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Département de Mathématique
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1. Introduction

Stein’s method is a popular tool in applied and theoretical probability, widely
used for Gaussian and Poisson approximation problems. The principal aim of
the method is to provide quantitative assessments in distributional comparison
statements of the form W ≈ Z where Z follows a known and well-understood
probability law (typically normal or Poisson) and W is the object of interest.
To this end, Charles Stein [90] in 1972 laid the foundation of what is now
called “Stein’s method”. For Poisson approximation his student Louis Chen [22]
adapted the method correspondingly, and hence for Poisson approximation the
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method is often called “Stein-Chen method” or “Chen-Stein method”. In recent
years a third very fruitful area of application was born from Ivan Nourdin and
Giovanni Peccati’s pathbreaking idea to intertwine Stein’s method and Malliavin
calculus. First proposed in [70], this aspect of the method is now referred to
as Malliavin-Stein (or Nourdin-Peccati) analysis. For an overview we refer to
the monographs [91, 8, 71, 24] as well as Ivan Nourdin’s dedicated webpage
https://sites.google.com/site/malliavinstein.

Outside of the Gaussian and Poisson frameworks, for univariate distributions
the method has now also been shown to be effective for: exponential approx-
imation [19, 79], Gamma approximation [68, 81, 70], binomial approximation
[31], Beta approximation [43, 28], the asymptotics of rank distributions [35], in-
verse and variance Gamma approximation [38, 37], Laplace approximation [82],
negative binomial approximation [7] or semicircular approximation [46, 47]. It
can also be tailored for specific problems such as preferential attachment graphs
[80], the Curie-Weiss model [21], and other models from statistical mechan-
ics [32, 33]. This list is by no means exhaustive and we refer the reader to
the webpage https://sites.google.com/site/steinsmethod for an accurate
overview of this rapidly moving field. For a target distribution for which Stein’s
method has not yet been developed, setting up the method can appear daunt-
ing. In this paper we give a straightforward yet very flexible framework which
not only encompasses the known examples but is also able to cover any new
distributions which can be given in explicit form.

Broadly speaking, Stein’s method consists of two distinct components, namely

Part A: a framework allowing to convert the problem of bounding the
error in the approximation of W by Z into a problem of bounding the
expectation of a certain functional of W .
Part B: a collection of techniques to bound the expectation appearing
in Part A; the details of these techniques are strongly dependent on the
properties of W as well as on the form of the functional.

For a target probability distribution P with support I, Part A of the method
can be sketched as follows. First find a suitable operator A:= AP =AZ (called
Stein operator) and a wide class of functions F(A) := F(AP) =F(AZ) (called
Stein class) such that

Z ∼ P if and only if E[Af(Z)] = 0 for all f ∈ F(A) (1)

(where Z ∼ P means that Z has distribution P). This equivalence is called a
Stein characterization of P. Next let H be a measure-determining class on I.
Suppose that for each h ∈ H one can find a solution f = fh ∈ F(A) of the Stein
equation

h(x)− E[h(Z)] = Af(x), (2)

where Z ∼ P. Then, if taking expectations is permitted, we have

E[h(W )]− E[h(Z)] = E [Af(W )] . (3)

https://sites.google.com/site/malliavinstein
https://sites.google.com/site/steinsmethod
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There exist a number of probability distances (such as the Kolmogorov, the
Wasserstein, and the Total Variation distance) which can be represented as
integral probability metrics of the form

dH(W,Z) = sup
h∈H

|E[h(W )]− E[h(Z)]| ,

see [71, Appendix C] or [40, 83] for an overview. From (3) we get

dH(W,Z) ≤ sup
f∈F(H)

|E [Af(W )]| (4)

where F(H) = {fh |h ∈ H} is the collection of solutions of (2) for functions
h ∈ H.

When only certain features of W are known, for example that it is a sum
of weakly dependent random variables, then (4) is the usual starting point for
Part B of Stein’s method. Now suppose that, furthermore, a Stein operator AW

(and a class F(AW )) is available for W . Suppose also that F(AZ)∩F(AW ) �= ∅
and choose H such that all solutions f of the Stein equation (2) for AZ and AW

belong to this intersection. Then

E[h(W )]− E[h(Z)] = E[AZf(W )]

= E[AZf(W )]− E[AW f(W )]

(because E[AW f(W )] = 0) and

dH(W,Z) ≤ sup
f∈F(AZ)∩F(AW )

|E[AW f(W )−AZf(W )]|. (5)

Stein [90] discovered the magical relation that the r. h. s. of (4) or (5) provides
a handle to assess the proximity between the laws of W and Z; this is precisely
the object of Part B of Stein’s method.

In many cases, not only are the functions fh well-defined, but also they pos-
sess smoothness properties which render them particularly amenable to com-
putations. Also there exist many ways by which one can evaluate E [Af(W )]
or E[AW f(W ) − AZf(W )] (even under unfavorable assumptions on W ) in-
cluding exchangeable pairs (as for example in [91, 52, 85, 21, 19, 28]), biasing
mechanisms (as in [4, 44, 41, 79, 37]), and other couplings (as in [22, 9]); see
[84, 87, 18] for overviews. Nourdin and Peccati [70] paved the way for many
elegant results in the context of Malliavin calculus, for an overview see [71]. See
also [52, 34, 35, 43, 28, 36] for examples where direct comparison (using the
explicit distribution of W ) via (5) is used.

Of course the devil is in the detail and the quest for suitable Stein operators
which are tractable to deal with for the random variables in question is essential
for the method to be effective. While no precise definition of what exactly a Stein
operator is exists, most authors have used Stein operators which were differential
operators (or difference operators in the case of discrete distributions) obtained
through a suitable variation of one of the four following classical constructions:
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• Stein’s density approach pioneered in [91] relies on the target having an
explicit density p (either continuous or discrete) and then using integra-
tion by parts and classical theory of ordinary differential (or difference)
equations to characterize p (see [21, 28, 65, 75, 92] for the continuous case,
[35, 64, 75] for the discrete case).

• Barbour and Götze’s generator approach (see [5, 48]) is based on classical
theory of Markov processes; this approach has the added advantage of
also providing a probabilistic intuition to all the quantities at play. Some
references detailing this approach for univariate distributions are [30, 34,
43, 52, 58, 59].

• Diaconis and Zabell’s orthogonal polynomial approach (see [26]) uses Ro-
drigues type formulas, if available, for orthogonal polynomials associated
with the target distribution. See also [88] as well as [2] and related refer-
ences for an extensive study of Stein operators for the Pearson (or Ord)
family of distributions.

• Probability transformations such as the size bias transformation [4] and
the zero bias transformation [41] characterize a distribution through be-
ing the unique fixed point of a transformation. See also [42] and [80] for
examples.

These four approaches are by no means hermetically separated: often the op-
erators derived by one method are simple transformations of those derived by
another one. See for instance [42] for a very general theory on the connection
between Stein operators, probability transforms and orthogonal polynomials.
Other methods of constructing Stein operators are available. In [93] Stein oper-
ators for discrete compound distributions are derived by exploiting properties
of the moment generating function. In [3], both Fourier and Malliavin-based
approaches are used to derive operators for targets which can be represented as
linear combinations of independent chi-square random variables. An algebraic
study of Stein operators is initiated in [37] with developments and applications
in [39] and explicit bounds on some solutions provided in [29]. The parametric
approach presented in [63, 66] laid the foundation to the current work.

Outline of the paper

In this paper we propose a generalization of Stein’s density approach, in the
spirit of [64, 66, 65] which leads to a canonical definition of “the” differential-
type operator associated to any given density. The definition is canonical, or
parsimonious, in the sense that, given a target p, we identify minimal condi-
tions under which a Stein characterization of the form (1) can hold. Moreover
we will show with a wealth of examples that all the “useful” operators men-
tioned in the Introduction can be derived as (sometimes not so straightforward)
transformations of our operator.

In Section 2 we introduce our approach in the simplest setting: distributions
with continuous probability density function. Two easy applications are pro-
vided. In Section 3 we establish the set-up and introduce our toolbox in full
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generality. In Section 4 we discuss different important particular cases (which
we call standardizations), hereby linking our approach with the classical litera-
ture on the topic. In Section 5 we provide abstract approximation theorems for
comparing probability distributions. In Section 6 we illustrate the power of our
approach by tackling applications to specific approximation problems.

2. The Stein operator for differentiable probability density functions

In this section we sketch our approach in the simplest setting: X has absolutely
continuous probability density function (pdf) p with respect to the Lebesgue
measure on R. Furthermore we suppose that p has interval support I (i.e. p(x) >
0 for all x ∈ I, some real interval which could be unbounded); we denote a, b
the boundary points of I.

2.1. The Stein operator

Definition 2.1. The Stein class for p is the collection F(p) of functions f :
R → R such that (i) x 
→ f(x)p(x) is differentiable, (ii) x 
→ (f(x)p(x))′ is
integrable and (iii) limx↑b f(x)p(x) = limx↓a f(x)p(x) = 0. The (differential)
Stein operator for p is the differential operator Tp defined by

f 
→ Tpf :=
(fp)′

p
(6)

with the convention that Tpf(x) = 0 for x outside of I.
Remark 2.2. Condition (ii) in Definition 2.1 may easily be relaxed, e.g. by only

imposing that
∫ b

a
(f(x)p(x))′dx =: [f(x)p(x)]

b
a = 0. This condition could also be

dispensed with entirely, although this necessitates to re-define the operator as
Tpf = (fp)′/p− [f(x)p(x)]

b
a. See also Remark 3.10.

Remark 2.3. It should be stressed that the assumptions on f ∈ F(p) can be
quite stringent, depending on the properties of p. There is, for instance, no
guarantee a priori that constant functions f ≡ 1 belong to F(p), as this requires
that p cancels at the edges of its support and is differentiable with integrable
derivative; such assumptions are satisfied neither in the case of an exponential
target nor in the case of a beta target.

Obviously we can always expound the derivative in (6) (at least formally,
because care must be taken with the implicit indicator functions) to obtain the
equivalent expression

Tpf(x) = f ′(x) +
p′(x)

p(x)
f(x) (7)

whose form is reminiscent of the operator advocated by [92, 21]. In our experi-
ence, however, operator (7) is a priori not necessarily useful in that form because
most of the conditions inherited from p are still implicit in the properties of f ,
as illustrated in Examples 2.4 and 2.5.
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Example 2.4. If p(x) ∝ (x(1 − x))−1/2
I[0, 1] then F(p) is the collection of

functions f : R → R such that f(x)/
√

x(1− x) is differentiable with integrable

derivative and with the limiting behavior limx→0,1 f(x)/
√
x(1− x) = 0. Op-

erator (7) becomes Tpf(x) = f ′(x) + (2x − 1)/(2x(1 − x))f(x). The operator
is cumbersome but nevertheless well defined at all points x ∈ [0, 1] thanks to
the conditions on f ∈ F(p). In particular these conditions ensure that f(x)
cancels at 0 and 1 faster than p(x) diverges. Taking functions of the form
f(x) = (x(1 − x))αf0(x) with α > 1/2 suffices. For instance the choice α = 1
yields the operator Apf0(x) = Tpf(x) = x(1 − x)f ′

0(x) +
(
1
2 − x

)
f0(x) used in

[43, 28] for Beta approximation.

The pair (Tp,F(p)) is uniquely associated to p. By choosing to focus on
different subclasses F(Ap) ⊂ F(p) one obtains different operators acting on
different sets of functions.We call the passage from (Tp,F(p)) to (Ap,F(Ap))
a parameterization of the Stein operator. There remains full freedom in the
choice of this explicit form and it remains necessary to further understand the
properties of p in order to select those functions f ∈ F(p) for which (7) will
assume the most tractable expression. In Example 2.4 this is achieved by a
simple transformation of the test functions; in other cases the transformations
are much more complex and the resulting operators are not even necessarily of
first order.

Example 2.5 (Kummer-U distribution). Let U(a, b, z) be the unique solution
of the differential equation zd2U/dz2 + (b− z)dU/dz − aU = 0. Then U(a, b, z)
is the confluent hypergeometric function of the second kind (also known as the
Kummer U function). A random variable X follows the Kummer-U distribution
Ks if its density is

κs(x) = Γ(s)

√
2

sπ
exp

(
−x2

2s

)
Vs(x)I(x ∈ (0,∞)), s ≥ 1/2,

with Γ(s) the Gamma function and Vs(x) = U
(
s− 1, 1

2 ,
x2

2s

)
. The class F(κs)

contains all differentiable functions such that limx→0 or∞ f(x)κs(x) = 0. As
noted in [80], the canonical Stein operator (as given in (7)) is cumbersome.
One can show by direct computations that for differentiable f0 we have(

κs(x)
(f0(x)Vs(x))

′

Vs(x)

)′

κs(x)
= sf ′′

0 (x)− xf ′
0(x)− 2(s− 1)f0(x) =: A0(f0)(x)

for x > 0, which suggests to consider functions f ∈ F(κs) of the form

f(x) =
(f0(x)Vs(x))

′

Vs(x)
,

hereby providing a new derivation of the second order operator given in [80,
Lemma 3.1, Lemma 3.2] where Stein’s method was first set up for this distribu-
tion.
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2.2. The generalized Stein covariance identity

Given a function f ∈ F(p), we now introduce a second class of functions which
contains all g : R → R which satisfy the integration by parts identity:

∫ b

a

g(x)(f(x)p(x))′dx = −
∫ b

a

g′(x)(f(x)p(x))dx. (8)

It is easy to deduce conditions under which (8) holds; these are summarized in
the next definition.

Definition 2.6. Let p be as above. To each f ∈ F(p) we associate G(p, f), the
collection of functions such that

(i) x 
→ |g(x)(f(x)p(x))′|, x 
→ |g′(x)(f(x)p(x))| are both integrable on I;
(ii) [g(x) f(x) p(x)]

b
a = 0.

We also define G(p) =
⋂

f∈F(p) G(p, f), and call these functions the test func-
tions for p.

If F(p) is not empty then neither are G(p, f) and G(p) because they must
contain the constant function g ≡ 1. Rewriting identity (8) in terms of the Stein
pair (Tp,F(p)) leads to the generalized Stein covariance identity

E [g(X)Tpf(X)] = −E [g′(X)f(X)] for all f ∈ F(p) and g ∈ G(p, f). (9)

This identity generalizes several fundamental probabilistic integration by parts
formulas. For instance if, on the one hand, f ≡ 1 ∈ F(p) then G(p, 1) contains
all g : R → R that are absolutely continuous with compact support and

E [g(X)ρ(X)] = −E [g′(X)] for all g ∈ G(p, 1),

with ρ = Tp1 the score function of X. If, on the other hand, E[X] = μ is finite
then choosing f = τp with

τp(x) =
1

p(x)

∫ ∞

x

(y − μ)p(y)dy (10)

the so-called Stein kernel of p and G the corresponding collection of functions
leads to Stein’s classical covariance identity

E [(X − μ)g(X)] = E [τp(X)g′(X)] for all g ∈ G(p, τp)

(note how by definition Tp(τp)(x) = μ− x); it is easy to see that it suffices that
g be differentiable and bounded at the edges of the support of I. This approach
was first studied in [91] (see also [28, 58, 2]).

Remark 2.7. Equation (9) also provides an alternative definition of the Stein
operator (6) as some form of skew-adjoint operator to the derivative with respect
to integration in pdx.
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2.3. Stein characterizations

In Section 3.5 we will show that, under reasonable assumptions on p, the classes
F(p) and G(p) are sufficiently large to ensure that (9) also characterizes the
distribution p. This realization leads to a collection of versions of the Stein
characterization (1). For example, we shall prove that

for each g ∈ G(p),
Y ∼ p ⇐⇒ E [g(Y )Tpf(Y )] = −E [g′(Y )f(Y )] for all f ∈ F(p); (11)

and

for each f ∈ F(p),

Y ∼ p ⇐⇒ E [g(Y )Tpf(Y )] = −E [g′(Y )f(Y )] for all g ∈ G(p, f). (12)

We refer to Section 3.5 for more information as well as a precise statement of
the conditions on p under which such characterizations hold.

The freedom of choice for test functions f and g implies that many different
characterizations can be immediately deduced from (11), (12) or more generally
from (9). For example taking g = 1 in (11) we obtain

Y ∼ p ⇐⇒ E

[
f ′(X) + f(X)

p′(X)

p(X)

]
= 0 for all f ∈ F(p) (13)

with F(p) the functions such that (fp)′ is integrable with integral 0. If one is
allowed to take f = 1 in (12) then we deduce the characterization

Y ∼ p ⇐⇒ E

[
g(Y )

p′(Y )

p(Y )

]
= −E [g′(Y )] for all g ∈ G(p, 1), (14)

with G(p, 1) the functions such that gp′ and g′p are integrable and gp has inte-
gral 0. Although the difference between (13) and (14) may be subtle, the last
characterization is more in line with the classical literature on the topic to be
found e.g. in [21]’s general approach (the specific conditions outlined in [21] for
their approach to work out guarantee that 1 ∈ F(p)).

2.4. Stein equations and Stein factors

The heuristic behind Stein’s method outlined in the Introduction is that ifX ∼ p
is characterized by E [AXf(X)] = 0 over the class F(AX) then Δf (Y,X) :=
|E [AXf(Y )]| ought to be a good measure of how far the law of Y is from that
of X. Considering equations such as (3) leads to the conclusion that indeed
supf Δf (Y,X) provides a bound on all integral probability metrics such as (4).

A similar reasoning starting from the generalized Stein covariance identity
(9) encourages us to consider, for some well chosen test function h, generalized
Stein equations of the form

g(x)Tpf(x) + g′(x)f(x) = h(x)− E[h(X)] (15)
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(these are now equations in two unknown functions) and the corresponding
quantities

Δf,g(X,Y ) = |E [g(Y )Tpf(Y ) + g′(Y )f(Y )]| (16)

for f ∈ F(p) and g ∈ G(p, f).
There are many ways to exploit the freedom of choice of test functions (f, g)

in (16). A clear aim is to choose these functions in such a way that the expression
is as manageable as possible and to this end it is natural to consider f ∈ F(p)
such that

Tp(f) = h (17)

for some well-chosen h. Obviously for (17) to make sense it is necessary that h
has mean 0 and, in this case, it is easy to solve this first order equation, at least
formally. Introducing the class F (0)(p) of functions with p-mean 0 we are now
in a position to introduce the inverse Stein operator

T −1
p : F (0)(p) 
→ F(p) : h 
→ 1

p(x)

∫ x

a

h(u)p(u)du. (18)

Similarly as with the differential Stein operator Tp, the integral operator T −1
p

is uniquely associated to p.

Example 2.8. The Stein kernel (10) is T −1
p h with h the (recentered) identity

function.

In general one will choose f and g in such a way as to ensure that (i) both
Tpf and f have agreeable expressions, and (ii) solutions to (15) have good
properties, hereby ensuring that (16) is amenable to computations. We will show
in Sections 5 and 6 that this is the case for a wide variety of target distributions.
Given H ⊂ F (0), constants such as

sup
h∈H

∥∥T −1
p h

∥∥
∞ and sup

h∈H

∥∥∥(T −1
p h

)′∥∥∥
∞

(19)

will play an important role in the success of the method. These are usually
referred to as the Stein factors of p, and there is already a large body of literature
dedicated to their study under various assumptions on p, see e.g. [12, 86, 7, 29].

2.5. Comparing probability densities by comparing Stein operators

Now let X1 and X2 have densities p1, p2 with supports I1, I2 and Stein pairs
(T1,F1) and (T2,F2), respectively. Equation (15) leads to an ensemble of Stein
equations for Xi, i = 1, 2 of the form

h(x)− E[h(Xi)] = g′(x)f(x) + g(x)Tif(x) (20)

whose solutions are now pairs (f, g) ∈ F(pi)×G(pi). Given a sufficiently regular
function h then any pair fi, gi ∈ F(pi)× G(pi) satisfying

fi(x)gi(x) =
1

pi(x)

∫ x

ai

pi(u) (h(u)− E[h(Xi)]) du (21)
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(with ai, i = 1, 2 the lower edge of Ii) is a solution to (20) for i = 1, 2. Functions
such as the one on the rhs of (21) have been extensively studied, see e.g. [91, 58].

There are many starting points from here. For example taking differences
between Equations (20) for i = 1, 2 leads to the unusual identity

E[h(X2)]− E[h(X1)] (22)

= (g′1(x)f1(x)− g′2(x)f2(x)) + (g1(x)T1f1(x)− g2(x)T2f2(x))

for all x ∈ I1 ∩ I2 and all (fi, gi) ∈ F(pi) × G(pi) which satisfy (21). It is
more usual to exploit (20) as follows. Pick a solution (f1, g1) of (21) and a pair
(f2, g2) ∈ F(p2)×G(p2), which ensures that E[g′2(X2)f2(X2)+g2(X2)T2f2(X2)] =
0 while (f2, g2) is not required to satisfy (21). Taking expectations in X2 on both
sides of (20) yields

E[h(X2)]− E[h(X1)] = E [g′1(X2)f1(X2) + g1(X2)T1f1(X2)]

= E [g′1(X2)f1(X2)− g′2(X2)f2(X2)]

−E [g1(X2)T1f1(X2)− g2(X2)T2f2(X2)] , (23)

under the additional assumption that all expectations exist. Identity (23) is
a powerful starting point for stochastic approximation problems, as one can
handpick the functions fi, i = 1, 2 and gi, i = 1, 2 best suited to the problem
under study.

• Assume that f1 = f2 = 1 is permitted and that g1, defined in (21), belongs
to G(p2). Then from (23) we deduce that

E[h(X2)]− E[h(X1)] = E [g1(X2) (ρ2(X2)− ρ1(X2))]

where ρi is the score function of Xi. This identity (which holds as soon as
g1 ∈ F(p2)) in turn leads to the Fisher information inequalities studied,
e.g., in [89, 54, 65].

• Assume that X1, X2 both have mean ν and pick f1, f2 such that T1f1 =
T2f2 = x− ν. Let g1 be the corresponding function from (21) and assume
that g1 ∈ G(p2). Then

E[h(X2)]− E[h(X1)] = E [g′1(X2) (τ1(X2)− τ2(X2))] (24)

where τi is the Stein kernel of Xi. From here one readily recovers the key
inequalities from [17, 13]. This is also the starting point of the Nourdin-
Peccati approach to Stein’s method [71].

Many other identities can be obtained. We have recently applied this result
to the computation of explicit bounds in a problem of Bayesian analysis, see
[62]. Several applications will be provided in Sections 5 and 6. We conclude this
section with two easy applications.
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2.6. Application 1: Rates of convergence to the Fréchet distribution

Let Xα follow the Fréchet distribution with tail index α so that

P (Xα ≤ x) =: Φα(x) = exp(−x−α)I(x ≥ 0).

The Stein class F(α) for the Fréchet is the collection of all differentiable func-

tions f on R such that limx→+∞ f(x)x−α−1e−x−α

= limx→0 f(x)x
−α−1e−x−α

=
0. We restrict our attention to functions of the form f(x) = xα+1f0(x). In this
parameterization the differential Stein operator becomes

Aαf0(x) = xα+1f ′
0(x) + αf0(x). (25)

The generalized Stein equation (20) with g = 1 reads xα+1f ′
0(x) + αf0(x) =

h(x)− E[h(Xα)] and, given h(x) = I(x ≤ z), has unique bounded solution

fz(x) =
1

α
(Φα(x ∧ z)/Φα(x)− Φα(z)) . (26)

This function is continuous and differentiable everywhere except at x = z; it
satisfies 0 ≤ αfz(x) ≤ 1 for all x, z ≥ 0 as well as limx→+∞ fz(x) = 0.

Next take F (x) = (1 − x−α)I(x ≥ 1) the Pareto distribution and for n ≥ 1
consider the random variable Wn = Mn/n

1/α. Its probability density function

is pn(x) = αx−α−1 (1− x−α/n)
n−1

on [n−1/α,+∞). For each n the random
variable Wn has a Stein pair (Tn,F(n)), say. In order to compare with the
Fréchet distribution we consider the standardization

An(f0)(x) =
(xα+1f0(x)pn(x))

′

pn(x)
= xα+1f ′

0(x) + α
n− 1

n

(
1− x−α

n

)−1

f0(x)

with f0 an absolutely continuous function such that

lim
x→+∞

xα+1f0(x)pn(x) = lim
x→n−1/α

xα+1f0(x)pn(x) = 0.

The function fz given in (26) satisfies these two constraints. Hence
E [An(fz)(Wn)] = 0 and from (23) we get in this particular case

P (Wn ≤ z)− Φα(z) = αE

[
fz(Wn)

(
1− n− 1

n

(
1− W−α

n

n

)−1
)]

.

The function x 
→ 1 − n−1
n

(
1− x−α

n

)−1

is negative for all x ≥ n−1/α. Also, it

is easy to compute explicitly E

[
n−1
n

(
1− W−α

n

n

)−1

− 1

]
= 2

n−1

(
1− 1

n

)n
. We

deduce the upper bound

sup
z∈R

|P (Wn ≤ z)− Φα(z)| ≤
2e−1

n− 1
.

More general bounds of the same form can be readily obtained for maxima of
independent random variables satisfying adhoc tail assumptions.
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2.7. Application 2: A CLT for random variables with a Stein kernel

Let X1, . . . , Xn be independent centered continuous random variables with unit
variance and Stein kernels τ1, . . . , τn as given by (10). Also let Z be a standard
normal random variable independent of all else. The standard normal random
variable (is characterized by the fact that it) has constant Stein kernel τZ(x) = 1.
Finally let W = 1√

n

∑n
i=1 Xi. We will prove in Section 5.3 that

τW (w) =
1

n

n∑
i=1

E [τi(Xi) |W = w] (27)

(see Proposition 5.12) which we can use in (24) (setting X2 = W and X1 = Z)
to deduce that

E [h(W )]− E [h(Z)] =
1

n
E

[
g′1(W )

n∑
i=1

(1− τi(Xi))

]

≤ 1

n

√√√√√E [g′1(W )2]E

⎡
⎣
(

n∑
i=1

(1− τi(Xi))

)2
⎤
⎦.

Classical results on Gaussian Stein’s method give that ‖g′1‖∞ ≤ 1 if h(x) =
I(x ≤ z), see [24, Lemma 2.3]. Also, using the fact that E[1− τi(Xi)] = 0 for all

i = 1, . . . , n as well as E
[
(τi(Xi)− 1)

2
]
= E

[
τi(Xi)

2
]
− 1, we get

E

⎡
⎣
(

n∑
i=1

(1− τi(Xi))

)2
⎤
⎦ = Var

(
n∑

i=1

(1− τi(Xi))

)
=

n∑
i=1

(
E

[
τi(Xi)

2
]
− 1

)
.

If the Xi are i.i.d. then we finally conclude that

sup
z

|P (W ≤ z)− P (Z ≤ z)| ≤ 1√
n

√
(E [τ1(X1)2]− 1). (28)

Of course (28) is for illustrative purposes only because the requirement that the
Xi, i = 1, . . . , n, possess a Stein kernel is very restrictive (even more restrictive
than the existence of a fourth moment). In this application it is assumed that
W has a continuous distribution; this assumption is not necessary because Stein
kernels can be defined for any univariate distribution. We will provide a general
version of (28) in Section 5.3.

3. The canonical Stein operator

In this section we lay down the foundations and set the framework for our
general theory of canonical Stein operators.
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3.1. The setup

Let (X ,B, μ) be a measure space with X ⊂ R (see Remark 3.7). Let X � be the
set of real-valued functions on X . We require the existence of a linear operator

D : dom(D) ⊂ X � → im(D)

such that dom(D) \ {0} is not empty. As is standard we define

D−1 : im(D) → dom(D)

as the linear operator which sends any h = Df onto f . This operator is a right-
inverse for D in the sense that D

(
D−1h

)
= h for all h ∈ im(D) whereas, for

f ∈ dom(D), D−1 (Df) is only defined up to addition with an element of ker(D).
We impose the following assumption.

Assumption 1. There exists a linear operator D� : dom(D�) ⊂ X � → im(D�)
and a constant l := lX ,D such that

D(f(x)g(x+ l)) = g(x)Df(x) + f(x)D�g(x) (29)

for all (f, g) ∈ dom(D)× dom(D�) and for all x ∈ X .

Assumption 1 guarantees that operators D and D� are skew-adjoint in the
sense that ∫

X
gDfdμ = −

∫
X
fD�gdμ (30)

for all (f, g) ∈ dom(D) × dom(D�) such that gDf ∈ L1(μ), or fD�g ∈ L1(μ),
and in addition

∫
X D(f(·)g(·+ l))dμ = 0.

Example 3.1 (Lebesgue measure). Let μ be the Lebesgue measure on X = R

and take D the usual strong derivative. Then

D−1f(x) =

∫ x

•
f(u)du

is the usual antiderivative. Assumption 1 is satisfied with D� = D and l = 0.

Example 3.2 (Counting measure). Let μ be the counting measure on X = Z

and take D = Δ+, the forward difference operator Δ+f(x) = f(x + 1) − f(x).
Then

D−1f(x) =

x−1∑
k=•

f(k).

Also we have the discrete product rule

Δ+(f(x)g(x− 1)) = g(x)Δ+f(x) + f(x)Δ−g(x)

for all f, g ∈ Z
� and all x ∈ Z. Hence Assumption 1 is satisfied with D� = Δ−,

the backward difference operator, and l = −1.

Example 3.3 (Counting measure on the grid). Let μ be the counting measure
on X = δZ with δ > 0 and take D = Δ+

δ , the scaled forward difference operator
Δ+

δ f(x) = δ−1 (f(x+ δ)− f(x)). The inverse D−1 is defined similarly as in the
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previous example. Setting Δ−
δ f(x) = δ−1 (f(x)− f(x− δ)), we have the discrete

product rule

Δ+
δ (f(x)g(x− δ)) = g(x)Δ+

δ f(x) + f(x)Δ−
δ g(x)

for all f, g ∈ Z
� and all x ∈ R. Hence Assumption 1 is satisfied with D� = Δ−

δ

and l = −δ.

Example 3.4 (Standard normal). Let ϕ be the standard normal density func-
tion so that ϕ′(x) = −xϕ(x). Let μ(x) be the standard normal measure on R

and take D = Dϕ the differential operator defined by

Dϕf(x) = f ′(x)− xf(x) =
(f(x)ϕ(x))′

ϕ(x)
,

see e.g. [60]. Then

D−1
ϕ f(x) =

1

ϕ(x)

∫ x

•
f(y)ϕ(y)dy.

Also we have the product rule

Dϕ(gf)(x) = (gf)′(x)− xg(x)f(x)

= g(x)Dϕf(x) + f(x)g′(x).

Hence Assumption 1 is satisfied with D�g = g′ and l = 0.

Example 3.5 (Poisson). Let γλ be the Poisson probability mass function with
parameter λ. Let μ(x) be the corresponding Poisson measure on Z

+ and take
D = Δ+

λ the difference operator defined by

Δ+
λ f(x) = λf(x+ 1)− xf(x) =

Δ+(f(x)xγλ(x))

γλ(x)
.

Then

(Δ+
λ )

−1f(x) =
1

xγλ(x)

x−1∑
k=•

f(k)γλ(k)

which is ill-defined at x = 0 (see, e.g., [6, 8]). We have the product rule

Δ+
λ (g(x− 1)f(x)) = g(x)Δ+

λ f(x) + f(x)xΔ−g(x).

Hence Assumption 1 is satisfied with D�g(x) = xΔ−g(x) and l = −1.

Remark 3.6. In all examples considered above the choice of D is, in a sense,
arbitrary and other options are available. In the Lebesgue measure setting of
Example 3.1 one could, for instance, use D the derivative in the sense of distri-
butions, or even Df(x) = ∂

∂tf(Ptx) for x 
→ Ptx some transformation of X ; see
e.g. [66]. In the counting measure setting of Example 3.2 the roles of backward
and forward difference operators can be exchanged; these operators can also be
replaced by linear combinations as, e.g., in [51]. The discrete construction is
also easily extended to general spacing δ �= 1 : if X = δZ, then we can take
D = Δ+

δ such that Df(x) = f(x+ δ)− f(x). In the Poisson example one could
also consider
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Df(x) =
λ

x+ 1
f(x+ 1)− f(x) =

Δ+(f(x)γλ(x))

γλ(x)
.

In all cases less conventional choices of D can be envisaged (even forward dif-
ferences in the continuous setting).

Remark 3.7. Nowhere is the restriction to dimension 1 necessary in this sub-
section and our approach could in principle be transcribed verbatim to arbitrary
dimension. In fact, in the wake of pathbreaking references [5, 48], much has al-
ready been achieved via Stein’s method for multivariate analysis, particularly in
the context of Gaussian approximation as e.g. in [44, 20, 73, 85]. Recent notable
contributions to a general multivariate theory are to be found in [45, 69], [11]
and [10]. A multivariate version of our “canonical” theory requires much care
and we choose to delay its exposition to a later publication (in preparation). We
will not discuss this topic further here.

3.2. Canonical Stein class and operator

Following [43] we say that a subset I ⊂ X is a finite interval if I = {a, b} ∩ X
for a, b ∈ R with a ≤ b, and an infinite interval if either I = (−∞, b} ∩ X or
I = {a,∞)∩X or I = X (provided, of course, that X itself has infinite length).
Here { is used as shorthand for either ( or [, and similarly } is either ) or ]. In the
sequel we consistently denote intervals by I = {a, b} where −∞ ≤ a ≤ b ≤ +∞
(we omit the intersection with X unless necessary).

Now consider a real-valued random variable X on X such that PX(A) =
P(X ∈ A) for A ∈ B is absolutely continuous w.r.t. μ. Let p = dPX/dμ be
the Radon-Nikodym derivative of PX ; throughout we call p the density of X
(even if X is not a continuous random variable). In the sequel, we only con-
sider random variables such that p ∈ dom(D) and whose support supp(p) =
{x ∈ X | p(x) > 0} =: I is an interval of X . For any real-valued function h on
X we write

Eph = E[h(X)] =

∫
X
hpdμ =

∫
I
hpdμ;

this expectation exists for all functions h : X → R such that Ep|h| < ∞; we
denote this set of functions by L1

μ(p) ≡ L1
μ(X).

Definition 3.8. The canonical D-Stein class F(p) ≡ F(X)(= Fμ(p)) for X is
the collection of functions f ∈ L1

μ(p) such that (i) fp ∈ dom(D), (ii) D(fp) ∈
L1(μ) and (iii)

∫
I D(fp)dμ = 0. The canonical D-Stein operator Tp ≡ TX for p

is the linear operator on F(X) defined as

TXf : F(X) → L1
μ(p) : f 
→ D(fp)

p
, (31)

with the convention that TXf = 0 outside of I. We call the construction
(TX ,F(X)) = (Tp,F(p)) a D-Stein pair for X.

Remark 3.9. In the sequel we shall generally drop the reference to the domi-
nating differential D.
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To avoid triviality we from hereon assume that F(X) \ {0} �= ∅. Note that
F(X) is closed under multiplication by constants. By definition, TXf ∈ L1

μ(p)
for all f ∈ F(X), and

E[TXf(X)] =

∫
I

D(fp)(x)

p(x)
p(x)dμ(x) =

∫
I
D(fp)(x)dμ(x) = 0,

so that TX satisfies Equation (1), qualifying it as a Stein operator.

Remark 3.10. The assumption for F(X) that
∫
I D(fp)dμ = 0 is made for

convenience of calculation but it is not essential. Indeed sometimes it may be
more natural not to impose this restriction. For example if μ is the continuous
uniform measure on [0, 1] and p = 1, with D the usual derivative, then imposing

that
∫ 1

0
f ′(x)dx = f(1) − f(0) = 0 may not be natural. The price to pay for

relaxing the assumption is that in the definition of TXf(X) we would have to
subtract this integral, as in [92], to assure that E[TXf(X)] = 0.

The canonical Stein operator (31) bears an intuitive interpretation in terms
of the linear operator D.

Proposition 3.11. For all f ∈ F(X) define the class of functions

dom(D, X, f) = {g ∈ dom(D�) : g(·+ l)f(·) ∈ F(X),

E|f(X)D�(g)(X)| < ∞ or E|g(X)TXf(X)| < ∞} . (32)

Then
E [f(X)D�(g)(X)] = −E [g(X)TXf(X)] (33)

for all f ∈ F(X) and all g ∈ dom(D, X, f).

Proof. Assumption 1 assures us that

D(g(·+ l)f(·)p(·))(x) = g(x)D(fp)(x) + f(x)p(x)D�g(x)

for all f ∈ F(X) and all g ∈ dom(D�). If g ∈ dom(D, X, f) then
∫
X D(g(x +

l)f(x)p(x))dμ(x) = 0 and

E

[
g(X)

D(fp)

p
(X)

]
=

∫
I
gD(fp)dμ

= −
∫
I
fpD�(g)dμ

= −E[f(X)D�(g)(X)],

with both integrals being finite. This yields (33).

As anticipated in the Introduction, the relationship (33) shows that if D is
skew-adjoint with respect to D� under integration in μ then the canonical Stein
operator is skew-adjoint to D� under integration in the measure PX . This mo-
tivates the use of the terminology “canonical” in Definition 3.8; we will further
elaborate on this topic in Section 3.5.
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Example 3.12 (Example 3.1, continued). Let X be a random variable with
absolutely continuous density p with support I = {a, b}. Then F(X) is the
collection of functions f : R → R such that fp ∈ W 1,1 the Sobolev space of
order 1 on L1(dx) and limx↘a f(x)p(x) = limx↗b f(x)p(x); the canonical Stein
operator is

TXf =
(fp)′

p

which we set to 0 outside of I. Also, for f ∈ F(X), dom((·)′ , X, f) is the class
of differentiable functions g : R → R such that

∫
(gfp)

′
dx = 0,

∫
|g′fp|dx <

∞ or
∫
|g(fp)′|dx < ∞. (Note that the first requirement implicitly requires∫

| (gfp)′ |dx < ∞.) In particular all constant functions are in dom((·)′ , X, f).
In the case that p itself is differentiable (and not only the function x 
→

f(x)p(x) is) we can write

TXf(x) =

(
f ′(x) + f(x)

p′(x)

p(x)

)
I(x ∈ I), (34)

with I(·) the usual indicator function. This is operator (7) from Stein’s density
approach. Note that, in many cases, the constant functions may not belong to
F(X). Operator (34) was also discussed (under slightly different – more restric-
tive – assumptions) in [21]. See also [65] for a similar construction.

Example 3.13 (Example 3.2, continued). Recall D = Δ+ and consider X some
discrete random variable whose density p has interval support I = [a, b] (with,
for simplicity, a > −∞). The associated (forward) Stein operator is

TXf =
Δ+(fp)

p
,

which we set to 0 outside of I. We divide the example in two parts.

1. If b < +∞: the associated (forward) canonical Stein class F(X) is the
collection of functions f : Z → R such that f(a) = 0, and, for f ∈ F(X),
dom(Δ+, X, f) is the collection of functions g : Z → R.

2. If b = +∞: the (forward) canonical Stein class F(X) is the collection of
functions f : Z → R such that f(a) = 0 and

∑∞
n=a |f(n)|p(n) < +∞, and

for f ∈ F(X), dom(Δ+, X, f) is the collection of functions g : Z → R such
that limn→∞ g(n− 1)f(n)p(n) = 0 and, either

∑∞
k=a p(k) |f(k)Δ+g(k)| <

∞ or
∑∞

k=a p(k) |g(k)TXf(k)| < ∞. In particular all bounded functions g
are in dom(Δ+, X, f).

If p itself is in F(X) then we have

TXf(x) = f(x+ 1)
p(x+ 1)

p(x)
− f(x).

Similarly it is straightforward to define a backward Stein class and operator.

Example 3.14 (Example 3.4, continued). Let X be a random variable with
density p with support I = {a, b} with respect to ϕ(x)dx the Gaussian measure.
Recall Dϕf(x) = f ′(x) − xf(x) and D�g(x) = g′(x). Then F(X) is the collec-
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tion of functions f : R → R such that fp ∈ L1(ϕ) is absolutely continuous,∫
R
|Dϕ(fp)|ϕ(x)dx < ∞ and limx↘a f(x)p(x)ϕ(x) = limx↗b f(x)p(x)ϕ(x); the

canonical Stein operator is

TXf =
Dϕ(fp)

p
=

(fpϕ)′

pϕ

which we set to 0 outside of I. Also, for f ∈ F(X), dom(Dϕ, X, f) contains all
differentiable functions g : R → R such that gf ∈ L1

μ(p) (or, equivalently, gfp ∈
L1(ϕ)),

∫
(gfpϕ)

′
dx = 0, and either

∫
|g′f |pϕdx < ∞ or

∫
|g(fpϕ)′|dx < ∞. In

particular all constant functions are in dom(Dϕ, X, f). The above construction
can also be obtained directly by replacing p with pϕ in Example 3.12.

Example 3.15 (Example 3.5, continued). Recall D = Δ+
λ and consider X some

discrete random variable whose density p has interval support I = [0, b]. The
(forward) Stein operator is

TXf =
Δ+

λ (fp)

p
=

Δ+(f(x)xp(x)γλ(x))

p(x)γλ(x)
,

which we set to 0 outside of I. Then, as in the previous example, we simply
recover the construction of Example 3.13 with f(x) replaced by xf(x) (and thus
no condition on f(0)) and p(x) replaced by p(x)γλ(x).

Remark 3.16. As noted already in the classic paper [26], the abstract theory of
Stein operators is closely connected to Sturm-Liouville theory. This connection is
quite easy to see from our notations and framework; it remains however outside
of the scope of the present paper and will be explored in future publications.

3.3. The canonical inverse Stein operator

The Stein operator being defined (in terms of D), we now define its inverse
(in terms of D−1). To this end first note that if D(fp) = hp for f ∈ F(X)
then TX(f) = h. As D(fp + χ) = hp for any χ ∈ ker(D), to define a unique
right-inverse of TX we make the following assumption.

Assumption 2. ker(D) ∩ L1(μ) = {0}.
This assumption ensures that the only μ-integrable χ is 0 and thus TX (as an

operator acting on F(X) ⊂ L1(μ)) possesses a bona fide inverse, and also that
ker(D) ∩ L1

μ(p) = {0}.
Definition 3.17. Let X have density p with support I. The canonical inverse
Stein operator T −1

p ≡ T −1
X for X is defined for all h such that hp ∈ im(D) as

the unique function f ∈ F(X) such that D(fp) = hp.

We will use the shorthand

T −1
X h =

D−1(hp)

p

with the convention that T −1
X h = 0 outside of I.

We state the counterpart of Proposition 3.11 for the inverse Stein operator.
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Proposition 3.18. Define the class of functions

F (0)(X) = {h ∈ im(TX) : hp = D(fp) with f ∈ F(X)}.

Then
E

[
T −1
X h(X)D�g(X)

]
= −E [g(X)h(X)] (35)

for all h ∈ F (0)(X) and all g ∈ dom(D, X, T −1
X h).

Example 3.19 (Example 3.1, continued). Let X have support I = {a, b} with
Stein class F(X) and Stein operator TX(f) = (fp)′/p. Then

T −1
X h(x) =

1

p(x)

∫ x

a

h(u)p(u)du = − 1

p(x)

∫ b

x

h(u)p(u)du

for all h ∈ F (0)(X) the collection of functions h ∈ L1
μ(p) such that Eph = 0.

Example 3.20 (Example 3.2, continued). Let X have support I = [a, b] with
Stein class F(X) and Stein operator TX(f) = Δ+(fp)/p. Then

T −1
X h(x) =

1

p(x)

x∑
k=a

h(k)p(k) = − 1

p(x)

b∑
k=x+1

h(k)p(k)

for all h ∈ F (0)(X) the collection of functions h such that Eph = 0.

The inverse operator and corresponding sets in Example 3.4 (resp., Exam-
ple 3.5) are simply obtained by replacing p with ϕp (resp., with γλp) in Exam-
ple 3.19 (resp., in Example 3.20).

3.4. Stein differentiation and the product rule

Define the new class of functions

dom(D, X) :=
⋂

f∈F(X)

dom(D, X, f)

with dom(D, X, f) as in (32). Then the following holds.

Lemma 3.21. If the constant function 1 belongs to dom(D) ∩ dom(D�), then
all constant functions are in ker(D�) and in dom(D, X).

Proof. Taking g ≡ 1 in (29) we see that Df(x) = Df(x) + f(x)D�1(x) for all
f ∈ dom(D). Taking f ≡ 1 ensures the first claim. The second claim then follows
immediately.

From here onwards we make the following assumption.

Assumption 3. 1 ∈ dom(D) ∩ dom(D�).

Starting from the product rule (29) we also obtain the following differentiation
rules for D and D�.
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Lemma 3.22. Under Assumptions 1 and 3 we have

1. Dg(·+ l) = gD1 +D�g
2. D�(fg) = gD�f + f(·+ l)D�g

for all f, g ∈ dom(D) ∩ dom(D�).

Proof. Claim 1. is immediate. To see 2., using Assumption 1 we write

D�(fg) = −fgD1 +D(f(·+ l)g(·+ l))

= −fgD1 + gDf(·+ l) + f(·+ l)D�g.

Applying Claim 1. to the second summand we then get

D�(fg) = −fgD1 + fgD1 + gD�f + f(·+ l)D�g

= gD�f + f(·+ l)D�g.

Remark 3.23. From Point 1. in Lemma 3.22 we see that if l = 0 and 1 ∈
ker(D) then D = D� on dom(D) ∩ dom(D∗). Neither of these assumptions are
always satisfied (see Examples 3.2 and 3.4).

The following result is the basis of what we call “Stein differentiation”. It is
also the key to the standardizations leading to the different Stein operators that
will be discussed in Section 4.

Theorem 3.24 (Stein product rule). The Stein triple (TX ,F(X), dom(D, X, ·))
satisfies the product rule

f(x)D�(g)(x) + g(x)TXf(x) = TX(f(·)g(·+ l))(x) (36)

for f ∈ F(X) and g ∈ dom(D, X, f).

Proof. Use Assumption 1 to deduce

f(x)D�(g)(x) + g(x)TXf(x) = f(x)D�(g)(x) + g(x)
D(fp)(x)

p(x)

=
1

p(x)
D(f(·)p(·)g(·+ l))(x),

which is the claim.

To see how (36) can be put to use, let h ∈ L1
μ(X) and consider the equation

h(x)− E[h(X)] = f(x)D�(g)(x) + g(x)TXf(x), x ∈ I. (37)

As discussed in the Introduction, Equation (37) is indeed a Stein equation for
the target X in the sense of (2), although the solutions of (37) are now pairs
of functions (f, g) with f ∈ F(X) and g ∈ dom(D, X, f) which satisfy the
relationship

f(·)g(·+ l) = T −1
X (h− Eph). (38)

We stress that although fg is uniquely defined by (38), the individual f and g
are not (just consider multiplication by constants).
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Equation (37) and its solutions (38) are not equivalent to Equation (2) and
its solutions already available from the literature, but rather contain them, as
illustrated in the following example.

Example 3.25 (Example 3.1, continued). Taking g = 1 (this is always permit-
ted by Lemma 3.21) and p differentiable we get the equation

h(x)− E[h(X)] = f ′(x) +
p′(x)

p(x)
f(x), x ∈ I, (39)

whose solution is some function f ∈ F(X), as in e.g. [65]. If the constant
function f ≡ 1 is in F(X) then keeping instead g variable but taking f ≡ 1
yields the equation

h(x)− E[h(X)] = g′(x) +
p′(x)

p(x)
g(x), x ∈ I, (40)

whose solution is any function in dom(D, X, 1) the collection of functions g ∈
F(X) such that gp′/p ∈ L1

μ(X), a family of equations considered e.g. in [92].
Similar considerations hold in the settings of Examples 3.2, 3.4 and 3.5. We
stress the fact that the difference between (39) and (40) lies in the space of
solutions.

3.5. Stein characterizations

Pursuing the tradition in the literature on Stein’s method, we provide a general
family of Stein characterizations for X. In addition to Assumptions 1, 2 and 3
we will further need the following two assumptions to hold.

Assumption 4. f ∈ ker(D�) if f ≡ α for some α ∈ R.

Assumption 5. Df/f = Dg/g for f, g ∈ dom(D) if and only if f/g ≡ α for
some α ∈ R.

Both assumptions are simultaneously satisfied in all examples discussed in
Section 3.

Theorem 3.26. Let Y be a random element with the same support as X and
assume that the law of Y is absolutely continuous w.r.t. μ with Radon-Nikodym
derivative q.

1. Suppose that F(X) is dense in L1
μ(p) and that q

p ∈ dom(D∗). Take g ∈
dom(D, X) which is X-a.s. never 0 and assume that g q

p ∈ dom(D, X).
Then

Y
D
= X if and only if E [f(Y )D�(g)(Y )] = −E [g(Y )TXf(Y )] (41)

for all f ∈ F(X).
2. Let f ∈ F(X) be X-a.s. never zero and assume that dom(D, X, f) is dense

in L1
μ(p). Then
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Y
D
= X if and only if E [f(Y )D�(g)(Y )] = −E [g(Y )TXf(Y )] (42)

for all g ∈ dom(D, X, f).

Remark 3.27. The assumptions leading to (41) and (42) can be relaxed by re-
moving the assumption that Y and X share a support I but instead conditioning

on the event that Y ∈ I and writing Y |Y ∈ I D
= X to indicate that p = cq on

I, for a constant c = P (Y ∈ I), see [65].

Proof. The sufficient conditions are immediate. Indeed, from (33), if Y has the
same distribution as X then (41) and (42) hold true.

We now prove the necessity. We start with statement 1. Let g be such that
gq/p ∈ dom(D, X). Then, gq/p ∈ dom(D�) and, for all f ∈ F(X), we have
D�(gq/p)fp ∈ L1(μ) as well as∫

D
(
g(·+ l)

q(·+ l)

p(·+ l)
f(·)p(·)

)
dμ = 0

and we can apply (30) to get

E [g(Y )TXf(Y )] =

∫
g
q

p
D(fp)dμ = −

∫
fpD�

(
g
q

p

)
dμ.

Supposing (41) gives∫
D�

(
g
q

p

)
fpdμ =

∫
fD� (g) qdμ =

∫
fD� (g)

q

p
pdμ

for all f ∈ F(X). On the one hand, as F(X) is assumed to be dense in L1
μ(p), it

follows that D�
(
g q
p

)
= q

pD� (g) p− a.e. and, on the other hand, by Claim 2. in

Lemma 3.22 we know that D�
(
g q
p

)
= q

pD�g + g(·+ l)D�
(

q
p

)
. Equating these

two expressions gives that g(· + l)D�
(

q
p

)
= 0 p − a.e. and, as g is p-a.e. never

0 we obtain that

D�

(
q

p

)
= 0 p− a.e..

Assumption 4 now gives that there is a constant c such that p = cq except on
a set of p-measure 0. As both p and q integrate to 1, it must be the case that
c = 1, and so p = q on supp(p), which gives the first assertion.

We tackle statement 2. If g q(·−l)
p(·−l) ∈ dom(D, X, f) then∫

D(f(·)q(·)
p(·)g(·+ l))dμ =

∫
D(f(·)g(·+ l)q(·))dμ = 0

so that

E [f(Y )D� (g) (Y )] = −
∫

gD(fq)dμ = −
∫ D(fq)

p
gpdμ.

Supposing (42) gives
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p
gpdμ =

∫ D(fp)

p
gqdμ =

∫ D(fp)

p
g
q

p
pdμ

for all g ∈ dom(D, X, f). As dom(D, X, f) is assumed to be dense in L1(μ) it
follows that D(fq) = D(fp) qp . On the one hand D(fp) qp = f(·−l) qpDp+qD�f(·−
l) and, on the other hand, D(fq) = f(· − l)D(q) + qD�f(· − l). Simplifying and
using the fact that f is never 0 we deduce the equivalent score-like condition

D(q)

q
=

D(p)

p
p− a.e.

Assumption 5 gives the conclusion.

Theorem 3.26 generalizes the literature on this topic in a subtle, yet funda-
mental, fashion. To see this first take g ≡ 1 in (41) (recall that this is always
permitted) to obtain the Stein characterization

Y
D
= X if and only if E [TXf(Y )] = 0 for all f ∈ F(X)

which is valid as soon as the densities of X and Y have same support and
q/p ∈ dom(D, X, ·). This is the characterization given in [65, 64]. If f ≡ 1 is in
F(X) then, for this choice of f in (42) we obtain the Stein characterization

Y
D
= X ⇐⇒ E[g′(Y )] = −E

[
p′(Y )

p(Y )
g(Y )

]
= 0 for all g ∈ dom(D, X, 1).

Here we assume that p and q share the same support. The condition g ∈
dom(D, X, 1) is equivalent to g(· + l) ∈ F(X) and E |g(X)TX1(X)| < ∞. This
is the general characterization investigated in [92].

Remark 3.28. The hypothesis that the constant function 1 belongs to F(X) is
not a small assumption. Indeed, we easily see that

1 ∈ F(X) ⇐⇒ p′/p ∈ L1
μ(X) and

∫
I
p′(x)dx = 0.

This condition is not satisfied e.g. by the exponential distribution p(x) =
e−x

I(x ≥ 0) (because the integral of the derivative is not 0) nor by the arc-
sine distribution p(x) = 1/

√
x(1− x)I(0 < x < 1) (because the derivative is not

integrable).

Remark 3.29. Our approach is reminiscent of Stein characterizations of birth-
death processes where one can choose the death rate and adjust the birth rate
accordingly, see [52] and [34].

3.6. Connection with biasing

In [41] the notion of a zero-bias random variable was introduced. Let X be a
mean zero random variable with finite, nonzero variance σ2. We say that X∗
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has the X-zero biased distribution if for all differentiable f for which E[Xf(X)]
exists,

E[Xf(X)] = σ2
E[f ′(X∗)].

Furthermore the mean zero normal distribution with variance σ2 is the unique
fixed point of the zero-bias transformation.

More generally, if X is a random variable with density pX ∈ dom(D∗) then
for all f ∈ dom(D), by (29) we have

pX(x)TX(f)(x) = D(f(x)pX(x)) = pX(x− l)Df(x) + f(x)D�pX(x− l)

and so

E

[
pX(X − l)

pX(X)
Df(X)

]
+ E

[
f(X)

D�pX(X − l)

pX(X)

]
= 0.

This equation leads to the definition of a transformation which maps a random
variable Y to Y (X) such that, for all f ∈ dom(D) for which the expressions
exist,

E

[
pX(Y (X) − l)

pX(Y (X))
Df(Y (X))

]
= −E

[
f(Y )

D�pX(Y − l)

pX(Y )

]
.

For some conditions which give the existence of such Y ∗ see [42]. As an illus-
tration, in the setting of Example 3.1, if the density p is log-concave (so that
−p′/p is increasing) then the existence of the coupling Y (X) is straightforward
via the Riesz representation theorem, as in [41].

Finally assume that F(X)∩ dom(D) is dense in L1
μ(X). To see that Y =d X

if and only if Y (X) =d Y , first note that by construction if Y =d X then
Y (X) =d Y . On the other hand, if Y (X) =d Y , then E[TX(f)(Y )] = 0 for all
f ∈ F(X)∩dom(D), and the assertion follows from the density assumption and
(41). Hence (41) can be used to establish distributional characterizations based
on biasing equations.

4. Stein operators

Let X be a random variable with support X , let D be a linear operator act-
ing on X � and satisfying Assumptions 1 and 2. There are now two seemingly
antagonistic points of view:

- In the Introduction we mention the fact that Stein’s method for X relies on
a pair (AX ,F(AX)) with AX a differential operator acting on F(AX) a class
of functions. For any given X, the literature on Stein’s method contains many
different such (not necessarily first order!) operators and classes.

- In Section 3, we claim to obtain “the” canonical operator associated to X,
denoted TX , acting on “the” canonical class F(X) (uniqueness up to the
choice of D) with unique inverse T −1

X .

In this section we merge these two points of view. Our general point of view
is that a Stein operator for a random variable X is any operator that can be
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written in the form

AX : F(X)× dom(D, X, ·) → X � : (f, g) 
→ TX(fg), (43)

and, given h ∈ L1
μ(X), the corresponding Stein equation is

h− E[h(X)] = AX(f, g)

whose solutions are any functions f ∈ F(X) and g ∈ dom(D, X, f) such that
fg = T −1

X (h− E[h(X)]). There are many ways to particularise (43), such as

1. fix f ∈ F(X) and let g vary in dom(D, X, f),
2. fix g ∈ dom(D, X) and let f vary in F(X),
3. let f and g vary simultaneously.

We refer to these mechanisms as standardizations.
For the first approach pick a function f ∈ F(X) and define the operator

AXg = TX (f(·)g(·+ l)) = fD�(g) + gTXf (44)

acting on functions g ∈ F(AX) = dom(D, X, f). The corresponding Stein equa-
tion is

h− E[h(X)] = AXg

whose solutions are g ∈ dom(D, X, f) given by g = T −1
X (h− E[h(X)])/f .

The second option is to fix a function g ∈ dom(D, X) and define the operator

AXf = TX (f(·)g(·+ l)) = fD�(g) + gTXf (45)

acting on functions f ∈ F(X). In this case solutions of the Stein equation are
f ∈ F(X) given by f = T −1

X (h− E[h(X)])/g.
The third option is to consider operators of the form

AX(f, g) = TX (f(·)g(·+ l)) = fD�(g) + gTXf (46)

acting on functions (f, g) ∈ G1×G2 where G1,G2 ⊆ X � are such that f(·)g(·+l) ∈
F(X). For example we could consider Gi polynomial functions or exponentials
and pick Gj with j �= i so as to satisfy the assumptions. Solutions of the Stein
equation are pairs of functions such that f(·)g(·+ l) = T −1

X (h− E[h(X)]).

Remark 4.1. The use of the notation c in (44) relates to the notation in [43],
where the idea of using a c-function to generate a family of Stein operators (44)
was first proposed (in a less general setting).

Remark 4.2. Although appearances might suggest otherwise, operators (44) and
(45) are not necessarily first order differential/difference operators. One readily
obtains higher order operators by considering, for example, classes FA(X) of
functions of the form f = Dkf̃ for f̃ appropriately chosen; see Section 4.6.

The difference between (44), (45) and (46) is subtle (the first two being
particular cases of the third). The guiding principle is to find a form of Stein
equation for which the solutions are smooth. The remainder of the Section is
dedicated to illustrating standardizations under several general assumptions on
the target density, hereby providing interesting and important families of Stein
operators.
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4.1. Stein operators via score functions

Suppose that X is such that the constant function 1 ∈ F(X) and define

u(x) = TX1(x) =
Dp(x)

p(x)
(47)

the so-called score function of X. Then taking f = 1 in (44) we introduce the
operator

AXg(x) = D�g(x− l) + u(x)g(x− l) (48)

acting on F(AX) = dom(D, X, 1). The corresponding Stein equation is

h̄(u) = D�g(x− l) + g(x− l)u(x)

for h̄ any function with X-mean zero; solutions of this equation are the functions

gh = T −1
X

(
h̄
)

and bounds on these functions (as well as on their derivatives) are crucial to the
applicability of Part B of Stein’s method through operator (48).

In the continuous setting of Example 3.1 we recover operator (7). In this case
F(AX) is the set of all differentiable functions g such that

E |g′(X)| < ∞ and E |g(X)u(X)| < ∞.

These are the conditions (27) and (28) from [92, Proposition 4].

Remark 4.3. The terminology “score function” for the function Dp(x)/p(x)
is standard (at least in the continuous case); it is inherited from the statistical
literature.

4.2. Stein operators via the Stein kernel

Suppose that X has finite mean ν and define

τ(x) = T −1
X (ν − Id) (49)

a function which we call the Stein kernel of X (see Equation (10) in Section
2.2, forthcoming Remark 4.6 as well as Sections 5.2 and 5.3). Next take f = τ
in (44) (this is always permitted) and introduce the operator

AXg(x) = τ(x)D�g(x− l) + (ν − x)g(x− l) (50)

acting on F(AX) = dom(D, X, τ). The corresponding Stein equation is

h̄(x) = τ(x)D�g(x− l) + (ν − x)g(x− l)

for h̄ any function with X-mean 0; solutions of this equation are the functions

gh =
1

τ
T −1
X (h̄)

and bounds on these functions (as well as on their derivatives) are crucial to the
applicability of Part B of Stein’s method via operator (50).
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In the continuous setting of Example 3.1, F(AX) is the set of all differentiable
functions such that

E |g(X)(X − ν)| < ∞ and E |g′(X)τ(X)| < ∞.

These integrability conditions are the same as in [77, Lemma 2.1]; see also [14].
The Stein kernel (49) has a number of remarkable properties. In particular,

it plays a pivotal role in the connection between information inequalities and
Stein’s method, see [60, 74, 73].

Proposition 4.4. Let Assumptions 1-5 hold. Suppose furthermore that there
exists δ > 0 such that D�(a Id + b) = a δ for all a, b ∈ R and Id(x) = x the
identity. Then

E [τ(X)D�g(X − l)] = E [(X − ν)g(X)]] (51)

for all g ∈ dom(D, X, τ) and

E [τ(X)] = δ−1Var(X). (52)

Proof. Identity (51) is obvious and (52) follows by taking g(x−l) = x−ν (which
is allowed) in (51).

Remark 4.5. It is easy to show that, moreover, τ(x) ≥ 0 if D is either the
strong derivative or the discrete forward/backward difference.

Remark 4.6. Although the function τ = T −1
X (ν − Id) has already been much

used in the literature, it has been given various names all marked with some
ambiguity. Indeed [70, 71, 73] (among others) refer to τ as the “Stein factor”
despite the fact that this term also refers to the bounds on the solutions of the
Stein equations, see [86, 25, 7]. Other authors, including [16, 15, 13], rather
refer to this function as the “ω-function” or the “covariance kernel” of X. We
prefer to unify the terminology by calling τ a Stein kernel.

Two particular instances of (50) have already been perused in the literature
in the following case.

Definition 4.7 (Pearson’s class of distributions). A continuous distribution p
with support supp(p) is a member of Pearson’s family of distributions if it is
solution to the differential equation

p′(x)

p(x)
=

α− x

β2(x− λ)2 + β1(x− λ) + β0
(53)

for some constants λ, α, βj , j = 0, 1, 2.

Properties of the differential operator TXf = (fp)′/p have been studied in
quite some detail for distributions p which belong to Pearson’s class of distribu-
tions, see e.g. [26, 57, 55, 78, 61, 67, 2]. If X ∼ p, a Pearson distribution, then
by definition its derivative p′ exists and, using (34), its canonical Stein operator
is

TXf(x) = f ′(x) +
α− x

β2(x− λ)2 + β1(x− λ) + β0
f(x)

for x ∈ supp(p). In general this operator is not easy to handle.
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It is shown in [57] that, in the setting of Example 3.1, a density p satisfies (53)
if and only if its Stein kernel τ(x) is quadratic. This function can be calculated
(using e.g. [26, Equation (3.5)]), and is given by

τ(x) =
β0 + β1x+ β2x

2

1− 2β2
,

see also [78]. This observation leads us to considering distributions, discrete or
continuous, which have a Stein kernel of the form

T −1
X (ν − Id)(x) = a+ bx+ cx2 (54)

for some constants a, b and c. For distributions satisfying (54) we deduce a
natural family of Stein operators

AXg(x) =
(
a+ bx+ cx2

)
D�g(x) + (ν − x)g(x)

acting on the class F(AX) of functions such that gτ ∈ F(X) as well as

E |g(X)(ν −X)| < ∞ and E
∣∣D�g(X)

(
a+ bX + cX2

)∣∣ < ∞.

Remark 4.8. [88, 2] call the class of densities satisfying (54) the Pearson class
(in the continuous case) and the Ord class (in the discrete case); Ord’s class as
originally defined in [76] is, in fact, larger. In the case of integer valued random
variables, [57, Theorem 4.6] shows that, under conditions on the coefficients,
condition (54) is equivalent to requiring that p(x) =

(
a
x

)(
b

n−x

)
/
(
a+b
n

)
for some

constants a, b and n, so that X has a generalized hypergeometric distribution.
See also [1] where distributions satisfying (54) are referred to as Cumulative
Ord distributions; see in particular their Proposition 2.1 for a characterization.

Example 4.9. Many “useful” densities satisfy (54) in which case the operator
(50) has a nice form as well. The following examples are easy to compute and
will be useful in the sequel; for future reference we also provide the log-derivative
of the density.

1. Continuous setting, strong derivative:

(a) Gaussian N (0, σ2) with p(x) = (2π)−1e−x2/2 on I = R:

p′(x)

p(x)
= − x

σ2
and τ(x) = σ2;

(b) Gamma Γ(α, β) with p(x) = β−αΓ(α)−1e−x/βxα−1 on I = R
+:

p′(x)

p(x)
=

−1 + α

x
− 1

β
and τ(x) =

x

β
;

(c) Beta B(α, β) with p(x) = B(α, β)−1xα−1(1− x)β−1 on I = [0, 1]:

p′(x)

p(x)
=

α− 1

x
− β − 1

x− 1
and τ(x) =

x(1− x)

α+ β
;
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(d) Student tν (for ν > 1) with p(x) = ν−1/2B(ν/2, 1/2)−1(ν/(ν +
x2))(1+ν)/2 on R:

p′(x)

p(x)
= −x(1 + ν)

ν + x2
and τ(x) =

x2 + ν

ν − 1
.

2. Discrete setting, forward derivative:

(a) Poisson Po(λ) with p(x) = e−λλx/x! on I = Z:

Δ+p(x)

p(x)
=

λ

x+ 1
− 1 and τ(x) = x;

(b) Binomial Bin(n, p) with p(x) =
(
n
x

)
px(1− p)n−x on I = [0, n] ∩ Z:

Δ+p(x)

p(x)
=

(n− x)

x+ 1

p

1− p
− 1 and τ(x) = (1− p)x.

4.3. Invariant measures of diffusions

Recent papers [30, 58, 59] provide a general framework for performing Stein’s
method with respect to densities p which are supposed to admit a variance
and be continuous (with respect to the Lebesgue measure), bounded with open
interval support. Specifically, [58] suggest studying operators of the form

AXg(x) =
1

2
β(x)g′(x) + γ(x)g(x) (55)

with γ ∈ L1(μ) a continuous function with strictly one sign change on the
support of X, negative on the right-most interval and such that γp is bounded
and E[γ(X)] = 0,

β(x) =
2

p(x)

∫ x

a

γ(y)p(y)dy,

for g ∈ F(AX) the class of functions such that g ∈ C1 and

E|γ(X)g(X)| < +∞ and E|β(X)g′(X)| < +∞.

Then [58] (see as well [59] for an extension) use diffusion theory to prove that
such AX as defined in (55) are indeed Stein operators in the sense of the Intro-
duction (their approach falls within the generator approach). In our framework,
(55) is a particular case of (44), with f = β/2 = T −1

X γ ∈ F(X) and γ = TXf
(which necessarily satisfies E[γ(X)] = 0) and F(AX) = dom((·)′, X, f).

4.4. Gibbs measures on non-negative integers

We can treat any discrete univariate distribution on non-negative integers by
writing it as a Gibbs measure

μ(x) =
1

κ
exp(V (x))

ωx

x!
, x = 0, 1, . . . , N,
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where N ∈ {0, 1, 2, . . .} ∪ {∞} and κ is a normalizing constant. Here the choice
of V and ω is not unique. In [34], Stein’s method for discrete univariate Gibbs
measures on non-negative integers is developed, with operator

Aμ(f)(x) = f(x+ 1)ω exp (V (x+ 1)− V (x))− xf(x) (56)

acting on the class of functions such that f(0) = 0 and, if N is infinite,
limx→∞ f(x) exp(V (x))ω

x

x! = 0. The canonical operator (31) is (with D = Δ+)

Tμf(x) = f(x+ 1)
ω

x+ 1
exp (V (x+ 1)− V (x))− f(x)

which yields (56) via (46) using the pair (f(x), g(x)) = (f(x), x + 1). In [34],
other choices of birth and death rates were discussed; here the birth rate bx is
the pre-factor of g(x+1), and the death rate dx is the pre-factor of g(x). Indeed
any choice of birth and death rates which satisfy the detailed balance conditions

μ(x)bx = μ(x+ 1)dx+1

for all x are viable. Our canonical Stein operator can be written as

Tμg(x) =
bx

dx+1
g(x+ 1)− g(x).

Choosing f(x) = dx and applying (44) gives the general Stein operator bxg(x+
1)− dxg(x). The Stein kernel here is

τ(x) =

x∑
y=0

eV (y)−V (x) x!

y!wx−y
(ν − y)

with ν the mean of the distribution. This expression can be simplified in special
cases; for example in the Poisson case V is constant and we obtain τ(x) = w,
as before. Similar developments are also considered by [52].

4.5. Higher order operators

So far, in all examples provided we only consider first-order difference or differ-
ential operators. One way of constructing higher order operators is to consider

AXf = TX(cDkf)

for c well chosen and Dk the kth iteration of D. This approach is strongly
connected with Sturm-Liouville theory and will be the subject of a future pub-
lication. Here we merely give examples illustrating that our results are not re-
stricted to first-order operators. The first example is the Kummer-U distribution
in Example 2.5.

Similar considerations as in Example 2.5 provide tractable operators for other
distributions involving special functions.
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Example 4.10 (Variance Gamma distribution). Let Kν be the modified Bessel
function of the second kind, of index ν. A random variable has the Variance
Gamma distribution V G(ν, α, β, η) if its density is given on R by

p(x) =
(α2 − β2)ν+

1
2

√
πΓ

(
ν + 1

2

) (
|x− η|
2α

)ν

eβxKν(α|x− η|),

where α > |β| > 0, ν > −1
2 , η ∈ R. For simplicity we take η = 0, α = 1, and

ν > 0. A generator for this distribution is

Af(x) = xf ′′(x) + (2ν + 1 + 2βx)f ′(x) + {(2ν + 1)β − (1− β2)x}f(x), (57)

see [38]. The canonical operator is (with D the usual strong derivative)

T (f)(x) = f ′(x) + f(x)

(
2ν

x
+ β

)
− Kν+1(x)

Kν(x)
.

Applying (46) via the pair (f, g) = (f, g(f)) with

g(f)(x) = x
f ′(x)

f(x)
+ x

(
β +

Kν+1(x)

Kν(x)

)

we retrieve (57).

4.6. Densities satisfying a differential equation

Lastly we consider the case where the density of interest p with interval support
I = {a, b} is defined as the solution of some differential equation, say

L(p) = 0

along with some boundary conditions. Suppose that L admits an adjoint (w.r.t.
Lebesgue integration) which we denote L� so that, for X ∼ p, we can apply
integration by parts to get

0 =

∫ b

a

g(x)L(p)(x)dx = Cb
a(g, p) +

∫ b

a

L�(g)(x)p(x)dx

= Cb
a(g, p) + E [L�(g)(X)]

with Cb
a(g, p) the constant arising through the integration by parts. We define

AX(g) = L�(g) acting on the class F(AX) of sufficiently smooth functions such
that Cb

a(g, p) = 0. To qualify AX as a Stein operator in the sense of (1), it still
remains to identify conditions on g which ensure that this operator characterises
the density.

This point of view blends smoothly into our canonical approach to Stein
operators; we can moreover provide conditions on g in a generic way. To see this
fix a function g of interest and choose f such that

(fp)′

p
= L�(g)
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if such an f exists. Then, reversing the integration by parts argument provided
above, we get

f(x) =
1

p(x)

∫ x

a

L�(g)(u)p(u)du

=
1

p(x)
Cx

a (g, p) +
1

p(x)

∫ x

a

g(u)L(p)(u)du

=
1

p(x)
Cx

a (g, p) =: F (g, p)(x)

with 1
p(x)C

x
a (g, p) the quantities resulting from the integration by parts (and

using the fact that now L(p) = 0, by assumption). This leads to the standard-
ization

AX(g) = TX (F (g, p))

acting on the class of functions F(AX) = {g such that F (g, p) ∈ F(X)} . Note
how, in particular, the assumption F (g, p) ∈ F(X) implies that Cb

a(g, p) = 0, as
demanded in the beginning of the Section.

Example 4.11. We illustrate this point of view in the case of the spectral
density hn on [−2, 2] of a GUE(n, 1/n) random matrix studied in [47, 49]. This
density is defined through the third order differential equation

L(hn)(x) =
1

n2
h′′′
n (x) + (4− x2)h′

n(x) + xhn(x) = 0, x ∈ R,

along with a boundary condition. Letting X ∼ hn it is straightforward to show
that

L�(g)(x) = − 1

n2
g′′′(x)− ((4− x2)g(x))′ + xg(x)

acting on the collection{
g ∈ C3 such that

[
h′′
n(x)g(x)− h′

n(x)g
′(x)

n2
+ hn(x)g(x)(4− x2)

]2
−2

= 0

}
.

Integrating by parts we then get

F (g, hn)(x) =
1

n2

(
g′′(x)− g′(x)

h′
n(x)

hn(x)
+

h′′
n(x)

hn(x)
g(x)

)
+ (4− x2)g(x)− c

with c = g′′(−2) + g′(−2)
h′
n(−2)

hn(−2) −
h′′
n(−2)

hn(−2)g(−2). Considering only functions g

such that F (g, hn) ∈ F(X) leads to a Stein operator for X.

5. Distributional comparisons

Resulting from our framework, in this Section we provide a general “comparison
of generators approach” (Theorem 5.1) which provides bounds on the probability
distance between univariate distributions in terms of their Stein operators. This
result is formal and abstract; it is our take on a general version of Part B of
Stein’s method. Specific applications to concrete distributions will be deferred
to Section 6.
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5.1. Comparing Stein operators

Let (X1,B1, μ1) and (X2,B2, μ2) be two measure spaces as in Section 3.1. Let X1

and X2 be two random variables on X1 and X2, respectively, and suppose that
their respective densities p1 and p2 have interval support. Let D1 and D2 be two
linear operators acting on X1 and X2 and satisfying Assumption 1 (with l1 and
l2, respectively) and Assumption 2. Denote by T1 and T2 the Stein operators
associated with (X1,D1) and (X2,D2), acting on Stein classes F1 = F(X1) and
F2 = F(X2), respectively. Finally let Eih = E[h(Xi)] denote the expectation of
a function h under the measure pidμ, i = 1, 2.

The framework outlined in Section 3 (specifically Section 3.4) is tailored for
the following result to hold.

Theorem 5.1. Let h be a function such that Ei|h| < ∞ for i = 1, 2.

1. Let (f, g) with f ∈ F1 and g ∈ dom(D1, X1, f) solve the X1-Stein equation
(37) for h. Then

E2h− E1h = E2 [f(X2)D�
1g(X2)− g(X2)T1f(X2)] . (58)

2. Fix f1 ∈ F1 and define the function gh := 1
f1
T −1
1 (h− E1h). Then

E2h− E1h = E2 [f1(·)D�
1gh(·)− f2(·)D�

2gh(·) (59)

+ gh(·)T1f1(·)− gh(·)T2f2(·)]

for all f2 ∈ F2 such that gh ∈ dom(D2, X2, f2).
3. Fix g1 ∈ dom(D1, X1) and define the function fh := 1

g1
T −1
1 (h − E1h). If

fh ∈ F1 ∩ F2 then

E2h− E1h = E2 [fh(·)D�
1g1(·)− fh(·)D�

2g2(·) (60)

+ g1(·)T1fh(·)− g2(·)T2fh(·)] .

for all g2 ∈ dom(D2, X2).

Remark 5.2. Our approach contains the classical “direct” approach described
in the Introduction (see (4)). Indeed, if allowed, one can take f1 = 1 and f2 = 0
in (59) to get

E2h− E1h = E2 [D�
1gh(·) + u1(·)gh(·)]

with u1 the score of X1 (defined in (47)) and gh now the usual solution of the
Stein equation. This yields the bound

dH(X1, X2) ≤ sup
H

|E2 [A(gh)(X2)]|

with A(gh) = D�
1gh + u1gh. In this case one does not need to calculate T2.

Proof. The starting point is the Stein equation (37) which, in the current con-
text, becomes

h(x)− E[h(X•)] = f(x)D�
•g(x) + g(x)T•f(x) =

D• (fgp•)

p•
(x) (61)
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with • ∈ {1, 2}. Solutions of this equation are pairs of functions (f, g) with
f ∈ F(X•) and g ∈ dom(D•, X•, f). Using • = 1, replacing x by X2 and taking
expectations gives (58).

For (59), first fix f1 ∈ F1 and choose g = gh the corresponding solution of
(61) with • = 1. By construction we can then take expectations and write

E[h(X2)]− E[h(X1)] = E [f1(X2)D�
1gh(X2) + gh(X2)T1f1(X2)]

because h ∈ L1(X1) ∩ L1(X2). Finally we know that for all f2 ∈ F2 such that
gh ∈ dom(D2, X2, f2) we can use (61) with • = 2 to get

E [f2(X2)D�
2gh(X2) + gh(X2)T2f2(X2)] = 0.

Taking differences we get (59). Equation (60) follows in a similar fashion, fixing
this time f = fh and letting g1 and g2 vary.

The power of Theorem 5.1 and of Stein’s method in general lies in the free-
dom of choice on the r.h.s. of the identities : all functions f•, g• (where now •
needs to be replaced by h, 1 or 2 according to which of (59) or (60) is used)
can be chosen so as to optimise resulting bounds. We can even optimise the
bounds over all suitable pairs (f, g). We will discuss two particular choices of
functions in Section 5.2 which lead to well-known Stein bounds. We will also
provide illustrations (discrete vs discrete, continuous vs continuous and discrete
vs continuous) in Section 6.

In particular (59) and (60) provide tractable (and still very general) versions
of (5). Indeed taking suprema over all h ∈ H some suitably chosen class of
functions we get, in the notations of the Introduction,

dH(X1, X2) = sup
h∈H

|E2h− E1h| ≤ A1 +A2

with
A1 = A1(H) = sup

h∈H
|E2 [f•(·)D�

1g•(·)− f•(·)D�
2g•(·)]|

and
A2 = A2(H) = sup

h∈H
|E2 [g•(·)T1f•(·)− g•(·)T2f•(·)]| .

Different choices of functions f1 and f2 (resp. g1 and g2) will lead to different
expressions bounding all distances dH(X1, X2) in terms of properties of T1 and
T2.
Remark 5.3. If there exist no functions f1, f2 (resp. g1, g2) such that the
assumptions are satisfied, then the claims of Theorem 5.1 are void. Such is not
the case whenever p1 and p2 are “reasonable”.

Remark 5.4 (About the Stein factors). In view of (59) and (60), good bounds
on E1h− E2h will depend on the control we have on functions

gh =
T −1
1 (h− E1h)

f1
and/or fh =

T −1
1 (h− E1h)

g1
. (62)
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Bounds on these functions and on their derivatives are called, in the dedicated
literature, Stein (magic) factors (see for example [25, 86]). There is an important
connection between such constants and Poincaré / variance bounds or spectral
gaps, as already noted for example in [23, 56, 54, 61, 72]. This connection is
quite transparent in our framework and will be explored in future publications.

In the sequel we will not use the full freedom of choice provided by Theo-
rem 5.1, but rather focus on applications of identity (59) only. Indeed in this
case much is known about ‖gh‖ and ‖Dgh‖ in case f1 = 1 and X1 is Gaussian
(see [24]), Binomial (see [31]), Poisson (see [8]), Gamma (see [19, 71]), etc. See
also [30, 58, 28, 65] for computations under quite general assumptions on the
density of X1. We will make use of these results in Section 6. It is hopeless to
wish for useful bounds on (62) in all generality (see also the discussion in [3]).
Of course one could proceed as in [28, 21] or [65] by imposing ad hoc assump-
tions on the target density which ensure that the functions in (62) have good
properties. Such approaches are not pursued in this paper. Specific bounds will
therefore only be discussed in particular examples.

5.2. Comparing Stein kernels and score functions

There are two obvious ways to exploit (59), namely either by trying to make the
first summand equal zero, or by trying to make the second summand equal zero.
In the rest of this section we do just that, in the case X1 = X2 and D1 = D2 = D
(and hence l1 = l2 = l); extension of this result to mixtures is straightforward.

Cancelling the first term in (59) and ensuring that all resulting assumptions
are satisfied immediately leads to the following result.

Corollary 5.5. Let H ⊂ L1(X1)∩L1(X2). Take f ∈ F1 ∩F2 and suppose that
(1/f)T −1

1 (h− E1h) ∈ dom(D, X1, f) ∩ dom(D, X2, f) for all h ∈ H. Then

sup
h∈H

|E1h− E2h| ≤ κH,1(f)E2|T1f − T2f | (63)

with κH,1(f) = suph∈H ‖(1/f) T −1
1 (h− E1h)‖∞.

Remark 5.6. 1. If the constant function 1 ∈ F1 ∩ F2, then we can take
f = 1 in (63) to deduce that

dH,1(X1, X2) ≤ κH,1(1)E2 |u1 − u2| ≤ κH,1

√
E2

[
(u1 − u2)

2
]
,

with ui = Ti(1) the score function of Xi (defined in (47)) and κH,1 an
explicit constant that can be computed in several important cases, see e.g.
[65, Section 4] and [89, 54] for applications in the Gaussian case. Note
that J (X1, X2) = E2

[
(u1 − u2)

2
]
is the so-called generalized Fisher in-

formation distance (see e.g. [53, 65]).
2. The assumption that f ∈ F1∩F2 can be relaxed; if

∫
I
D2(fp2)dμ �= 0 then

this just adds terms which relate to the boundaries of I.
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Cancelling the second term in (59) and ensuring that all resulting assumptions
are satisfied immediately leads to the following result.

Corollary 5.7. Let H ⊂ L1(X1) ∩ L1(X2). Take ω ∈ Im(T1) ∩ Im(T2) such
that T −1

1 (h−E1h)/T −1
1 (ω) ∈ dom(D, X1, T −1

1 (ω))∩dom(D, X2, T −1
2 (ω)). Then

|E1h− E2h| ≤ κH,2(ω)E2|T −1
1 (ω)− T −1

2 (ω)| (64)

with κH,2(ω) = suph∈H ‖D
(
T −1
1 (h− E1h)/T −1

1 (ω)
)
‖∞.

If, moreover, X1 and X2 have common finite mean ν then one can choose
ω(x) = ν − x in (64) to get

|E1h− E2h| ≤ κH,2E2|τ1 − τ2| (65)

with τj , j = 1, 2, the Stein kernel of Xj (defined in (49)) and κH,2 an ex-
plicit constant that can be computed in several cases. In [13], and references
therein, consequences of (65) are explored in quite some detail. In particular
in the Gaussian and central Gamma cases, (65) has been exploited fruitfully in
conjunction with Malliavin calculus, leading to the important new stream of re-
search known as Nourdin-Peccati analysis, see [71, 70]. See also aforementioned
references [59, 58, 30] where several extensions of the Nourdin-Peccati analysis
are discussed. Note that, in the Gaussian case X1 ∼ N (0, 1) we readily obtain
τ1 = 1. The quantity

S(X) =

√
E

[
(1− τ2)

2
]

(66)

is the Stein discrepancy from [73, 60].

5.3. Sums of independent random variables and the Stein kernel

We begin by relaxing the definition of Stein kernel. This approach is similar to
that advocated in [74].

Definition 5.8. Let X be a set and D a linear operator acting on X � satis-
fying the Assumptions of Section 3.1. Let X ∼ p have mean ν and D-Stein
pair (TX ,F(X)). A random variable τX(X) is a D-Stein kernel for X if it is
measurable in X and if

E [τ(X)D�g(X − l)] = E [(X − ν)g(X)]] (67)

for all g ∈ dom(D, X, τ). If, moreover, dom(D, X, τ) is dense in L1(μ) then the
Stein kernel is unique.

Applying (35) one immediately sees that T −1
p (Id−ν) is a Stein kernel for X.

Proposition 5.9. If D� satisfies a chain rule D�f(ax) = aD�
af(x) for some

operator D�
a satisfying the same assumptions as D but now on aX then

τaX(aX) = a2τX(X) (68)

is a Stein kernel for aX.

Proof. The claim follows immediately from the definition.
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Let Xi, i = 1, . . . , n, be independent random variables with respective means
νi, and put W =

∑n
i=1 Xi. Following [91, Lecture VI] and [74, 73] we obtain an

almost sure representation formula for the Stein kernel of sums of independent
random variables.

Lemma 5.10. Suppose that (i) Id − νi ∈ Im(Ti) for i = 1, . . . , n and (ii)
Id −

∑n
i=1 νi ∈ Im(TW ) and (iii) the collection of functions of the form D�g

with g ∈ dom(D,W, τW ) ∩ (
⋂n

i=1 dom(D, Xi, τXi)) is dense in L1(μ). Then

τW (W ) = E

[
n∑

i=1

τXi(Xi) |W
]

a.s.

Proof. For every g ∈ dom(D,W, τW ) we have with (35) that

−E[τW (W )D�g(W )] = E

[(
W −

n∑
i=1

νi

)
g(W )

]

=

n∑
i=1

E {E[(Xi − νi)g(W )|Wi]}

where Wi = W −Xi =
∑

j 
=i Xj is independent of Xi. Therefore, conditionally
on Wi we can use (an appropriate version of) (35) for each Xi, turning the
previous expression into

−
n∑

i=1

E {E [τXi(Xi)D�g(W )|Wi]} = −
n∑

i=1

E {E [τXi(Xi)D�g(W )|W ]}

= −E

{
E

[
n∑

i=1

τXi(Xi)|W
]
D�g(W )

}

where the first equality follows de-conditioning w.r.t. Wi and then conditioning
w.r.t. W . The assertion follows by denseness.

Combining this representation lemma with Corollary 5.7 leads to the follow-
ing general result, which in particular implies inequality (28) from Section 2.7.

Proposition 5.11. Suppose that the assumptions in Lemma 5.10 are satisfied.
Let X be a random variable with finite mean ν =

∑n
i=1 νi. If gh = T −1

X (h −
E[h(X)])/τX ∈ dom(D,W, τW ) ∩ dom(D, X, τX) then

|E[h(X)]− E[h(W )]| ≤ ||Dgh||∞E

∣∣∣∣∣τX(W )−
n∑

i=1

τXi(Xi)

∣∣∣∣∣
for all h ∈ H a class of functions as in Corollary 5.7.

Proof. Lemma 5.10 with Corollary 5.7 (whose conditions are satisfied) gives
that

|E[h(X)]− E[h(W )]| ≤ ||Dgh||∞ |E[τX(W )− τW (W )]|
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≤ ||Dgh||∞E

∣∣∣∣∣τX(W )− E

[
n∑

i=1

τXi(Xi)|W
]∣∣∣∣∣ .

The assertion now follows by Jensen’s inequality for conditional expectations.

Proposition 5.12. Let W = 1√
n

∑n
i=1 ξi with ξi, i = 1, . . . , n, centered inde-

pendent random variables with D-Stein kernels τi, i = 1, . . . , n. Then

τW (W ) =
1

n

n∑
i=1

E [τi(ξi) |W ] (69)

is a Stein kernel for W . Furthermore the Stein discrepancy of W satisfies

S(W ) :=

√
E

[
(1− τW (W ))

2
]
≤ 1

n

√√√√ n∑
i=1

Var(τi(ξi)). (70)

Proof. Identity (69) follows from a straightforward conditioning argument. To
see (70) note how under the assumptions of the proposition we have

E

[
(1− τW (W ))

2
]
= E

⎡
⎣
(
E

[
1

n

n∑
i=1

(1− τi(ξi)) |W
])2

⎤
⎦

≤ E

⎡
⎣
(
1

n

n∑
i=1

(1− τi(ξi))

)2
⎤
⎦

≤ 1

n2

n∑
i=1

Var(τi(ξi)).

Our general setup also caters for comparison of distributions with Stein pair
based on different linear operators D; this has already been explored in [43] for
Beta approximation of the Pólya-Eggenberger distribution. Here we illustrate
the technique for Gaussian comparison in terms of Stein discrepancies.

Proposition 5.13. Let D be a linear operator satisfying the Assumptions from
Section 3.1; let l be as in Assumption 1. Let W be centered with variance σ2,
and D-Stein pair (TW ,F(W )); let τW be the corresponding Stein kernel. Let
Z ∼ N (0, 1) and S(W ) be as above the Stein discrepancy between W and Z.
Then for all g ∈ dom((·)′, Z) ∩ dom(D,W, τW ) we have

|E [g′(W )−Wg(W )]| ≤ S(W )‖g′‖+σ2‖g′(·)−D�g(·− l)‖∞+‖g(·− l)−g(·)‖∞.
(71)

Proof. Applying Proposition 4.4 to ν = 0 we get

E [Wg(W − l)] = E [τW (W )D�g(W − l)] (72)

for all g ∈ dom(D,W, τW ). If furthermore g ∈ dom((·)′, Z) then
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E [g′(W )−Wg(W )]

= E [g′(W )−Wg(W − l)] + E [W (g(W − l)− g(W ))]

= E [g′(W )− τW (W )D�g(W − l)] + E [W (g(W − l)− g(W ))]

= E [g′(W )(1− τW (W ))] + E [τW (W ) (g′(W )−D�g(W − l))]

+ E [W (g(W − l)− g(W ))] .

Applying Cauchy-Schwarz to the first summand in the last equality yields the
first summand of (71). To get the second summand of (71) note that τW (W ) ≥ 0
almost surely (recall Remark 4.5) so that

|E [τW (W ) (g′(W )−D�g(W − l))]| ≤ E [τW (W )] ‖ (g′(·)−D�g(· − l)) ‖∞

and now we use E [τW (W )] = Var(W ) = σ2. The last term in (71) follows by a
similar reasoning.

As an illustration we now provide a Gaussian approximation bound in the
Wasserstein distance under a Stein kernel assumption.

Proposition 5.14. Let W be centered with variance σ2 and support in δZ
for some δ > 0. Consider D = δ−1Δ+

δ as in Example 3.3. Suppose that the
assumptions in Lemma 5.10 are satisfied. Then

dWass(W,Z) ≤ S(W ) + (1 + σ2)δ (73)

with dWass(W,Z) the Wasserstein distance between the laws of W and Z.

Proof. We aim to apply (71), with g = gh the classical solution to the Gaussian
Stein equation

g′(x)− xg(x) = h(x)− E[h(Z)]

where h is a Lipschitz function with constant 1. The properties of such g are
well understood, see e.g. [6, Lemma 2.3]. In particular these functions are dif-
ferentiable and bounded with ‖g′‖∞ ≤ 1 so that

|g(x− δ)− g(x)| =
∫ 0

−δ

g′(x+ u)du ≤ δ

for all x ∈ R. Also, ‖g′′‖∞ ≤ 2 and hence

|g′(x)−D�g(x− l)| = |g′(x)− δ−1(g(x)− g(x− δ))|

=

∣∣∣∣1δ
∫ 0

−δ

∫ u

0

g′′(x+ v)dvdu

∣∣∣∣
≤ δ,

again for all x ∈ R. The claim follows.

Finally, following up on the results presented in Section 2.7, we conclude with
a central limit theorem for sums of centered Rademacher random variables.
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Corollary 5.15. Let W = 1√
n

∑n
i=1 ξi with ξi, i = 1, . . . , n, independent cen-

tered with support in {−1, 1}. Fix Df = f(x + 1) − f(x − 1) and let τi(ξi) =
I(ξi = 1). The τi(ξi)i=1,...,n are D-Stein kernels for (ξi)i=1,...,n and

dWass(W,Z) ≤ 3√
n
. (74)

Proof. The first claim is immediate. Next we use (70) to deduce that

S(W ) ≤ 1

n

√√√√ n∑
i=1

Var(τi(ξi)) =
1/2√
n
.

Finally we apply (73) with σ2 = 1 and δ = 1√
n
.

Remark 5.16. It is straightforward to extend the results of this Section to
random sums of independent random variables and therefore deduce central limit
theorems for randomly centered random variables. A much more challenging task
is to deal with non-randomly centered random sums, as e.g. in [27].

6. Stein bounds

As anticipated, in this Section we discuss non-asymptotic approximation via
Stein differentiation in several concrete examples. The main purpose of this
Section is illustrative and most of the examples we discuss lead to well-known
situations. Relevant references are given in the text.

6.1. Binomial approximation to the Poisson-binomial distribution

An immediate application of Proposition 5.11 can be found in binomial ap-
proximation for a sum of independent Bernoulli random variables. Writing X
for a Bin(n, p) and W =

∑n
i=1 Xi with Xi ∼ Bin(1, pi), i = 1, . . . , n, and

np =
∑n

i=1 pi (the distribution of W is called a Poisson-binomial distribution,
see e.g. [31]), we readily compute

τX(x) = (1− p)x and τXi(x) = (1− pi)x.

Here we use D = Δ+, the forward difference. Thus for any measurable function
h such that E|h(X)| < ∞ and E|h(W )| < ∞,

|E[h(X)]− E[h(W )]| ≤ ||Dgh||∞E

∣∣∣∣∣(1− p)W −
n∑

i=1

(1− pi)Xi

∣∣∣∣∣
≤ ||Dgh||∞

n∑
i=1

|pi − p|pi. (75)
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An alternative angle on this problem is to use the score function approach,
although here with T (Id) instead of T (1). It is easy to show (see e.g. Example
4.9.2.(b)) that

TBin(n,p)(f)(x) =
p(n− x)

(1− p)(x+ 1)
f(x+ 1)− f(x)

so that for f = Id, the identity function,

TBin(n,p)(Id)(x) =
np− x

1− p
.

By Example 3.13 we find that f = Id ∈ F(X)∩F(W ) because Id(0) = 0. Now
let h be such that E|h(X)| < ∞ and E|h(W )| < ∞, and let gh = T −1

X (h −
E[h(X)])/Id; then g ∈ dom(Δ+,W, Id)∩ dom(Δ+, X, Id). From (59) we obtain
that

E[h(W )]− E[h(X)] = E
[
gh(W + 1)

{
TBin(n,p)(Id)(W )− TL(W )(Id)(W )

}]
.

By (33), using the notation ga(x) = g(x+ a) for a function in x,

E[gh(W + 1)TL(W )(Id)(W )]

= −E[WΔ−g(W + 1)]

= −
n∑

i=1

E

[
E

{
XiΔ

−g∑
j �=i Xj+1(Xi)|Xj , j �= i

}]

=

n∑
i=1

E

[
E

{
TBin(1,pi)(Id)(Xi)g∑

j �=i Xj+1(Xi)|Xj , j �= i
}]

=

n∑
i=1

E
{
g(W + 1)TBin(1,pi)(Id)(Xi)

}
.

Hence

E[h(W )]− E[h(X)]

= E

[
gh(W + 1)

{
TBin(n,p)(Id)(W )−

n∑
i=1

TBin(1,pi)(Id)(Xi)

}]

= E

[
gh(W + 1)

{
np−W

1− p
−

n∑
i=1

pi −Xi

1− pi

}]

= E

[
gh(W + 1)

n∑
i=1

(pi −Xi)

{
1

1− p
− 1

1− pi

}]

and so

|E[h(X)]− E[h(W )]| ≤ ‖gh‖∞
1− p

n∑
i=1

|p− pi|E
∣∣∣∣pi −Xi

1− pi

∣∣∣∣ = 2‖gh‖∞
1− p

n∑
i=1

|p− pi|pi.

(76)
The fact that we obtain two different bounds, (75) and (76), for the same prob-
lem illustrates the freedom of choice in specifying f and g in the Stein equa-
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tion. In [31], bounds for supx

∣∣∣D gh(x)
x+1

∣∣∣ are calculated, and in [34] a bound for

supx

∣∣∣ gh(x)x+1

∣∣∣ is given.
6.2. Distance between Gaussians

Consider two centered Gaussian random variables X1 and X2 with respective
variances σ2

1 ≤ σ2
2 , say. Denote φ the density of Z, a standard normal random

variable. The canonical Stein operators are then of the form

Tif(x) = f ′(x)− x

σ2
i

f(x)

acting on the classes F1(X1) = F2(X2) = F(Z) of Z-integrable differentiable
functions such that (fφ)

′ ∈ L1(dx). In this simple toy-setting it is possible to
write out (59) in full generality. Indeed we have

f1gh = T −1
1 (h− E1h)

= ex
2/(2σ2

1)

∫ x

−∞
(h(y)− E[h(X1)])e

−y2/(2σ2
1)dy

= e(x/σ1)
2/2σ1

∫ x/σ1

−∞
(h(σ1u)− E[h(σ1Z)]) e−u2/2du =: σ1gh̃,0(x/σ1)

with h̃(u) = h(σ1u) and gh,0 the solution of the classical Stein equation given
by

gh,0(x) = ex
2/2

∫ x

−∞
(h(y)− E[h(Z)])e−y2/2dy.

In the particular case where one is interested in the total variation distance,
one only considers h : R → [0, 1] Borel functions for which ‖gh,0‖ ≤

√
π
2 and

‖g′h,0‖ ≤ 2 (see e.g. [71, Theorem 3.3.1]). In the rest of this Section we focus on
such h, although similar results are available for h = I(−∞,z] (leading to bounds
on the Kolmogorov distance, see [24, Lemma 2.3]) and for h ∈ Lip(1) (leading
to bounds on the Wasserstein distance, see [71, Proposition 3.5.1]). Identity (59)
becomes

E[h(X2)]− E[h(X1)] = E

[
(f1(X2)− f2(X2))

(
σ1gh̃,0(X2/σ1)

f1(X2)

)′

+(T1f1(X2)− T2f2(X2))

(
σ1gh̃,0(X2/σ1)

f1(X2)

)]
.

for any f1, f2 ∈ F(Z). There are many directions that can be taken from here,
of which we illustrate three (to simplify notation we write gh for gh̃,0).

• Taking f1 = 1 and f2 = 0 (see Remark 5.2) leads to the identity

E[h(X2)]− E[h(X1)] = E

[
g′h

(
X2

σ1

)
− X2

σ1
gh

(
X2

σ1

)]



44 C. Ley et al.

because T1(1)(x) = −x/σ2
1 . Recalling that E [X2ζ(X2)] = σ2

2E [ζ ′(X2)] for
any differentiable function ζ, and also noting that one can interchange the
roles of X1 and X2, we deduce the bound

dTV(X1, X2) ≤
2

σ2
2

∣∣σ2
1 − σ2

2

∣∣ , (77)

already obtained e.g. in [71, Proposition 3.6.1].
• Taking f1 = σ2

1 and f2 = σ2
2 (thus a particular case of the comparison of

kernels from Corollary 5.7) also yields (77).
• Taking f1 = f2 = 1 (thus a particular case of the comparison of scores

from Corollary 5.5) yields the identity

E[h(X2)]− E[h(X1)] = E

[
X2

(
1

σ2
1

− 1

σ2
2

)(
σ1gh,0

(
X2

σ1

))]

because Ti(1)(x) = −x/σ2
i . Using E |X2| =

√
2
πσ2 and ‖σ1gh,0(·/σ1)‖∞ ≤

σ1

√
π
2 leads to

dTV(X1, X2) ≤
∣∣σ2

1 − σ2
2

∣∣
σ1σ2

,

which is better than (77) whenever σ2/σ1 < 2.

6.3. From student to Gauss

Set X1 = Z standard Gaussian and X2 = Wν a Student t random variable with
ν > 2 degrees of freedom. In this case the Stein kernels for both distributions are

well defined and given, respectively, by τ1 = 1 and τ2(x) =
x2+ν
ν−1 , see Example

4.9. All assumptions in Corollary 5.7 are satisfied so that we can plug these
functions with H the class of Borel functions in [0, 1] to get

dTV(Z,Wν) ≤ 2E

∣∣∣∣W 2
ν + ν

ν − 1
− 1

∣∣∣∣ (78)

where, as in the previous example, we make use of our knowledge on the solutions
of the Gaussian Stein equation. It is straightforward to compute (78) explicitly
(under the assumption ν > 2, otherwise the expectation does not exist) to get

dTV(Z,Wν) ≤
4

ν − 2
. (79)

A similar result is obtained with Corollary 5.5, namely

dTV(Z,Wν) ≤
√

π

2

−2 + 8
(

ν
1+ν

)(1+ν)/2

(ν − 1)
√
νB(ν/2, 1/2)

,

which is of the same order as (79), with a better constant, but arguably much
less elegant.

Remark 6.1. It is of course possible to exchange the roles of the Student and
the Gaussian in the above computations.
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6.4. Exponential approximation

Let X(n) be the maximum of n i.i.d. uniform random variables on [0, 1]. It is
known that Mn = n(1 − X(n)) converges in distribution to X1 a rate-1 ex-
ponential random variable. Note that E[Mn] = n

n+1 �= 1. In order to apply
Corollary 5.7 most easily we are led to consider the slightly transformed ran-
dom variable X2 = n+1

n Mn = (n+ 1)(1−X(n)).
The canonical operator for X1 is T1f = f ′ − f acting on the class of differ-

entiable f such that f(0) = 0. The Stein equation (37) becomes

h(x)− E[h(X1)] = f(x)g′(x) + f ′(x)g(x)− g(x)f(x) = (fg)′(x)− (fg)(x).

Then the solution pairs (f, g) = (fh, gh) are such that (fg)(x) = T −1
exp(h) so that

(fg)(x) = ex
∫ x

0

(h(u)− E[h(X1)])e
−udu (80)

for x > 0. If h(x) = I(x ≤ t) we need to understand the properties of

(fg)(x) = e−(t−x)+ − e−t.

This function is bounded and differentiable on R, with limit 0 at the left bound-
ary and constant with value 1 − e−t for all x ≥ t (see also [19, Lemma 3.2]).
Taking g(x) = xε in (80) the corresponding function f from (80) is

ft,ε(x) = x−ε
(
e−(t−x)+ − e−t

)
with a+ = max(a, 0). For all choices 0 < ε < 1 we have

lim
x→0

ft,ε(x) = 0 and lim
x→∞

ft,ε(x) = 0 and ‖ft,ε‖∞ = t−ε(1− e−t),

as well as limx→0 ft,1(x) = e−t (see [19] for details on the cases ε = 0 and ε = 1).
We now turn our attention to the problem of approximating the law of X2,

whose density is p(x) = n
n+1 (1−

x
n+1 )

n−1 with support [0, n+1]. Taking deriva-
tives we get

T2f(x) = f ′(x)− n− 1

n+ 1− x
f(x)

acting, as above, on the class of differentiable functions such that f(0) = 0.
Clearly ft,ε(0)gε(0) = 0 for all 0 < ε < 1 and therefore

P (X2 ≤ t)− P (X1 ≤ t) = E[(ft,εgε)
′(X2)− (ft,εgε)(X2)]

= E

[
(ft,εgε)(X2)

{
n− 1

n+ 1−X2
− 1

}]

which yields the non-uniform bound

|P (X1 ≤ t)− P (X2 ≤ t)| ≤ t−ε(1− e−t)E

[
Xε

2

∣∣∣∣ n− 1

n+ 1−X2
− 1

∣∣∣∣
]
. (81)
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The quantity on the rhs of (81) can be optimised numerically in (ε, t). For ex-
ample for n = 100 and t = 1/2, we can compute the upper bound at ε = 0 to
get 0.00497143 and 0.00852033 at ε = 1. The optimal choice of ε in this case is
ε ≈ 0.138 for which the bound is 0.00488718. Obviously, in this simple situation,
it is also easy to evaluate the expressions Δ(t) = supt |P (X2 ≤ t)− P (X1 ≤ t)|
numerically; explorations show that there is some interesting optimization (de-
pending on the magnitude of t) to be performed in order to obtain good bounds.

6.5. Gumbel approximation

Let X(n) be the maximum of n i.i.d. exponential random variables. It is known
that Mn = X(n) − logn converges in distribution to X1 a Gumbel random

variable with density p(x) = e−xe−e−x

on R. The Stein kernel of the Gumbel
does not take on a tractable form, hence we shall here rather use Corollary 5.7
with another choice of function ω.

A natural choice for ω is the score function, here uGumbel(x) = e−x− 1, since
in this case T −1

Gumbel(uGumbel) = 1. As for the exponential example, we here also
run into the difficulty that E[e−Mn − 1] = n

n+1 − 1 �= 0, leading us to consider
the transformed random variable X2 = Mn + log n

n+1 . Simple calculations give

T −1
2 (e−x − 1) = 1− e−x

n+1 and we can use Corollary 5.7 to obtain

|E[h(X2)]− E[h(X1)]| ≤ ||g′h||∞E

∣∣∣∣1−
(
1− e−X2

n+ 1

)∣∣∣∣
= ||g′h||∞

1

n+ 1
E

[
e−X2

]
with gh(x) = T −1

Gumbel(h). Since, furthermore, E
[
e−X2

]
= 1 we deduce

|E[h(X2)]− E[h(X1)]| ≤
1

n+ 1
||g′h||∞.

Again it is easy to express gh explicitly in most cases. For example, taking

h(x) = I(x ≤ t) we readily compute gh(x) = ex
(
e−(e−t−e−x)+ − e−e−t

)
which

can be shown to satisfy ‖gh‖ ≤ et(1 − e−e−t

) ≤ 1 and ‖g′h‖ ≤ 1. This provides
the uniform bound

|P (X2 ≤ t)− P (X1 ≤ t)| ≤ 1

n+ 1
,

which is of comparable order (though with a worse constant) with, e.g., [50].
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