuming either (4.8) or (4.9), for any x ∈ H, ε > 0, N > 0,
and u ∈ PN

2 , there exists a unique, continuous Ft-adapted solution to (4.10).
Furthermore, for any T > 0 and p > 1

α , there exists C = C(T, p) such that for
any ε > 0, N > 0, and R > 0, Xε,u

x satisfies the bound

sup
|x|H≤R

sup
u∈PN

2

E|Xε,u
x |pC([0,T ]:H) ≤ C(1 +Rp +N

p
2 + ε

p
2 )eCT (1+N

p
2 +ε

p
2 ). (4.25)
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Lemma 4.9 is a straightforward consequence of Lemmas 4.6, 4.7, and 4.8.
The existence and uniqueness proof is a standard argument based on Picard
iteration. The Lp bound proof is a straightforward application of Grönwall’s
inequality.

Proof of Theorem 4.5. Fix T > 0, p > 1
α , and N > 0. In this proof, C represents

an arbitrary constant independent of ε, x, u and N whose value will change from
line to line. By the notation of (4.16), for any x ∈ H, ε > 0, and u ∈ PN

2 ,

Xε,u
x −X0,u

x = Θ(Xε,u
x )−Θ(X0,u

x ) +
√
εΓ(Xε,u

x ) + Λ(Xε,u
x )− Λ(X0,u

x ).

It follows from (4.20) and (4.23) that for any t ∈ [0, T ],

|Xε,u
x −X0,u

x |pC([0,t]:H) ≤Cε
p
2 |Γ(Xε,u

x )|pC([0,t]:H)

+ C(1 +Np/2)

∫ t

0

|Xε,u
x −X0,u

x |pC([0,s]:H)ds.

By Grönwall’s inequality,

|Xε,u
x −X0,u

x |pC([0,T ]:H) ≤ Cε
p
2 eC(1+Np/2)T |Γ(Xε,u

x )|pC([0,T ]:H). (4.26)

If we assume (4.8) so that G is bounded, then (4.18) holds. Consequently,

E|Xε,u
x −X0,u

x |pC([0,T ]:H) ≤ Cε
p
2 eC(1+Np/2)T .

This bound is independent of x ∈ H. Therefore,

lim
ε→0

sup
x∈H

sup
u∈PN

2

E|Xε,u
x −X0,u

x |pC([0,T ]:H) = 0.

The result follows by Chebyshev inequality.
On the other hand, if we assume (4.9), then (4.25) and (4.19) imply that

if we restrict x to bounded sets that E|Γ(Xε,u
x )|pC([0,T ]:H) will be bounded. In

particular for R > 0 and N > 0 it follows from (4.26) that

lim
ε→0

sup
|x|H≤R

sup
u∈PN

2

E|Xε,u
x −X0,u

x |pC([0,T ]:H) = 0.

The result follows by Chebyshev inequality.

5. Equivalence of the FWULDP and the ULP – Proof of Theorem
2.5

For this section, assume that Assumption 2.4 holds. As we showed in Proposition
3.3, the lack of uniform continuity of the bounded continuous function h, leads
to counterexamples where the FWULDP holds but the ULP does not. The
compactness of

⋃
x∈A Φx(s) in Assumption 2.4 is important assumption because

continuous functions are uniformly continuous over compact sets.
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Lemma 5.1. Let K ⊂ E be compact and let h : E → R be a continuous function.
Then h is uniformly continuous near K in the sense that for any η > 0 there
exists δ > 0 such that for all ϕ ∈ K and ψ ∈ E such that ρ(ψ,ϕ) < δ, it follows
that |h(ϕ)− h(ψ)| < η.

We omit the proof because this result is classical.

Lemma 5.2. Under Assumption 2.4, the ULP implies the FWULDP lower
bound (2.3).

Proof. Assume that Xε
x satisfies a ULP with respect to rate function Ix with

speed a(ε) uniformly over A . Fix A ∈ A , s0 > 0, and δ > 0. Let xn ∈ A, ϕn ∈
Φxn(s0) and εn ↓ 0 be arbitrary sequences. By Assumption 2.4,

⋃
x∈A Φx(s0) is

a pre-compact set. Therefore, there exists a subsequence (relabeled (xn, ϕn, εn))
and a limit ϕ̃ ∈ E such that ϕn → ϕ̃ in E . There exists N ∈ N such that for
all n ≥ N , ρ(ϕn, ϕ̃) < δ

2 . Then if n ≥ N , {ϕ ∈ E : ρ(ϕ, ϕ̃) < δ
2} ⊂ {ϕ ∈ E :

ρ(ϕ,ϕn) < δ}. Consequently, for n ≥ N ,

P(ρ(Xεn
xn
, ϕ̃) < δ/2) ≤ P(ρ(Xεn

xn
, ϕn) < δ). (5.1)

Let j > s0 and define the bounded continuous function h : E → R by

h(ψ) = jmin

{
2ρ(ψ, ϕ̃)

δ
, 1

}
. (5.2)

This function has the properties that h ≥ 0, h(ϕ̃) = 0, and h(ψ) = j if ρ(ψ, ϕ̃) ≥
δ
2 . Combining this observation with (5.1), it follows that for any n ≥ N ,

E exp

(
−
h(Xεn

xn
)

a(εn)

)
≤ e−

j
a(εn) + P(ρ(Xεn

xn
, ϕ̃) < δ/2) (5.3)

≤ e−
j

a(εn) + P(ρ(Xεn
xn
, ϕn) < δ). (5.4)

and

a(εn) logE exp

(
−
h(Xεn

xn
)

a(εn)

)
≤ a(εn) log(2) + max{−j, a(ε) logP(ρ(Xεn

xn
, ϕn) < δ)}. (5.5)

Next we observe that because ϕn ∈ E ,

inf
ϕ∈E

{h(ϕ) + Ixn(ϕ)} ≤ h(ϕn) + Ixn(ϕn). (5.6)

Combining (5.5) and (5.6),

lim inf
n→+∞

(
max{−j, a(ε) logP(ρ(Xεn

xn
, ϕn) < δ)}+ h(ϕn) + Ixn(ϕn)

)
≥ lim inf

n→+∞

(
a(εn) logE

(
−
h(Xεn

xn
)

a(εn)

)
+ inf

ϕ∈E
{h(ϕ) + Ixn(ϕ)}

)
≥ 0.
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The last inequality follows from (2.7) because we assumed that Xε
x satisfies

a ULP. By the continuity of h, limn→+∞ h(ϕn) = h(ϕ̃) = 0. We recall that
Ixn(ϕn) ≤ s0 and that j > s0 implying that −j + lim infn→+∞ Ixn(ϕn) < 0.
From these observations and the above display we conclude that

lim inf
n→+∞

(
a(ε) logP(ρ(Xεn

xn
, ϕn) < δ) + Ixn(ϕn)

)
≥ 0.

Because the sequences (xn, ϕn, εn) were arbitrary, the FWULDP lower bound
(2.3) follows.

Lemma 5.3. Under Assumption 2.4, the ULP implies the FWULDP upper
bound (2.4).

Proof. Assume that Xε
x satisfies a ULP with respect to rate function Ix with

speed a(ε) uniformly over A . Fix A ∈ A , δ > 0, and s0 > 0. Let xn ∈ A,
sn ∈ [0, s0], εn ↓ 0 be arbitrary sequences. By Assumption 2.4,

⋃
x∈A Φx(s0) is a

pre-compact set. This means that the collection of closed subsets of its closure⋃
x∈A Φx(s0) form a compact metric space under the Hausdorff metric (2.2).

Because we assumed that each Ix is a lower-semicontinuous rate function, it
follows that for each n ∈ N, Φxn(sn) is a closed subset of

⋃
x∈A Φxn(s0). By the

compactness of the Hausdorff metric space, there exists a subsequence (relabeled
(xn, sn, εn)) and a closed set B ⊂

⋃
x∈A Φx(s0) such that limn→+∞ λ(Φxn(sn),

B) = 0. There must exist N1 ∈ N such that for all n ≥ N1, it follows that
λ(Φxn(sn), B) < δ

2 .
A consequence of this is that when n ≥ N1,

{ϕ ∈ E : dist(ϕ,Φxn(sn)) ≥ δ} ⊂ {ϕ ∈ E : dist(ϕ,B) ≥ δ/2}.

Therefore,

P(dist(Xεn
xn
,Φxn(sn)) ≥ δ) ≤ P(dist(Xεn

xn
, B) ≥ δ/2). (5.7)

Now we define a bounded continuous function h : E → R. Let j > s0 and
define

h(ψ) = j − jmin

{
2dist(ψ,B)

δ
, 1

}
. (5.8)

This function has the properties that h(ψ) = 0 if dist(ψ,B) ≥ δ
2 and h(ψ) = j

if ψ ∈ B. One consequence of these properties is that for n ≥ N1

P(dist(Xεn
xn
, B) ≥ δ/2) ≤ E exp

(
−
h(Xεn

xn
)

a(εn)

)
. (5.9)

Combining (5.7) and (5.9), for n ≥ N1,

a(εn) logP(dist(X
εn
xn
,Φxn(sn)) ≥ δ) ≤ a(εn) logE exp

(
−
h(Xεn

xn
)

a(εn)

)
. (5.10)

Because j was chosen to be larger than s0 and λ(Φxn(sn), B) converges to
zero, there exists N2 ≥ N1 such that for all n ≥ N2,

j − jδ−12λ(Φxn(sn), B) > s0.
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If n ≥ N2, then for any ϕ ∈ Φxn(sn) the definition of the Hausdorff metric
guarantees that dist(ϕ,B) ≤ λ(Φxn(sn), B) and that

h(ϕ) = j − jmin

{
2dist(ϕ,B)

δ
, 1

}
≥ j − jδ−12λ(Φxn(sn), B) > s0 ≥ sn.

On the other hand, if ϕ ∈ Φxn(sn) then h(ϕ) ≥ 0 (because it is always positive)
and Ixn(ϕn) ≥ sn. From these observations it follows that for n ≥ N2,

inf
ϕ∈E

{h(ϕ) + Ixn(ϕ)} ≥ sn. (5.11)

Combining (5.10) and (5.11),

lim sup
n→+∞

(
a(εn) logP(dist(X

εn
xn
,Φxn(sn)) ≥ δ) + sn

)
≤ lim sup

n→+∞

(
a(εn) logE exp

(
−
h(Xεn

xn
)

a(εn)

)
+ inf

ϕ∈E
{h(ϕ) + Ixn(ϕ)}

)
≤ 0.

The last inequality follows because we assumed that Xε
x satisfies a ULP (2.7).

We can conclude that the FWULDP upper bound (2.4) follows because the
original sequences (xn, sn, εn) were arbitrary.

Lemma 5.4. Under Assumption 2.4, the FWULDP implies that for any A ∈ A
and any bounded, continuous h : E → R.

lim inf
ε→0

inf
x∈A

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)
≥ 0. (5.12)

Proof. Assume that Xε
x satisfies a FWULDP with respect to rate function Ix

with speed a(ε) uniformly over A . Fix A ∈ A and a bounded continuous
h : E → R. Let η > 0 be arbitrary. For each x ∈ A, there exists ϕx ∈ E such
that

h(ϕx) + Ix(ϕx) ≤ inf
ϕ∈E

{h(ϕ) + Ix(ϕ)}+
η

2
. (5.13)

Let s0 = 2‖h‖Cb(E) + η/2. By Lemma A.2 ϕx ∈ Φx(s0) for all x ∈ A.
By Assumption 2.4 and Lemma 5.1, there exists δ > 0 such that for all

ϕ ∈
⋃

x∈A Φx(s0) and ψ ∈ E such that ρ(ϕ, ψ) < δ, it follows that |h(ϕ)−h(ψ)| <
η/2. Consequently, for any ε > 0 and x ∈ A,

E exp

(
−h(Xε

x)

a(ε)

)
≥ E

[
exp

(
−h(Xε

x)

a(ε)

)
1{ρ(Xε

x,ϕx)<δ}

]

≥ exp

(
− (h(ϕx) + η/2)

a(ε)

)
P(ρ(Xε

x, ϕx) < δ). (5.14)

By the FWULDP lower bound (2.3) and by (5.13) and (5.14),

lim inf
ε→0

inf
x∈A

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)
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≥ lim inf
ε→0

inf
x∈A

(
− h(ϕx)− η/2 + a(ε) logP(ρ(Xε

x, ϕx) < δ)

+ h(ϕx) + Ix(ϕx)− η/2
)

≥ lim inf
ε→0

inf
x∈A

inf
ϕ∈Φx(s0)

(a(ε) logP(ρ(Xε
x, ϕ) < δ) + Ix(ϕ))− η

≥ −η.

Because η > 0 was arbitrary, (5.12) follows.

Lemma 5.5. Under Assumption 2.4, the FWULDP implies that for any A ∈ A
and any bounded, continuous h : E → R.

lim sup
ε→0

sup
x∈A

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)
≤ 0. (5.15)

Proof. Assume that Xε
x satisfies a FWULDP with respect to rate function Ix

with speed a(ε) uniformly over A . Fix a bounded continuous h : E → R and
η > 0. Let s0 = 2‖h‖Cb(E) + η. By Assumption 2.4 and Lemma 5.1, there exists
δ > 0 such that for all ϕ ∈

⋃
x∈A Φx(s0) and ψ ∈ E such that ρ(ψ,ϕ) < δ, it

follows that |h(ϕ)− h(ψ)| < η/2.
Let N ∈ N be such that Nη/2 > s0. For x ∈ A, define the subsets of E ,

Ex
0 = {ϕ ∈ E : dist(ϕ,Φx(η/2)) < δ} (5.16)

Ex
k = {ϕ ∈ E : dist(ϕ,Φx(kη/2)) ≥ δ, dist(ϕ,Φx((k + 1)η/2)) < δ} ,
for k = 1, ..., N − 1 (5.17)

Ex
N = {ϕ ∈ E : dist(ϕ,Φx(Nη/2)) ≥ δ} . (5.18)

Note that
⋃N

k=0 E
x
k = E . For any x ∈ A and ε > 0,

E exp

(
−h(Xε

x)

a(ε)

)
≤

N∑
k=0

E

(
exp

(
−h(Xε

x)

a(ε)

)
1{Xε

x∈Ex
k}

)

≤
N∑

k=0

exp

(
−
infϕ∈Ex

k
h(ϕ)

a(ε)

)
P(Xε

x ∈ Ex
k ).

It follows that

a(ε) logE exp

(
−h(Xε

x)

a(ε)

)

≤ a(ε) log

(
N∑

k=0

exp

(
−
infϕ∈Ex

k
h(ϕ)

a(ε)

)
P(Xε

x ∈ Ex
k )

)

≤ a(ε) log(N + 1) + max
k∈{0,...,N}

{
− inf

ϕ∈Ex
k

h(ϕ) + a(ε) logP(Xε
x ∈ Ex

k )

}
.
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By adding and subtracting kη
2 ,

a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
≤ a(ε) log(N + 1) + max

k∈{0,...,N}
{a(ε) logP(Xε

x ∈ Ex
k ) + kη/2}

+ max
k∈{0,...,N}

{
− inf

ϕ∈Ex
k

h(ϕ)− kη/2

}
≤ a(ε) log(N + 1) + max

k∈{0,...,N}
{a(ε) logP(Xε

x ∈ Ex
k ) + kη/2}

− min
k∈{0,...,N}

{
inf

ϕ∈Ex
k

h(ϕ) + kη/2

}
. (5.19)

By the definition of Ex
k for k ∈ {1, .., N},

P(Xε
x ∈ Ex

k ) ≤ P(dist(Xε
x,Φx(kη/2)) ≥ δ)

and it follows by the FWULDP upper bound (2.4) that

lim sup
ε→0

sup
x∈A

max
k∈{1,...,N}

{a(ε) logP(Xε
x ∈ Ex

k ) + kη/2}

≤ lim sup
ε→0

sup
x∈A

max
k∈{1,...,N}

{a(ε) logP(dist(Xε
x,Φx(kη/2)) ≥ δ) + kη/2}

≤ 0.

The k = 0 case is trivially true because P(Xε
x ∈ Ex

0 ) ≤ 1 so it follows that

lim
ε→0

sup
x∈A

max
k∈{0,...,N}

{a(ε) logP(Xε
x ∈ Ex

k ) + kη/2} ≤ 0. (5.20)

To prove (5.15) we show that for any x ∈ A,

inf
ϕ∈E

{h(ϕ) + Ix(ϕ)} ≤ min
k∈{0,..,N}

{
inf

ϕ∈Ex
k

h(ϕ) + kη/2

}
+ η. (5.21)

Fix k ∈ {0, ..., N − 1}. Let ϕ ∈ Ex
k be arbitrary. By the definition of Ex

k ,
there exists ϕ̃ ∈ Φx((k + 1)η/2) such that ρ(ϕ̃, ϕ) < δ. At the beginning of the
proof we chose δ in a way that guarantees that h(ϕ̃) ≤ h(ϕ) + η/2. Note that
Ix(ϕ̃) ≤ kη/2 + η/2. Therefore,

(h(ϕ) + kη/2) + η ≥ h(ϕ̃) + Ix(ϕ̃) ≥ inf
φ∈E

{h(φ) + Ix(φ)}.

For fixed x ∈ A and k ∈ {0, ..., N − 1}, take the infimum over ϕ ∈ Ex
k ,

inf
ϕ∈Ex

k

h(ϕ) + kη/2 + η ≥ inf
ϕ∈E

{h(ϕ) + Ix(ϕ)}.

The above inequality also holds for k = N because of Lemma A.2 and our choice
of N . Therefore, (5.21) holds.
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By (5.19), (5.20), and (5.21),

lim sup
ε→0

sup
x∈A

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)

≤ lim sup
ε→0

(
a(ε) log(N + 1) + sup

x∈A
max

k∈{0,...,N}
{a(ε) logP(Xε

x ∈ Ex
k ) + kη/2}

)

+ sup
x∈A

(
inf
ϕ∈E

{h(ϕ) + Ix(ϕ)} − min
k∈{0,...,N}

{ inf
ϕ∈Ex

k

h(ϕ) + kη/2}
)

≤ η.

Then (5.15) follows because η > 0 was arbitrary.

Theorem 2.5 follows from Lemmas 5.2, 5.3, 5.4, and 5.5.

6. Equivalence of the FWULDP and the DZULDP – Proof of
Theorem 2.7

In this section, we assume that Assumption 2.6 holds.

Lemma 6.1. Under Assumption 2.6, the FWULDP implies the DZULDP lower
bound (2.5).

Proof. Assume that Xε
x satisfies a FWULDP with respect to rate function Ix

with speed a(ε) uniformly over A where A satisfies Assumption 2.6. Let A ∈ A
and let G ⊂ E be open. If supx∈A Ix(G) = +∞, then (2.5) is trivially true.
Assume that s0 := supx∈A Ix(G) < +∞.

Let xn ∈ A and εn ↓ 0 be arbitrary sequences. Let η > 0. Because Assumption
2.6 says that A ⊂ E0 is a compact set, there exists a subsequence (relabeled
(xn, εn)) and a limit x̃ ∈ A such that xn → x̃ in E0.

Because of the definition of s0, there must exist ϕ̃ ∈ G such that Ix̃(ϕ̃) ≤
Ix̃(G) + η ≤ s0 + η. Because G is open, there exists δ > 0 such that {ϕ ∈ E :
ρ(ϕ, ϕ̃) < δ} ⊂ G.

By Assumption 2.6, the sets Φxn(s0+ η) converge to Φx̃(s0+ η) in Hausdorff
metric. In particular, there must exist a sequence {ϕn} ⊂ E such that ϕn ∈
Φxn(s0 + η) and ϕn → ϕ̃. There must exist an N > 0 such that for n ≥ N ,
ρ(ϕn, ϕ) < δ/2. In particular, for n ≥ N ,

{ϕ ∈ E : ρ(ϕ,ϕn) < δ/2} ⊂ {ϕ ∈ E : ρ(ϕ, ϕ̃) < δ} ⊂ G.

Therefore,
P(Xεn

xn
∈ G) ≥ P(ρ(Xεn

xn
, ϕn) < δ/2).

By the FWULDP lower bound (2.3),

lim inf
n→+∞

(
a(εn) logP(X

εn
xn

∈ G) + Ixn(ϕn)
)

≥ lim inf
n→+∞

(
a(εn) logP(ρ(X

ε
xn
, ϕn) < δ/2) + Ixn(ϕn)

)
≥ 0.
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The ϕn were chosen so that Ixn(ϕn) ≤ s0 + η, so we can conclude that

lim inf
n→+∞

a(εn) logP(X
εn
xn

∈ G) ≥ −s0 − η.

(2.5) follows because the sequence (xn, εn) and η > 0 were arbitrary.

Lemma 6.2. Under Assumption 2.6, the FWULDP implies the DZULDP upper
bound (2.6).

Proof. Assume that Xε
x satisfies a FWULDP with respect to rate function Ix

with speed a(ε) uniformly over A where A satisfies Assumption 2.6. Let F ⊂ E
be closed and A ∈ A . If infx∈A Ix(F ) = 0, then the lemma is trivially true.
Assume infx∈A Ix(F ) > 0 and let 0 < s < infx∈A Ix(F ). Let xn ∈ A and εn ↓ 0
be arbitrary.

Because A is compact by Assumption 2.6, there exists a subsequence (rela-
beled (xn, εn)) and a limit x̃ ∈ A such that xn → x̃ in E0. Because F is closed,
Φx̃(s) is compact, and F ∩ Φx̃(s) = ∅, there must be some positive distance
δ > 0 such that F ⊂ {ϕ ∈ E : dist(ϕ,Φx̃(s)) ≥ δ}.

By Assumption 2.6, there exists N ∈ N such that for n ≥ N ,

λ(Φxn(s),Φx̃(s)) < δ/2.

Therefore, for all n ≥ N ,

F ⊂ {ϕ ∈ E : dist(ϕ,Φx̃(s)) ≥ δ} ⊂ {ϕ ∈ E : dist(ϕ,Φxn(s)) ≥ δ/2}.

By the FWULDP upper bound (2.4),

lim sup
n→+∞

a(εn) logP(X
εn
xn

∈ F ) ≤ lim sup
n→+∞

a(εn) logP(dist(X
εn
xn
,Φxn(s)) ≥ δ/2)

≤ −s.

The result follows because the sequence (xn, εn) and s < infx∈A Ix(F ) were
arbitrary.

Lemma 6.3. Under Assumption 2.6, the DZULDP implies the FWULDP lower
bound (2.3).

Proof. Assume that Xε
x satisfies a DZULDP with respect to rate function Ix

with speed a(ε) uniformly over A where A satisfies Assumption 2.6. Fix A ∈ A ,
δ > 0, and s0 > 0. Let xn ∈ A, ϕn ∈ Φxn(s0), εn ↓ 0, and η > 0 be arbi-
trary. By the compactness of A and [0, s0], there exists a subsequence (relabeled
(xn, ϕn, εn)) and limits x̃ ∈ A and s ∈ [0, s0] such that xn → x̃ and Ixn(ϕn) → s.
We choose this subsequence in such a way that Ixn(ϕn) ≤ s+ η for all n.

By Assumption 2.6, λ(Φxn(s+ η),Φx̃(s+ η)) → 0. In particular, there must
exist a sequence ϕ̃n ∈ Φx̃(s+ η) such that ρ(ϕ̃n, ϕn) → 0. By the compactness
of Φx̃(s + η), there is a subsequence (relabeled (xn, ϕn, εn, ϕ̃n)) and a limit
ϕ̃ ∈ Φx̃(s+ η) such that ϕ̃n → ϕ̃. It follows that ϕn → ϕ̃ also.
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Define the open set G = {ϕ ∈ E : ρ(ϕ, ϕ̃) < δ/2}. Because ϕn → ϕ̃, there
exists N ≥ 0 such that for n ≥ N , ρ(ϕn, ϕ̃) < δ/2. Therefore, G ⊂ {ϕ ∈ E :
ρ(ϕ,ϕn) < δ} and

P(ρ(Xεn
xn
, ϕn) < δ) ≥ P(Xεn

xn
∈ G). (6.1)

Also note that ϕ̃ ∈ G and for each n ≥ N , ϕn ∈ G. Therefore,

Ix̃(ϕ̃) ≥ Ix̃(G) and Ixn(ϕn) ≥ Ixn(G). (6.2)

Next, because of (6.1) and the fact that Ixn(ϕn) → s,

lim inf
n→+∞

(
a(εn) logP(ρ(X

εn
xn
, ϕn) < δ) + Ixn(ϕn)

)
≥ lim inf

n→+∞
a(εn) logP(X

εn
xn

∈ G) + s.

Let AN =
⋃∞

n=N{xn} ∪ {x̃}. AN is a compact subset of E0. Therefore, by the
DZULDP lower bound (2.5),

lim inf
n→+∞

(
a(εn) logP(ρ(X

εn
xn
, ϕn) < δ) + Ixn(ϕn)

)
≥ − sup

y∈AN

Iy(G) + s.

By (6.2) and the fact that Ixn(ϕn) ≤ s + η and Ix̃(ϕ̃) ≤ s + η, it follows that
supy∈AN

Iy(G) ≤ s+ η and therefore,

lim inf
n→+∞

(
a(εn) logP(ρ(X

εn
xn
, ϕn) < δ) + Ixn(ϕn)

)
≥ −η.

The FWULDP lower bound (2.3) follows because the sequences (xn, εn, ϕn) and
η > 0 were arbitrary.

Lemma 6.4. Under Assumption 2.6, the DZULDP implies the FWULDP upper
bound (2.4).

Proof. Assume that Xε
x satisfies a DZULDP with respect to rate function Ix

with speed a(ε) uniformly over A where A satisfies Assumption 2.6. Fix A ∈ A ,
δ > 0, and s0 > 0. Fix η > 0. Let xn ∈ A, sn ∈ [0, s0] and εn ↓ 0 be arbitrary.

By the compactness of A and [0, s0], there exist subsequences (relabeled
(xn, sn, εn)) such that xn → x̃ ∈ A and sn → s ∈ [0, s0]. We choose this
subsequence in such a way that for all n, it holds that sn > s− η.

Define the closed set F = {ϕ ∈ E : dist(ϕ,Φx̃(s−η)) ≥ δ/2}. By Assumption
2.6, there exists N ∈ N such that for n ≥ N , λ(Φx̃(s − η),Φxn(s − η)) < δ/4.
Therefore, recalling that sn > s− η, for n ≥ N

{ϕ ∈ E : dist(ϕ,Φxn(sn)) ≥ δ} ⊂ {ϕ ∈ E : dist(ϕ,Φxn(s− η)) ≥ δ} ⊂ F. (6.3)

Similarly for n ≥ N ,

F ⊂ {ϕ ∈ E : dist(ϕ,Φxn(s− η)) ≥ δ/4} (6.4)
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Define the E0-compact set AN =
⋃∞

n=N{xn}∪{x̃}. It follows from the DZULDP
upper bound (2.6) and (6.3) that

lim sup
n→+∞

(
a(εn) logP(dist(X

εn
xn
,Φxn(sn)) ≥ δ) + sn

)
≤ lim sup

n→+∞
a(εn) logP(X

εn
xn

∈ F ) + s

≤ − inf
y∈AN

Iy(F ) + s.

By (6.4), it follows that F ∩ Φxn(s − η) = ∅ and Ixn(F ) > s − η. Similarly,
Ix̃(F ) > s− η. Therefore,

lim sup
n→+∞

(
a(εn) logP(dist(X

εn
xn
,Φxn(sn)) ≥ δ) + sn

)
≤ η.

Because the sequences (xn, sn, εn) and η > 0 were arbitrary, the FWULDP
upper bound (2.4) follows.

Theorem 2.7 is a consequence of Lemmas 6.1, 6.2, 6.3, and 6.4.

7. Equivalence of the FWULDP and EULP – Proof of Theorem 2.10

Lemma 7.1. With no extra assumptions, the EULP implies the FWULDP
lower bound (2.3).

Proof. Assume that Xε
x satisfies an EULP with respect to rate function Ix with

speed a(ε) uniformly over A . Fix A ∈ A , δ > 0, and s0 > 0. Fix j > s0. For

any ϕ ∈ E , define the test functions hj,δ,ϕ(ψ) = jmin
{

ρ(ψ,ϕ)
δ , 1

}
as in (5.2).

These functions are uniformly bounded by j and they are equicontinuous. In
particular, each hj,δ,ϕ is Lipschitz continuous with Lipschitz constant j/δ. With
j and δ fixed, define the equibounded equicontinuous family of test functions
L := {hj,δ,ϕ : ϕ ∈

⋃
x∈A Φx(s0)}.

Note that these functions have the properties that hj,δ,ϕ ≥ 0 and hj,δ,ϕ(ψ) = j
if ρ(ψ,ϕ) > δ. Therefore,

E exp

(
−hj,δ,ϕ(X

ε
x)

a(ε)

)
≤ e−

j
a(ε) + P(ρ(Xε

x, ϕ) < δ)

and

a(ε) logE exp

(
−hj,δ,ϕ(X

ε
x)

a(ε)

)
≤ a(ε) log(2) + max {−j, a(ε) logP(ρ(Xε

x, ϕ) < δ)} . (7.1)

Furthermore, because hj,δ,ϕ(ϕ) = 0,

inf
φ∈E

{hj,δ,ϕ(φ) + Ix(φ)} ≤ Ix(ϕ). (7.2)
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Therefore, by (7.1), (7.2), and the EULP (2.8),

lim inf
ε→0

inf
x∈A

inf
ϕ∈Φx(s0)

(max {−j, a(ε) logP(ρ(Xε
x, ϕ) < δ)}+ Ix(ϕ))

≥ lim inf
ε→0

inf
x∈A

inf
ϕ∈Φx(s0)

(
a(ε) logE exp

(
−hj,δ,ϕ(X

ε
x)

a(ε)

)

+ inf
φ∈E

{hj,δ,ϕ(φ) + Ix(φ)}
)

≥ lim inf
ε→0

inf
x∈A

inf
h∈L

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

φ∈E
{h(φ) + Ix(φ)}

)
≥ 0.

Because we chose j > s0, whenever ϕ ∈ Φx(s0) it follows that −j + Ix(ϕ) ≤
−j + s0 < 0. We can conclude that

lim inf
ε→0

inf
x∈A

inf
ϕ∈Φx(s0)

(a(ε) logP(ρ(Xε
x, ϕn) < δ) + Ix(ϕ)) ≥ 0

proving (2.3).

Lemma 7.2. With no extra assumptions, the EULP implies the FWULDP
upper bound (2.4).

Proof. Assume that Xε
x satisfies an EULP with respect to rate function Ix with

speed a(ε) uniformly over A . Fix A ∈ A , δ > 0, and s0 > 0. Let j > s0. For
any x ∈ A and s > 0, define the functions from E → R

hj,δ,s,x(ψ) = j − jmin

{
dist(ψ,Φx(s))

δ
, 1

}
.

For fixed j and δ, L := {hj,δ,s,x : s ∈ [0, s0], x ∈ A} is a bounded equicontinuous
family of functions, bounded by j and with Lipschitz constant j

δ . Observe that
if dist(ψ,Φx(s)) ≥ δ then hj,δ,s,x(ψ) = 0 implying that

E exp

(
−hj,δ,s,x(X

ε
x)

a(ε)

)
≥ P(dist(Xε

x,Φx(s)) ≥ δ). (7.3)

Note that for any ϕ ∈ E , either ϕ ∈ Φx(s), in which case hj,δ,s,x(ϕ) = j > s, or
ϕ ∈ Φx(s), in which case Ix(ϕ) > s implying that

inf
ϕ∈E

{hj,δ,s,x(ϕ) + Ix(ϕ)} ≥ s. (7.4)

It follows from (7.3), (7.4), and the EULP (2.8) that

lim sup
ε→0

sup
x∈A

sup
s∈[0,s0]

(a(ε) logP(dist(Xε
x,Φx(s)) ≥ δ) + s)

≤ lim sup
ε→0

sup
x∈A

sup
s∈[0,s0]

(
a(ε) logE exp

(
−hj,δ,s,x(X

ε
x)

a(ε)

)
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+ inf
ϕ∈E

{hj,δ,s,x(ϕ) + Ix(ϕ)}
)

≤ lim sup
ε→0

sup
x∈A

sup
h∈L

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)
≤ 0,

proving (2.4).

Lemma 7.3. With no extra assumptions, the FWULDP implies the EULP
lower bound. For any A ∈ A and family L ⊂ Cb(E) of equibounded, equicontin-
uous functions from E → R,

lim inf
ε→0

inf
x∈A

inf
h∈L

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)
≥ 0. (7.5)

Proof. Assume that Xε
x satisfies a FWULDP with respect to rate function Ix

with speed a(ε) uniformly over A . Let A ∈ A and L be a family of uniformly
bounded equicontinuous functions from E → R. Fix η > 0. For each x ∈ A and
h ∈ L, there exists ϕx,h ∈ E such that

h(ϕx,h) + Ix(ϕx,h) ≤ inf
ϕ∈E

{h(ϕ) + Ix(ϕ)}+ η/2. (7.6)

If we let s0 = 2 suph∈L ‖h‖Cb(E) + η/2, then Lemma A.2 guarantees that ϕx,h ∈
Φx(s0).

Because L is an equicontinuous set, there exists δ > 0 such that for any
h ∈ L, ρ(ϕ, ψ) < δ implies |h(ϕ) − h(ψ)| < η/2. In particular, for any x ∈ A,
h ∈ L, and ε > 0,

E

(
−h(Xε

x)

a(ε)

)
≥ E

(
exp

(
−h(Xε

x)

a(ε)

)
1{ρ(Xε

x,ϕx,h)<δ}

)

≥ exp

(
− (h(ϕx,h) + η/2)

a(ε)

)
P(ρ(Xε

x, ϕx,h) < δ). (7.7)

Therefore, by (7.6), (7.7), and the FWULDP lower bound (2.3),

lim inf
ε→0

inf
x∈A

inf
h∈L

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)
≥ lim inf

ε→0
inf
x∈A

inf
h∈L

(
− h(ϕx,h)− η/2 + a(ε) logP(ρ(Xε

x, ϕx,h) < δ)

+ h(ϕx,h) + Ix(ϕx,h)− η/2
)

≥ lim inf
ε→0

inf
x∈A

inf
ϕ∈Φx(s0)

(a(ε) logP(ρ(Xε
x, ϕ) < δ) + Ix(ϕ))− η

≥ −η.

The EULP lower bound (7.5) follows because η was arbitrary.
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Lemma 7.4. With no extra assumptions, the FWULDP implies the EULP
upper bound. For any A ∈ A and family L ⊂ Cb(E) of uniformly bounded,
equicontinuous functions from E → R,

lim sup
ε→0

sup
x∈A

sup
h∈L

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)
≤ 0. (7.8)

Proof. Assume that Xε
x satisfies a FWULDP with respect to rate function Ix

with speed a(ε) uniformly over A . Let A ∈ A and L ⊂ Cb(E) be a family of
uniformly bounded equicontinuous functions from E → R. Fix η > 0. By the
equicontinuity of L, there exists δ > 0 such that whenever ρ(ϕ, ψ) < δ it follows
that |h(ϕ)− h(ψ)| < η/2. Let s0 = suph∈L 2‖h‖Cb(E) + η.

Let N ∈ N be such that Nη/2 > s0. For x ∈ A, define the subsets of E , Ex
k

for x ∈ A and k ∈ {0, ..., N} by (5.16)–(5.18). The rest of the proof of Lemma
7.4 follows from the proof of Lemma 5.5. The only difference is that (5.19), and
(5.21) hold uniformly over h ∈ L because of our choice of δ.

It follows from (5.19), (5.20), and (5.21) that

lim sup
ε→0

sup
x∈A

sup
h∈L

(
a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

)

≤ lim sup
ε→0

(
a(ε) log(N + 1) + sup

x∈A
max

k∈{0,...,N}
{a(ε) logP(Xε

x ∈ Ex
k ) + kη/2}

)

+ sup
x∈A

sup
h∈L

(
inf
ϕ∈E

{h(ϕ) + Ix(ϕ)} − min
k∈{0,...,N}

{
inf

ϕ∈Ex
k

h(ϕ) + kη/2

})
≤ η.

The EULP upper bound (7.8) follows because η > 0 was arbitrary.

8. Proof of Theorem 2.13

Assume that Assumption 2.11 holds. This means that for any ε > 0 and x ∈ E0,
Xε

x = Gx(
√
εβ). By the variational principle of [4, Theorem 2], for any bounded

continuous h : E → R, x ∈ E0 and ε > 0,

ε logE exp

(
−h(Xε

x)

ε

)

= − inf
u∈P2

E

{
1

2

∫ T

0

|u(s)|2Uds+ h

(
G ε
x

(√
εβ(·) +

∫ ·

0

u(s)ds

))}
. (8.1)

Similarly, by the definition of the rate function (2.9),

inf
ϕ∈E

{Ix(ϕ) + h(ϕ)}

= inf
u∈L2([0,T ]:U)

{
1

2

∫ T

0

|u(s)|2Uds+ h

(
G 0
x

(∫ ·

0

u(s)ds

))}
. (8.2)
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Let L ⊂ Cb(E) be a set of equicontinuous, equibounded functions from E → R

and let A ∈ A . To simplify the notation of the proof, for any x ∈ E0, u ∈ P2,
and ε ≥ 0 set

Xε,u
x := G ε

x

(√
εβ +

∫ ·

0

u(s)ds

)
. (8.3)

Upper bound
Let xn ∈ A, hn ∈ L, and εn ↓ 0 be arbitrary sequences. Let η > 0. Following

the localization arguments of [3, Theorem 4.4] and the fact that the hn are
equibounded, we can choose N > 0 large enough and un ∈ PN

2 satisfying (see
(8.1))

εn logE exp

(
−
hn(X

εn
xn
)

εn

)

= − inf
u∈P2

E

{
1

2

∫ T

0

|u(s)|2Uds+ hn

(
Xεn,u

xn

)}

≤ −E

{
1

2

∫ T

0

|un(s)|2Uds+ hn

(
Xεn,un

xn

)}
+ η/3.

Because the right-hand side of (8.2) is an infimum,

inf
ϕ∈E

{Ixn(ϕ) + hn(ϕ)}

= inf
u∈L2([0,T ]:U)

{
1

2

∫ T

0

|u(s)|2Uds+ hn

(
X0,u

xn

)}

≤ E

{
1

2

∫ T

0

|un(s)|2Uds+ hn

(
X0,un

xn

)}
.

By these estimates,

εn logE exp

(
−
hn(X

εn
xn
)

εn

)
+ inf

ϕ∈E
{Ixn(ϕ) + hn(ϕ)}

≤ −E

{
1

2

∫ T

0

|un(s)|2Uds+ hn

(
Xεn,un

xn

)}

+ E

{
1

2

∫ T

0

|un(s)|2Uds+ hn

(
X0,un

xn

)}
+ η/3

≤ E
{
−hn

(
Xεn,un

xn

)
+ hn

(
X0,un

xn

)}
+ η/3. (8.4)

Because the family L is assumed to be bounded and equicontinuous, there exists
M > 0 and δ > 0 such that for all n ∈ N,

‖hn‖Cb(E) ≤ M and if ρ(ϕ, ψ) ≤ δ then |hn(ϕ)− hn(ψ)| ≤ η/3. (8.5)
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This means that for any two E-valued random variables,

E|hn(X1)− hn(X2)| ≤ 2MP(ρ(X1, X2) > δ) +
η

3
P(ρ(X1, X2) ≤ δ).

In particular, (8.4) guarantees that

lim sup
n→+∞

(
εn logE exp

(
−
hn(X

εn
xn
)

εn

)
+ inf

ϕ∈E
{Ixn(ϕ) + hn(ϕ)}

)

≤ lim sup
n→+∞

2MP
(
ρ
(
Xεn,un

xn
, X0,un

xn

)
> δ

)
+

2η

3
. (8.6)

Assumption 2.11 guarantees that

lim
n→+∞

P
(
ρ
(
Xεn,un

xn
, X0,un

xn

)
> δ

)
= 0.

Therefore,

lim sup
n→+∞

(
εn logE exp

(
−
hn(X

εn
xn
)

εn

)
+ inf

ϕ∈E
{Ixn(ϕ) + hn(ϕ)}

)
≤ η.

The EULP upper bound follows because the sequences (hn, xn, εn) and η > 0
were arbitrary.

Lower bound
The proof of the EULP lower bound is almost exactly the same as that of the

upper bound. Let xn ∈ A, hn ∈ L, and εn ↓ 0 be arbitrary. Fix η > 0. Lemma
A.2 along with the definition of the rate function (2.9) guarantee that we can
choose N > 0 large enough and find and un ∈ SN so that by (8.2),

inf
ϕ∈E

{Ixn(ϕ) + hn(ϕ)} = inf
u∈L2([0,T ]:U)

{
1

2

∫ T

0

|u(s)|2Uds+ hn

(
X0,u

xn

)}

≥ 1

2

∫ T

0

|un(s)|2Uds+ hn

(
X0,un

xn

)
− η

3
.

Because the right-hand side of (8.1) includes an infimum,

εn logE exp

(
−
hn(X

εn
xn
)

εn

)
= − inf

u∈P2

E

{
1

2

∫ T

0

|u(s)|2Uds+ hn

(
Xεn,u

xn

)}

≥ −E

{
1

2

∫ T

0

|un(s)|2Uds+ hn

(
Xεn,un

xn

)}
.

Combining these estimates and remembering that the chosen un are non-random,

εn logE exp

(
−
hn(X

εn
xn
)

εn

)
+ inf

ϕ∈E
{Ixn(ϕ) + hn(ϕ)}
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≥ 1

2

∫ T

0

|un(s)|2Uds+ hn

(
X0,un

xn

)
− η

3

− E

{
1

2

∫ T

0

|un(s)|2Uds+ hn

(
Xεn,un

xn

)}

≥ hn

(
X0,un

xn

)
− Ehn

(
Xεn,un

xn

)
− η

3
.

Because L is a family of bounded and equicontinuous functions, there exists
M ≥ 0 and δ > 0 such that (8.5) holds. In particular,

hn

(
X0,un

xn

)
− Ehn

(
Xεn,un

xn

)
≥ −2MP

(
ρ
(
X0,un

xn
, Xεn,un

xn

)
> δ

)
− η

3
.

By Assumption 2.11,

lim
n→+∞

P
(
ρ
(
X0,un

xn
, Xεn,un

xn

)
> δ

)
= 0.

Therefore,

lim inf
n→+∞

(
εn logE exp

(
−
hn(X

εn
xn
)

εn

)
+ inf

ϕ∈E
{Ixn(ϕ) + hn(ϕ)}

)
≥ −η.

Theorem 2.13 follows because the sequences (hn, xn, εn) and η > 0 chosen were
arbitrary.

Appendix A: Some properties of rate functions

In this appendix, we collect some useful results on the properties of rate func-
tions. The first result in this section says that if Ix is a large deviations rate
function for a collection of E-valued random variables Xε

x then infϕ∈E Ix(ϕ) = 0.

Lemma A.1. Fix x ∈ E0 and suppose that {Xε
x} is a collection of E-valued

random variables and Ix is a rate function. Assume that either

(a) For any closed set F ⊂ E,

lim sup
ε→0

a(ε) logP(Xε
x ∈ F ) ≤ − inf

ϕ∈F
Ix(ϕ),

(b) For any δ > 0 and s0 > 0,

lim sup
ε→0

sup
s∈[0,s0]

(a(ε) logP(dist(Xε
x,Φx(s)) ≥ δ) + s) ≤ 0,

or
(c) For any bounded continuous h : E → R,

lim sup
ε→0

∣∣∣∣a(ε) logE exp

(
−h(Xε

x)

a(ε)

)
+ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

∣∣∣∣ = 0.
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Then it follows that

inf
ϕ∈E

Ix(ϕ) = 0. (A.1)

Furthermore, if Ix is a good rate function, then there exists ϕ̃ ∈ E such that
Ix(ϕ̃) = 0.

Proof. This topic is discussed in [11, Chapter 1.2] under assumption (a). In
this proof, we show that the result is true regardless of the definition of large
deviations principle that we use. If (a) is true, then noting that F = E is a
closed set P(Xε

x ∈ E) = 1 so

− inf
ϕ∈E

Ix(ϕ) ≥ lim sup
ε→0

a(ε) logP(Xε
x ∈ E) = 0.

If (b) holds, then we prove the result by contradiction. Assume by contra-
diction that infϕ∈E Ix(ϕ) = s > 0. This means that the level set Φx(s/2) =
∅. Then for any ϕ ∈ E , dist(ϕ,Φx(s/2)) = +∞. Therefore for any δ > 0,
P(dist(Xε

x,Φx(s/2)) ≥ δ) = 1. This contradicts (b) because

a(ε) logP(dist(Xε
x,Φx(s/2)) ≥ δ) + s/2 = s/2 > 0.

If (c) holds, then we set h to be the constant function h(ψ) ≡ 0. Then

E exp(−h(Xε
x)

a(ε) ) = 1 and 0 = infϕ∈E{h(ϕ) + Ix(ϕ)} = infϕ∈E Ix(ϕ) proving the

result.

Finally, if Ix is a good rate function then the minimum is attained. Specif-
ically, we can find a sequence ϕn ∈ E such that limn→+∞ Ix(ϕn) = 0. By the
compactness of level sets, a subsequence converges to a limit ϕ̃. This limit has
the property that for any δ > 0, Ix(ϕ̃) < δ. Therefore Ix(ϕ̃) = 0.

Lemma A.2. For any x ∈ E0, suppose that {Xε
x} satisfies a large deviations

principle with respect to the rate function Ix. Let h : E → R be a bounded and
continuous function.

1. It follows that

inf
ϕ∈E

{h(ϕ) + Ix(ϕ)} ≤ ‖h‖Cb(E). (A.2)

2. If ϕδ ∈ E is such that

h(ϕδ) + Ix(ϕ
δ) ≤ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}+ δ.

then ϕδ ∈ Φx(2‖h‖Cb(E) + δ).
3. If Ix is a good rate function, then there exists ϕ0 ∈ Φx(2‖h‖Cb(E)) such

that

h(ϕ0) + Ix(ϕ
0) = inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}. (A.3)
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Proof. By Lemma A.1,

inf
ϕ∈E

{h(ϕ) + Ix(ϕ)} ≤ ‖h‖Cb(E) + inf
ϕ∈E

Ix(ϕ) ≤ ‖h‖Cb(E)

proving (A.2). For any δ > 0, there exists ϕδ ∈ E such that

h(ϕδ) + Ix(ϕ
δ) ≤ inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}+ δ ≤ ‖h‖Cb(E) + δ.

It follows that,
Ix(ϕ

δ) ≤ 2‖h‖Cb(E) + δ

proving that ϕδ ∈ Φx(2‖h‖Cb(E) + δ).
If Ix is a good rate function, then by the compactness of the level sets,

there exists a subsequence δn → 0 and a limit ϕ0 such that ϕδn → ϕ0 and
Ix(ϕ

0) ≤ lim infn→+∞ Ix(ϕ
δn). Because h is continuous h(ϕδn) → h(ϕ0) and

h(ϕ0) + Ix(ϕ
0) = inf

ϕ∈E
{h(ϕ) + Ix(ϕ)}

and ϕ0 ∈ Φx(2‖h‖Cb(E)).

Appendix B: Sketch of proofs of Lemmas 4.6, 4.7, and 4.8

Sketch of proof of Lemma 4.6. By the factorization method of [10, Chapter
5.3.1], for any Ft-adapted ϕ ∈ C([0.T ] : H),

Γ(ϕ)(t) =
sin(πα)

π

∫ t

0

(t− s)α−1S(t− s)Γα(ϕ)(s)ds

where

Γα(ϕ)(t) =

∫ t

0

(t− s)−αS(t− s)G(ϕ(s))dw(s).

By the Burkholder-Davis-Gundy inequality, for ϕ ∈ C([0, T ] : H), t > 0,

E|Γα(ϕ)(t)|pH ≤ E

(∫ t

0

(t− s)−2α‖S(t− s)G(ϕ(s))‖2L2
ds

) p
2

.

If (4.8) holds, then for p > 1
α , by (4.6)

E|Γα(ϕ)(t)|pH ≤ E

(∫ t

0

s−2αK2(s)ds

) p
2

≤ C.

Then by [10, equation (5.13)], for p > 1
α

E|Γ(ϕ)|pC([0,t]:H) ≤ CE

∫ t

0

|Γα(ϕ)(s)|pHds ≤ C.
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If (4.9) holds, then for p > 1
α , by (4.6)

E|Γα(ϕ)(t)|pH ≤ CE
(
1 + |ϕ|C([0,t]:H)

)p (∫ t

0

s−2αK2(s)ds

) p
2

≤ CE

(
1 + |ϕ|pC([0,t]:H)

)
.

Then

E|Γ(ϕ)|pC([0,t]:H) ≤ CE

∫ t

0

|Γα(ϕ)(s)|pHds ≤ C

(
1 + E

∫ t

0

|ϕ|pC([0,s]:H)ds

)
.

The proof for (4.17) is the same.

Sketch of proof of Lemma 4.7. Fix T > 0 and let ϕ ∈ C([0, T ] : H) and u ∈
L2([0, T ] : U). We once again use the factorization method [10, Chapter 5.3.1]
and observe that

[Λ(ϕ)u](t) =
sin(πα)

π

∫ t

0

(t− s)α−1S(t− s)Λα
s (ϕ)uds (B.1)

where

Λα
t (ϕ)u =

∫ t

0

(t− s)−αS(t− s)G(ϕ(s))u(s)ds. (B.2)

Let {ek}∞k=1 be a complete orthonormal basis for U . For any t > 0,

Λα
t (ϕ)u =

∫ t

0

(t− s)−αS(t− s)G(ϕ(s))u(s)ds

=

∞∑
k=1

∫ t

0

(t− s)−αS(t− s)G(ϕ(s))ek 〈u(s), ek〉U ds.

By Hölder’s inequality,

|Λα
t (ϕ)u|H

≤
( ∞∑

k=1

∫ t

0

(t− s)−2α|S(t− s)G(ϕ(s))ek|2H

) 1
2
( ∞∑

k=1

∫ t

0

〈u(s), ek〉2U ds

) 1
2

≤ |u|L2([0,t]:H)

(∫ t

0

(t− s)−2α‖S(t− s)G(ϕ(s))‖2L2(U,H)ds

) 1
2

If (4.8) holds, then

|Λα
t (ϕ)u|H ≤ |u|L2([0,T ]:U)

(∫ t

0

s−2αK2(s)ds

) 1
2

≤ C|u|L2([0,T ]:U).

By the factorization formula (B.1) and [10, equation (5.13)],

|Λ(ϕ)u|pC([0,T ]:H) ≤ C

∫ T

0

|Λα
t (ϕ)u|pHds ≤ C

proving (4.21). The proofs for (4.20) and (4.22) are analogous.
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Sketch of proof of Lemma 4.8. These results are a straightforward consequence
of Assumption 4.1 and the fact that S(t) is a C0 semigroup. Because S(t) is a
C0 semigroup, the mapping t 	→ Θ(ϕ)(t) is continuous. Let ϕ, ψ ∈ C([0, T ] : H).
Then

|Θ(ϕ)(t)−Θ(ψ)(t)|H ≤
∫ t

0

‖S(t− s)‖L (H)|B(ϕ(s))−B(ψ(s))|Hds.

Because S(t) is a C0 semigroup, sups∈[0,T ] ‖S(s)‖L (H) < +∞ [17, Theorem
1.2.2]. Therefore, it follows from Assumption 4.1 that

|Θ(ϕ)(t)−Θ(ψ)(t)|H ≤ C

∫ t

0

|ϕ(s)− ψ(s)|Hds.

Then (4.23) follows by the Hölder inequality. The proof for (4.24) is the same.

Appendix C: Proof of Theorem 4.3

As observed in Remark 2.12, the rate function Ix is good if for any N > 0 the
level set

Φx(N) =
{
X0,u

x : u ∈ S2N
}

(C.1)

is a compact subset of E . By Alaoglu’s Theorem [19, Chapter 15.1], S2N is a
compact metric space under the weak topology on L2([0, T ] : H). We will prove
compactness of (C.1) by proving that whenever un ⇀ u in the weak topology
on S2N X0,un

x → X0,u
x .

Lemma C.1. Let Λ be defined in (4.14). For any ϕ ∈ C([0, T ] : H), the mapping
u 	→ Λ(ϕ)u is continuous from the weak topology on SN to the norm topology
on C([0, T ] : H)

Proof. Choose any T > 0 and ϕ ∈ C([0, T ] : H). First consider the operator
Λα
t (ϕ) defined in (B.2). We claim that for any t ∈ [0, T ], Λα

t (ϕ) is a Hilbert-
Schmidt operator (and therefore a compact operator) from L2([0, T ] : U) to H.
To prove the claim, let {ek}∞k=1 be a complete orthonormal basis of U and let
{φj}∞j=1 be a complete orthonormal basis of L2([0, T ]). In this way, {ekφj}∞k,j=1

is a complete orthonormal basis of L2([0, T ] : U). To prove that Λα
t (ϕ) is Hilbert-

Schmidt we calculate that

‖Λα
t (ϕ)‖2L2(L2([0,T ]:U),H)

=

∞∑
k=1

∞∑
j=1

|Λα
t (ϕ)ekφj |2H

=

∞∑
k=1

∞∑
j=1

∣∣∣∣
∫ t

0

(t− s)−αS(t− s)G(ϕ(s))ekφj(s)ds

∣∣∣∣
2

H

.



140 M. Salins

Let {fi}∞i=1 be a complete orthonormal basis of H. Then the above expression
equals

=

∞∑
k=1

∞∑
j=1

∞∑
i=1

(∫ t

0

(t− s)−α 〈S(t− s)G(ϕ(s))ek, fi〉H φj(s)ds

)2

.

Because {φj}∞j=1 is a complete orthonormal basis for L2([0, T ]) and {fi}∞i=1 is a
complete orthonormal basis of H, this equals

=

∞∑
k=1

∞∑
i=1

∫ t

0

(t− s)−2α 〈S(t− s)G(ϕ(s))ek, fi〉2H ds

=
∞∑
k=1

∫ t

0

(t− s)−2α|S(t− s)G(ϕ(s))ek|2H

=

∫ t

0

(t− s)−2α‖S(t− s)G(ϕ(s))‖2L2(U,H)ds.

This is finite by Assumption 4.2 proving that Λα
t (ϕ) is a Hilbert-Schmidt oper-

ator from L2([0, T ] : U) to H.
Hilbert-Schmidt operators are compact operators. Compact operators are

continuous from the weak topology to the norm topology [9, Proposition VI.3.3].
This means that for any sequence un ⇀ u in the weak topology on L2([0, T ] : U),
and any t ∈ [0, T ],

lim
n→+∞

|Λα
t (ϕ)(un − u)|H = 0. (C.2)

By the factorization method (B.1) and [10, equation (5.13)], for p > 1
α ,

|Λ(ϕ)(un − u)|pC([0,T ]:H) ≤ C

∫ T

0

|Λα
t (ϕ)(un − u)|pdt.

This converges to zero by (C.2) and the dominated convergence theorem (dom-
ination due to Lemma 4.7).

Proof of Theorem 4.3. Let un be an arbitrary sequence in S2N . Because S2N is
weakly compact in L2([0, T ] : U), there exists a subsequence (relabeled un) and
a limit u such that un ⇀ u in the weak topology. We show that X0,un

x → X0,u
x

in C([0, T ] : H). This proves compactness because the original sequence un was
arbitrary and every element of Φx(N) can be written as X0,u

x for some u ∈ S2N .
Observe that

X0,un
x −X0,u

x = Θ(X0,un
x )−Θ(X0,u

x ) + Λ(X0,un
x )un − Λ(X0,u

x )u.

We rewrite this as

X0,un
x −X0,u

x = Θ(X0,un
x )−Θ(X0,u

x ) + Λ(X0,un
x )un − Λ(X0,u

x )un

+ Λ(X0,u
x )(un − u).
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By (4.20) and (4.23), for t ∈ [0, T ], taking into account that un, u ∈ S2N ,

|X0,u
x −X0,un

x |pC([0,t]:H) ≤ C|Λ(X0,u
x )(un − u)|pC([0,t]:H)

+ C(1 + (2N)p/2)

∫ t

0

|X0,u
x −X0,un

x |pC([0,s]:H)ds.

By Grönwall’s inequality,

|X0,u
x −X0,un

x |pC([0,T ]:H) ≤ CeC(1+(2N)p/2)T |Λ(X0,u
x )(un − u)|pC([0,t]:H).

This converges to zero by Lemma C.1 proving that Φx(N) is compact and that
Ix is a good rate function.

Acknowledgements

The author thanks Amarjit Budhiraja, Paul Dupuis, and David Lipshutz for
many helpful discussions. The author especially thanks Budhiraja and Dupuis
for sharing insights on Lemmas 5.2 and 5.3. Additionally the author thanks an
anonymous referee who provided several helpful suggestions.

References

[1] Biswas, A. and Budhiraja, A. (2011). Exit time and invariant measure
asymptotics for small noise constrained diffusions. Stochastic Processes and
their Applications 121 899–924. MR2775101
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