ON THE SIMILARITY TRANSFORMATION BETWEEN A MATRIX AND ITS TRANSPOSE

Olga Taussky and Hans Zassenhaus

It was observed by one of the authors that a matrix transforming a companion matrix into its transpose is symmetric. The following two questions arise:
I. Does there exist for every square matrix with coefficients in a field a non-singular symmetric matrix transforming it into its transpose ?
II. Under which conditions is every matrix transforming a square matrix into its transpose symmetric?

The answer is provided by
Theorem 1. For every $n \times n$ matrix $A=\left(\alpha_{i k}\right)$ with coefficients in a field F there is a non-singular symmetric matrix transforming A into its transpose A^{T}.

Theorem 2. Every non-singular matrix transforming A into its transpose is symmetric if and only if the minimal polynomial of A is equal to its characteristic polynomial i.e. if A is similar to a companion matrix.

Proof. Let $T=\left(t_{i k}\right)$ be a solution matrix of the system $\sum(A)$ of the linear homogeneous equations.

$$
\begin{equation*}
T A-A^{T} T=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
T-T^{T}=0 \tag{2}
\end{equation*}
$$

The system $\sum(A)$ is equivalent to the system

$$
\begin{equation*}
T A-A^{T} T^{T}=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
T-T^{T}=0 \tag{4}
\end{equation*}
$$

which states that T and $T A$ are symmetric. This system involves $n^{2}-n$ equations and hence is of rank $n^{2}-n$ at most. Thus there are at least n linearly independent solutions of $\Sigma(A) .{ }^{1}$

On the other hand it is well known that there is a non-singular matrix T_{0} satisfying

$$
T_{0} A T_{0}^{-1}=A^{T}
$$

Received December 18, 1958.
This part of the proof was provided by the referce. Our own argument was more lengthy.

From (1) we derive

$$
\begin{equation*}
T_{0}^{-1} T A=A T_{0}^{-1} T \tag{1a}
\end{equation*}
$$

and conversely, (1a) implies (1) so that there is the linear isomorphism

$$
T \rightarrow T_{0}^{-1} T
$$

of the solution space of (1) onto the centralizer ring of the matrix A.
If the minimal polynomial of A is equal to the characteristic polynomial then the centralizer of A consists only of the polynomials in A with coefficients in F. In this case the solution space of (1) is of dimension n. A fortiori the solution space of $\sum(A)$ is at most of dimension n since the corresponding system involves more equations. Together with the inequality in the other direction it follows that the dimension of the solution space of $\Sigma(A)$ is exactly n. This implies that every solution matrix of (1) is symmetric.

If the square matrix A is arbitrary then we apply first a similarity (in the field F) which transforms it to the form

$$
B=\left(\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& \cdot & & \\
& & \cdot & \\
& & & A_{r}
\end{array}\right)
$$

where A_{i} is a square matrix of the form

$$
\left(\begin{array}{lll}
{ }^{p} A & & \\
{ }_{p} A & & \\
L_{p} A & & \\
& \cdot & \\
& & \cdot \\
& & \\
L_{p} A
\end{array}\right)
$$

Here ${ }_{p} A$ is the companion matrix of the irreducible polynomial p which is a factor of the characteristic polynomial of A and L is the matrix with 1 in the bottom left corner and 0 elsewhere, of appropriate size (Reference 1, p. 94). The matrix A is derogatory if two blocks A_{i} corresponding to the same p appear in B. Let A_{1} and A_{2} be two such blocks.

There is a non-singular matrix Y satisfying

$$
Y_{p} A={ }_{p} A^{T} Y .
$$

The matrix of matrices V that has Y in the top left corner and 0 elsewhere, of appropriate size, satisfies

$$
V A_{2}=A_{1}^{r} V
$$

Consider then the matrix

$$
\left(\begin{array}{cccc}
S_{1} & V & & \\
& S_{2} & & \\
& & \cdot & \\
& & \cdot & \\
& & & S_{r}
\end{array}\right)
$$

where S_{i} is a non-singular matrix transforming A_{i} into A_{i}^{T}. It is a nonsingular non-symmetric matrix which transform B into its transpose. Thus Theorem 2 is proved.

Remark. M. Newman pointed out to us that the product of two non-singular skew symmetric matrices B, C can always be transformed into its transpose by a non-symmtric matrix, namely

$$
B^{-1} B C B=(B C)^{T}=C B
$$

Theorem 2 shows that such a product $B C$ must be derogatory. ${ }^{2}$ This can also be shown directly in the following way:

Let λ be a characteristic root of $B C$ and x a corresponding characteristic vector, then

$$
B C x=\lambda x
$$

Since B is non-singular this implies

$$
C x=\lambda B^{-1} x
$$

or

$$
\left(C-\lambda B^{-1}\right) x=0
$$

Since B is a non-singular skew symmetric matrix, it follows that the degree of B and hence the degree of $C-\lambda B^{-1}$ is even. Moreover, the skew symmetric matrix $C-\lambda B^{-1}$ has even rank.

[^0]It follows that another vector y exists such that also

$$
\left(C-\lambda B^{-1}\right) y=0
$$

and hence also

$$
B C y=\lambda y
$$

This implies that λ is a characteristic root of multiplicity at least two and with at least two corresponding vectors. The product of two general non-singular skew symmetric matrices B, C has every characteristic root of multiplicity exactly 2 . For, specialize to the case $B=C$. Then $B C$ is a symmetric matrix whose characteristic roots are the squares of the roots of B, hence all exactly double for a general B. This shows that the general $B C$ has all its characteristic roots double with two independent characteristic vectors. Such a matrix is derogatory and its characteristic polynomial is the square of its minimum polynomial.

References

1. M. P. Drazin, A note on skew-symmetric matrices, Math. Gazette, 36 (1952), 253-255.
2. N. Jacobson, Lectures on abstract algebra, New York 1953.
3. -, An application of E. H. Moore's determinant of a Hermitian matrix, Bull. Amer. Math. Soc., 45 (1939), 745-748.
4. K. Tatarkiewicz, Sur l'orthogonalité généralisée des matrices propres, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 9 (1955), 5-28. ${ }^{3}$
5. A. Voss, Symmetrische und alternierende Lösungen der Gleichung $S X=X S^{\prime}$, S. ber, math. phys. K1. K. B. Akademie München, 26 (1896), 273-281.

California Institute of Technology
McGill University and California Institute of Technology

[^1]
[^0]: ${ }^{2}$ Although Newman's comment is only significant for fields of characteristic $\neq 2$ the remainder of this section holds generally if skew symmetric is understood to mean $T=$ $-T^{T}$ and vanishing of the diagonal elements. We observe that this definition is invariant under the transformation $T \rightarrow X^{T} T X$. This is the transformation T undergoes when the matrix A in (1), (2) undergoes the similarity transformation $A \rightarrow X^{-1} A X$. Since this transformation preserves linear independence, we are permitted to apply it for the purpose of finding a non 'skew symmetric' solution of (1), (2). We now extend the field of reference to include the eigenvalues of A (from the theory of homogeneous linear equations it follows that the maximal number of linear independent solutions will remain the same). It can then be observed that for a block of the Jordan canonical form of a matrix any matrix with all coefficients zero excepting the first diagonal coefficient satisfies (1), (2). Therefore

[^1]: for any matrix A we can find solutions of (1), (2) that are non 'skew-symmetric'.
 ${ }^{3}$ This paper which is related to our investigation was pointed out to us by the referee to whom we are indebted for other useful comments.

