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Introduction. Let Γ be a group, p: Γ -> GLn(K) a matrix
representation over some field K, and Xp its character: Xp(s) = Ύx(p(s)).
The theme of this paper is, generally spaking, to draw conclusions
about Γ or p(Γ) from ίiniteness assumptions on XP{Γ). The proto-
type of such results is Burnside's theorem saying, when p is absolutely
irreducible, that if XP(Γ) is finite then ρ(Γ) is finite. This yielded
his afRrmative solution of the "Burnside problem" for linear groups.
The same argument shows, when K is a locally compact field (like
R or C) that we may replace "finite" by "bounded", and conclude
from boundedness of XP(Γ) that the closure of p(Γ) is compact. This
yields an affirmative answer to a question posed to us by Ken Millett.
Independently, Kaplansky asked us whether a subgroup of GLn(C),
each element of which is conjugate to a unitary matrix, is itself
conjugate to a subgroup of Un{C). We give a counterexample.
These results occupy § 1.

The rest of the paper is devoted to the introduction and study
of the following notion. Let A be a commutative ring and n an
integer ^ 1 . A group Γ is said to have integral n-representation
type over A if, for any field K which is an A-algebra, and any
representation p: Γ —>GLn(K), the elements Xp(s) e K for seΓ are
all integral over A, i.e., roots of a monic polynomial with coefficients
in A (Def. 5.1). We conclude from this, when A is noetherian, that,
for any finite subset X of Γ, the sub A-algebra of Mn(K) generated
by p{X) is a finitely generated A-module, (Prop. 5.2). Further, Γ
has only finitely many conjugacy classes of irreducible representa-
tions of dimension ^n over any field K as above (Prop. 5.3). These
and other strong finiteness properties are deduced from the theory
of rings with polynomial identities, as developed in Procesi's book
[12]. In §§2-4 we give a rendering of this source material adapted
to the present applications.

The case of main interest is when A = Z, which we now assume.
A group Γ has integral 1-representation type if and only if Γab is
a torsion group (Prop. 5.5). Serre [15] has furnished a class of
finitely generated groups Γ of integral 2-representation type, namely
those with the fixed point property for actions on trees (Th. 6.4).
This is equivalent to Γab being finite and Γ not being a nontrivial
amalgamated free product (Th. 6.2). We derive a useful refinement
(Th. 6.5) of Serre's theorem in order to prove (Cor. 6.7) a conjecture
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of P. Shalen asserting that certain subgroups of GL2(C) are non-
trivial amalgamated free products. (Shalen's persistent solicitation
of this proof is responsible for the present paper.)

We say that Γ has integral representation type if it has integral
^-representation type for all n ^ 1. Examples include all torsion'
groups and many arithmetic groups, e.g., SLn(Z) for n^3 (but not
n — 2). In fact variations on these examples account for essentially
all known finitely generated linear groups of integral representation
type (cf. § 10). Groups of integral representation type are stable
under passage to quotients and to subgroups of finite index (Cor.
5.8), and under formation of direct products (Prop. 5.11) (but not
free products (Cor. 8.4), and even of arbitrary group extensions
(Cor. 9.9)). The proof of the latter result is slightly intricate. The
only finitely generated solvable groups of integral representation
type are the finite ones (Cor. 5.9).

1Φ Groups of bounded character*

NOTATION 1.1. We fix an algebraically closed field K, a multi-
plicative monoid Γ in the if-algebra M%(K) of n by n matrices, and
we write Tr (Γ) = {Tr (s) | * 6 Γ}.

We answer below the following questions of Ken Millett and I.
Kaplansky. Suppose that K — C and that Γ is a group whose
elements all have eigenvalues all of absolute value 1. Then Γ is
conjugate to a subgroup of

o un<

where Un. = Un.(C) denotes the unitary group (Cor. 1.8). This
affirmatively responds to a question posed to us by Millett.
Kaplansky independently asked us whether, under the additional
assumption that each element of Γ is semi-simple (i.e., diagonalizable),
one can take * = 0 above. Equivalently, if each element of Γ is
conjugate to an element of Un(C), is Γ conjugate to a subgroup of
Un(C)Ί We furnish a counterexample in 1.10 below. Our results
are based on a classical argument of Burnside which we now recall.

THE BURNSIDE LEMMA 1.2. Suppose that Γ acts ίrreducίbly on
K\

(a) Γ contains a basis slt •• , β w 2 of Mn(K). Let tl9 "'ftn2 be
the dual basis relative to the trace form: Tr ( ί ^ ) = δi3 (l<ίi, j^n2).

(b) For any s e Mn(K) we have s — Σt Tr (ss^ti. Hence
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(1) ΓcΣT

This is classical. Briefly, the Z-linear span KΓ of Γ is a K-
algebra with faithful simple module V — Kn. Schur's lemma says
that the division algebra EndK Γ(F) is K (since K is algebraically
closed), and Wedderburn theory then gives KΓ — End#( V) = Mn(K).
The trace form (x, y) ι—• Tr (xy) on Mn(K) is nondegenerate, whence
the existence of the dual basis (ίj. If s = ΣiaiU£Mn(K) with at e
K then Tr (ssό) = Σ» α< Tr (t%ss) = α, . If s e Γ then ssy e Γ for all i,
so aά 6 Tr (F). Whence the lemma.

COROLLARY 1.3. Suppose that Γ acts irreducibly on Kn.
(a) (Burnside) // Tr (T) is finite then Γ is finite. In fact

Card (Γ) ^ (Card (Tr (Γ))y\
(b) Suppose that K admits an absolute value relative to which

Tr (Γ) is bounded. Then Γ is bounded in Mn(K).
(c) Suppose that K is a nondiscrete locally compact field and

that Tr (Γ) is bounded. Then the closure Γ of Γ in Mn{K) is
compact.

Both (a) and (b) are immediate from (1) above, and (c) follows
from (b).

REMARK 1.4. The only algebraically closed locally compact non-
discrete field is C. However other locally compact fields may be
admitted in (c) provided that we assume the action of Γ on Kn is
absolutely completely reducible.

1.5. When Γ acts not necessarily irreducibly on Kn we can
choose a Jordan-Holder series

( 2 ) o - y o c Vxc . c ?, = *:•

for the Γ-module Kn. Relative to a basis of Kn adapted to (2) the
elements s e Γ take the matrix form

( 3 ) 8 =

\0 sr

where st e Mm.(K) is the matrix of the action s induces on the nt-
dimensional space VJVi^i — l, -- , r ) . The map si—> st is a homo-
morphism of Γ onto a monoid Γt c Mn.(K) which acts irreducibly on
Kn\ so the preceeding results apply to each Γt. If Γ acts com-
pletely reducibly on Kn then we may choose the basis above so that
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* = 0 in (3), i.e., s is in block diagonal form.

1.6. Suppose now that Γ is a group. The map

{Si *\ Is1 0\

(4) 8=1 \ >«'=( \

\0 sj \0

is a homomorphism from Γ onto a subgroup Γ' of GLn(K), isomor-

phic to a subgroup of Γx x x Γ r. The kernel Γu of (4) consists

of unipotent matrices ίof the form (^ ί ) ) . If char (K) = 0 then

Γu is a torsion free group. If char (K) = p > 0 then Γu has exponent

pn: s

pn — 1 for all s e Γu.

COROLLARY 1.7 (Burnside). Suppose that Γ is a group of
exponent e: se — 1 for all s eΓ. Then there is a constant c = c(n, e)
such that the unipotent group Γu has index <*c in Γ. If char (if)
does not divide e then Γn — {1} so Card (Γ) :g c.

In view of 1.6 it suffices to bound each Card (Γ%) by a constant
depending on n and e alone. From 1.3 (a) we have Card (ΓJ^Card
(Tr(Γt))wί. Since nt ^ n it suffices to bound Tr(Γ,). If seΓ* then
Tr (s) is a sum of nt βth roots of unity, and there are at most e%ί

such sums. This proves the corollary. One can, for example, take
c = ((en)n2)n = en\

COROLLARY 1.8. Let Γ be a subgroup of GLn(C) such that the
set of eigenvalues of elements of Γ is bounded.

(a) Γ is conjugate to a subgroup of

('5)

\o uj
where Un. denotes the unitary group Un.(C).

(b) The set Γu of unipotent elements of Γ is a normal sub-
group of Γ, and Γ/Γu is isomorphic to a subgroup of Un(C).

(c) If Γ acts completely reducibly on Cn then Γ is conjugate
to a subgroup of Un(C) (and conversely).

With the notation of 1.6 above, the hypothesis on eigenvalues
implies that each Γt cGLn.(C) has bounded trace, so 1.3 (c) implies
that the closure Γt is compact, hence conjugate to a subgroup of
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Un.(C); whence (a). The homomorphism (4) then maps Γ onto a

Γ" • °\
subgroup Γ' of I Jc Un{C), which has no unipotent ele-

\o uj
ments Φl. It follows that the kernel Γu of (4) consists of all
unipotent elements of Γ, thus proving (b). If Γ acts completely
reducibly on Cn, then, as remarked in 1.5, we can take * = 0 in (5),
whence (c).

Kaplansky's Problem 1.9. Let Γ be as in 1.8, and assume that
each element of Γ is semi-simple (i.e., diagonalizable). Kaplansky
asked whether it then follows that Γ is conjugate to a subgroup
of UJfi). Note that Γu = {1}, so it follows from 1.8 (b) that Γ is
isomorphic to a subgroup of Un(C). We shall show, nonetheless,
that the answer to Kaplansky's problem is negative.

Counterexample 1 .10 . I f weSU2(C) a n d wΦl t h e n n e i t h e r
eigenvalue of w can equal 1 (because their product is 1, and SU2(C)
contains no unipotent elements ^1); hence w — 1 is invertible. It

follows that for any c = (Cl) e C2 the element

ίw
< 6 ) (o i

is semi-simple. Indeed, if b e C2 then

1 6\/w c\/l -6\ _ ίw c - (w - 1)6

o i j l o iΛo i ] - \ o l
Taking 6 = (w — I)"1© we obtain the semi-simple matrix \Vj Λ.

Now let Γ' be a free subgroup of SU2(C) with free basis n, v.
Such free groups are well known to exist, for example by Tits'
theorem [T] (since SU2(C) is connected and nonsolvable). Since
u Φ v we have (u — I)" 1 Φ (v — I)"1, so there is an a e C2 such that

(8) (u - lΓ'α Φ (v - l)~xα .

Now let Γ denote the group

The obvious projection Γ —> Γ' is an isomorphism since Γ' is free
with basis u, v. It follows that each nontrivial element of Γ is of
the form (6) with w Φ 1, and hence is semi-simple. Moreover the
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elements of Γ evidently have eigenvalues on the unit circle. Thus
Γ provides the promised counterexample to Kaplansky's problem
once we show that Γ is not conjugate to a subgroup of UZ(C). For
this it suffices to show that Γ does not act completely reducibly on
C3. Let [elf e2, e3 be the standard basis of C\ Then Γ leaves C2 =
Cei + Ce2 invariant. If the action were completely reducible then we
could find a vector f=b1e1+b2e2+es such that Γ leaves Cf invariant.

Putting b = ί jM it would then follow that (Q ?) conjugates Γ into
(block) diagonal form. According to (7) we must then have δ = (w —
l)-1c for each nontrivial element (6) of Γ. But this contradicts (8),
whence our claim.

REMARK 1.11. The closure G of Γ is the full group

~SU2(C)C2

_ o l

I owe the following proof of this to Serre. Since each element
^ 1 in Γ is conjugate to an element of infinite order in SU2(C), it
generates a dense subgroup of a circle group in G; it follows that
G is connected. It's projection in SU2(C) is connected and nonsolva-
ble, since it contains the free group Γf. The proper connected sub-
groups of SU2{C) are abelian, so G projects onto SU2(C). Let g be
the Lie algebra of G and n the kernel of the Lie algebra projection
p: g -> su2(C). If n = 0 then g is conjugate to su2(C) so G is con-
jugate to SU2(C), contrary to what we proved above. Therefore n
is a (real) vector space Φθ in C2. Since p above is surjective, n is
stable under su2(C), which acts irreducibly on C2. It follows that
n - C\ so

[o o
whence the result.

2* Absolutely irreducible monoids of integral character*

NOTATION 2.1. As in 1.1, K is an algebraically closed field and
Γ is a multiplicative submonoid of Mn(K). We further assume that
Γ acts ir reducibly on Kn, so that the Burnside Lemma 1.2 furnishes
a JSΓ-basis sl9 -—,sn2 in Γ of Mn(K), and the dual basis tίf •••, ί»2:
Tr (tφ) = δi5 (ί, i = 1, , n2). For any subring A of K we write
AΓ for the sub A-module of Mn(K) generated by Γ: AΓ is an A-
algebra.

The next result records some more or less standard facts. We
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shall draw some simple consequences to be applied later.

PROPOSITION 2.2. Let A be a subring of K with field of frac-
tions F. Assume that

(1) Tr (Γ) c A .

(a) We have

Σis.ciΓcΣ Att
i i

where the right and left hand terms are free A-modules of rank n2.
(b) The natural homomorphism K(&AAΓ—>KΓ = Mn(K) is

bijective (i.e., AΓ is an "A-structure" on Mn(K)).
(c) FΓ is a central simple F-algebra of dimension n2, hence

isomorphic to Mr(D) where D is a division algebra of dimension s2

over the center F, with rs = n. {The integer s is called the Schur
index of the representation of Γ on Kn.)

(d) There is an extension E of degree s of F in K, isomorphic
to a maximal sub field of D, such that EΓ(=E(&F FΓ) is isomorphic
to the E-algebra MJJΞ).

(e) EΓ is conjugate in Mn{K) to Mn(E).

Assertion (a) is immediate from 1.2 (b), and it clearly implies
(b). Assertion (b) applied to A = F implies that FΓ is a central
simple .F-algebra of dimension n2. The rest of (c) follows from
Wedderburn structure theory. A maximal subfield E of D can be
embedded in K as an extension of F. Such an E has degree s over
F and splits the F-algebra FΓ = Mr(D) (cf. [9], Th. 68.6) whence
(d). We now have an F-algebra isomorphism/: Mn{E)~>EΓaMn{K),
as well as the inclusion g: Mn(E) —> Mn(K). Tensoring with K pro-
duces two iΓ-algebra isomorphisms / ' and g' from Mn(K) to Mn(K).
They define Mn(KymoάxΛe structures on Kn which must clearly be
isomorphic, i.e., / ' is conjugate to g', whence (e).

COROLLARY 2.3. Let A be a neotherian subring of K with field
of fractions F. Assume that the integral closure of A in any finite
extension of F is a finitely generated A-module. Assume further
that

( 2 ) Tr (Γ) is integral over A

(i.e., that each element of Tr (Γ) is so) and that

( 3 ) Tr (Γ) c L for some finitely generated field extension L of F.

Then AΓ is a finitely generated A-module,
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The algebraic closure E of F in L is a finite extension of F
(cf. Lemma 3.7 below) so the integral closure B of A in i? (or L)
is, by hypothesis, a finitely generated A-module. Conditions (2) and
(3) imply that T r ( Γ ) c ΰ , so 2.2 (a) implies that BΓ is contained in
a finitely generated β-module. Since A is noetherian it follows that
AΓ c BΓ is a finitely generated A-module.

REMARK 2.4. In practice condition (3) is typically assured by
having ΓaMn{L). This is the case (for suitable L) whenever Γ is
contained in a finitely generated sub A-algebra of Mn(K). The
corollary applies notably when A is a finite field, and then implies
that Γ is finite.

COROLLARY 2.5. In Proposition 2.2 suppose that F is a finite
extension of the prime field of K. Then there is a finite extension
L of F in K such that, if B is the integral closure of A in L,
then sΓs-'aM^B) for some seGLn(K).

If char (K) > 0 then A = F, a finite field, and the corollary is
just part (e) of 2.2. Assume therefore that F is a finite extension
of Q. By 2.2 (e) we may, after a conjugation, assume that Γ a
Mn(E) for some finite extension E of F. Let C denote the integral
closure of A in Έ. Then C is the ring of S-integers of E, where
S is a (possibly infinite) set of primes of E containing all archimedean
primes. In particular C is a ring of fractions of the ring of
algebraic integers of E so it is a Dedekind ring and, by 2.2 (a),
CΓ is a C-order in the i?-algebra Mn(E). Therefore Γ leaves
invariant a finitely generated C-module PaEn which contains an
i£-basis of E*. There is a finite extension L of E (for example the
Hubert class field of E) such that all ideals of C become prin-
cipal in the integral closure B of C in L. Then the S-module
B(&cPc:Ln is free. Choosing a S-basis of B®CP produces the
desired conjugation of Γ into Mn{B).

Elementary matrices 2.6. Let eίβ denote the matrix with 1 in
the (i, ^-coordinate and zero elsewhere. If i Φ j then e<y = 0 so
we have the group homomorphism

a i > ea

ί:} = / + aei5

from K to SL%{K).

COROLLARY 2.7. Let N be an additive subgroup of K such that
e^aΓ. Let A be a subring of K containing Tr(Γ). Then there is
an element c Φ 0 in K such that cNaA. If A has transcendence
degree d over a subfield Ko of K then the field K0(N) has trans-
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cendence degree ^d + 1 over Ko.

The last assertion follows from the first one in view of the field
inclusion K0(N) a K0(A, c). If e £ c Γ then Ne12aAΓ. There is
nothing to prove if N = {0}, so choose a Φ 0 in N. Then / = aeι2

belongs to AΓ, and Afar1/ c AT. Write / = Σ< «A as in 2.2 (a),
with ai6A(i = l, * , ^ 2 ) . Then we have W α ^ c A for each i.
Choosing i so that at Φ 0 we can take c = α" 1^ in the corollary.

PROPOSITION 2.8. Let A he a subring of K whose field of frac-
tions F is a finite extension of the prime field of K. Assume
that

( 2 ) Tr (Γ) is integral over A.

Let G be the normalizer of Γ in SLn(K). Then G is integral over
A.

Let seG, i.e., sΓs'1 — Γ and det (s) = 1. We must show that s
is integral over A. Choose a finitely generated submonoid Γx of Γ
containing a ϋΓ-basis of Mn(K), and let Γ' denote the submonoid of
Γ generated by \JmezSmΓ1s~m. Then Γ acts irreducibly on Kn,
sΓ's"1 = Γ' and Γ' a Mn(L) for some finitely generated field extension
L of F. Replacing Γ by Γ' therefore, we are allowed to add condi-
tion (3) of 2.3 to our assumptions. We may enlarge A to its integral
closure, so that A is a ring of fractions of the integral closure of
Z in F. It follows that A is an "excellent ring" (see [11], § 34)
and, in particular, satisfies the hypothesis of 2.3. We are now
entitled to conclude from Corollary 2.3 that AΓ is a finitely generated
A-module, hence so also is Tr (AΓ). Now enlarging A to the integral
closure of A[Tr (Γ)], we may assume further that Tr (Γ) c A (condi-
tion (1) of 2.2). Then, in view of Corollary 2.5, we may enlarge A
again to its integral closure in a finite extension of F, and conjugate
Γ (and s), so as to arrange that Γ c Mn(A). Then AΓ is an A-order
in Mn(F). If char (K) = p > 0 then A = F is a finite field so AΓ
is finite, and its centralizer has finite index in its normalizer. The
centralizer of AΓ consists of scalars, and the scalars in SLn(K)
form a finite group, so G is finite in this case, hence [integral over
Z. Suppose therefore that char (K) — 0, so that F is a number
field and A is a ring of fractions of the ring of algebraic integers
in F. It follows that A-orders in semi-simple .F-algebras satisfy
the Jordan-Zassenhaus theorem (see [1], Ch. X, Th. 2.4). Therefore,
as in the proof of Th. 2.9 of [1], Ch. X, one concludes that the
group In Aut (AΓ) of inner automorphisms of AΓ has finite index
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in Aut (AΓ). The normalizer G of Γ in SLn(K) maps naturally to
Aut (AΓ), jand the inverse image G1 of In Aut (Γ) has finite index
in G. Hence some power t = sq of s yields an inner automorphism
of AΓ, in other words there is a unit u of AΓ such that uxu~λ —
t x t~ι for all #eAΓ. Since the centralizer of AΓ is K we have
£ = wu for some w eK. But 1 = det (ί) — wn det (u). Since AΓ c
Mn(A) we have w% = det (u)"1 e A so w is integral over A. Hence
t = ww is integral over A, and so also is s (because sq — t); whence
the proposition.

COROLLARY 2.9. Let A and Γ be as in 2.8. Let G be a sub-

group of GLn(K) that normalizes Γ and such that Gah is a torsion
group. Then G is integral over A.

Let G ^ G f l SLn(K). Then Gx is integral over A by Proposi-
tion 2.8. Since GjG1 is an abelian group the hypothesis implies that
every seG has some positive power in G19 so s is integral over A.

3* A finiteness theorem*

NOTATION 3.1. Let B be a commutative ring and let Γ be a
multiplicative submonoid of Mn(B) which contains a set slf * ,sm

which generates Mn{B) as a 5-module. Let A be a subring of B,
and let AΓ denote the sub A-module of Mn(B) generated by Γ; it
is an A-algebra.

Our aim is to show, under suitable finiteness assumptions, that
AΓ is a finitely generated A-module. The proof is a slight refine-
ment of arguments in Procesi [12], Ch. VI, but the formulation below
is more convenient for our applications.

We begin with an integral form of the Burnside lemma.

LEMMA 3.2. (a) There exist elements tly -- ,tmeMn(B) such
that, for all seMn(B) we have

(1) 8 = Σ Tr (ssjt, .
i

(b) If Tr (Γ) c A then

(c) // Tr (Γ) c A and A is noetherian then AΓ is a finitely
generated A-module.

The trace form on the finitely generated free 2?-module Mn(B)
induces an isomorphism from Mn(B) to Hom5 (MJJB\ B), so (a)
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follows from [7], p. II. 46, Prop. 12.
The implications (a) => (b) and (b) => (c) are immediate, whence

the lemma.

THEOREM 3.3. Suppose A is a noetherian subrίng of B and
that (each element of) Tr (Γ) is integral over A. Suppose further
that Γ is a finitely generated monoid. Then AΓ is a finitely
generated A-module.

The proof proceeds by several successive reductions.

1. We may assume that B is a finitely generated A-algebra.
Indeed we may replace B by the sub A-algebra B' of B generated
by the matrix entries of the elements of a finite set of generators
of Γ, including su , sm, plus the coefficients in B used to express
the basic matrices eίβ as linear combinations of slt , sm. Then
Γ aMn(Bf) still satisfies our hypotheses, and B' is a finitely generated
A-algebra.

2. We may assume that A is a local ring. In fact it follows
from [12], VI, Lemma 2.4 that AΓ is a finitely generated A-module
provided that A»Γ is a finitely generated Ap-module for all primes
p of A.

3. We may assume that the local ring A is complete. In fact
the completion i of A is a faithfully flat A-module so that AΓ is
a finitely generated A-module provided that A ®^ AΓ is a finitely
generated A-module ([8], Ch. I, § 3, no. 6, Prop. 11). But we have
A ®Λ AΓjz A ®A Mn(B) = Mn(B) where B-=A®AB, a finitely gen-
erated A-algebra. Further A ®A AΓ = AΓ where Γ denotes the
image of Γ in Mn(B) and Tr (Γ) is integral over A since Tr com-
mutes with base change.

4. We may assume that B is reduced, i.e., that the nil radical
N of B is zero. In fact let A' denote the image of A in B' = B/N,
and Γ' the image of Γ in MJβ'). We have a commutative exact
diagram

0 > Mn(N) > Mn(B) > Mn(B') > 0
U U U

0 > j > AΓ > AT' >0

where J = Mn(N) Π AΓ is a nilpotent ideal (because B is noetherian).
If we know the theorem for: B', which is a reduced finitely gener-
ated A'-algebra; A', which is complete local; and Γ', which is finitely
generated with Tr (Γ') integral over A', then it follows that AT'
is a finitely generated A'-module. Let P be any prime ideal of AΓ.
Then p contains the nilpotent ideal J so AΓ/p, being a quotient of
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AT', is a finitely generated A-module. It now follows from [12],
VI, Lemma 2.6 that AΓ is a finitely generated A-module.

5. The integral closure Aλ of A in B is a finitely generated
A-module. This follows from Lemma 3.4 below.

Now to prove the theorem note that Tr (Γ) c A19 and Ax is
noetherian, by (5), so it follows from 3.2 (c) that AλΓ is a finitely
generated A^module. By (5) again it follows that AΓcA^ is a
finitely generated A-module.

LEMMA 3.4. Let A be a complete noetherian local ring, let B
be a finitely generated commutative A-algebra which is reduced, and
let A' be the integral closure of A in B. Then A! is a finitely
generated A-module.

Since B is noetherian and reduced we have 0 = ft Π Π ft
where the ft are the minimal primes of B. Let Bt = l?/ft and let
At denote the integral closure of A in B^ Then clearly 4 ' c ] ] ί Λ
so if each At is a finitely generated A-module so also is A'. We
may therefore assume that B is an integral domain. Replacing A
by its image we may further assume that AczB. Let FaL be
the corresponding fields of fractions and let E denote the algebraic
closure of F in L. Since L is a finitely generated field extension
of F the same is true of the intermediate extensions (Lemma 3.7
below), so E is a finite extension of F. Clearly A' is the integral
closure of A in E, so it is a finitely generated A-module by Nagata's
theorem ([11], Cor. 2 of Th. 31. C).

COROLLARY 3.5. Suppose that A is a noetherian subring of B
and that Tr (Γ) is integral over A. Then every finitely generated
sub A-algebra of AΓ is a finitely generated A-module. In particular
AΓ is integral over A.

Let X be a finite subset of AΓ. Let Y be a finite subset of
Γ, and Γr the submonoid of Γ generated by Y. We can choose Y
large enough to contain slf * ,sm (see 3.1) and so that XaAΓ'.
Theorem 3.3 implies that AΓ1 is a finitely generated A-module. So
likewise therefore is the sub A-algebra generated by X.

REMARK 3.6. The results 3.2, 3.3, and 3.5 remain valid if Mn(B)
is replaced by any Azumaya J5-algebra S of rank n2, and Tr by the
reduced trace. In fact there is a faithfully flat commutative B-
algebra B' such that B'φBS is isomorphic to M%(B'), and this
reduces these questions to the case treated above.

We close this section with a lemma used in the proof of 3.4
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above, for which we could not locate a convenient reference.

LEMMA 3.7. Let F czE czL he fields. If L is a finitely generated
extension of F then so also is E. In particular the algebraic closure
of F in L is a finite extension of F.

Let T be a transcendence base of L over F such that To = TΠ
E is one of E over F. Then E is algebraic over F(T0), and of
degree at most that of L over F(T), which is finite. Whence the
lemma.

4. Integral PI algebras and integral ^-representation type*
We first recall some terminology from Procesi [12].

Polynomial identities 4.1. Let A be a commutative ring, and
let R be an Λ-algebra. A polynomial f(Xl9 , Xn) in non commut-
ing indeterminates and coefficients in A is called a polynomial
identity of R if f(xl9 , xn) = 0 for all (xl9 , xn)eR\ Write c(f)
for the ideal of A generated by the coefficients of /. One calls R
a PI A-algebra if it satisfies a polynomial identity / such that c(f) =
A. It then follows from a theorem of Amitsur ([12], II, Th. 4.1)
that R satisfies an identity of the form sζ for some integers n, m ^
1, where

(1) sn(Xλ, • , X n ) = Σ s g n ( σ ) X a M •••X(!{%),

with σ ranging over all permutations of {1, , n). The ring Mn{A)
satisfies the "standard identity" s2n of n by n matrices; this is the
well known theorem of Amitsur-Levitzky ([12], I, Th. 5.2).

Central extensions 4.2. A ring homomorphism p: R —> S is called
an extension if S, as i?-module via p, is generated by the centralizer
ZR{S) of R in S: ZR{S) = {s e S \ sρ(r) = p{r)s for all reR}. If S, as
i?-module? is even generated by the center Z(S) = ZS(S) of S then
p is called a central extension.

Absolutely irreducible representations 4.3. Let R be a ring. A
(matrix) representation (of dimension n over a commutative ring
K) is a ring homomorphism p: R —> Mn(K). The character of p is
%o = ΎropiR > K. The center of Mn(K) consists of the scalars K,
so p is a central extension if and only if p(R) generates Mn(K) as
a if-modulβ. In this case p induces a homomorphism from the
center Z(R) to K. Hence if R is an A-algebra for some commuta-
tive ring A [then p induces a homomorphism from A to K relative
to which p and 1P are A-linear. We call p an absolutely irreducible
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representation if p is a central extension and K is a field. Then
p(R) contains a ϋΓ-basis of Mn(K), and (̂ϋ?) acts irreducibly on L*
for all field extensions L of if. Indeed these conditions are each
equivalent to the absolute irreducibility of p, by the Burnside
lemma 1.2.

The following theorem slightly elaborates some results of Procesi
([12], Ch. VI).

THEOREM 4.4. Let A be a commutative noetherian ring, and
let R be a PI A-algebra. The following conditions are equivalent.

(a) For every absolutely irreducible representation p: R-^Mn(K)
of i?, XP(R) (in K) is integral over A.

(b) Every finitely generated sub A-algebra of R is a finitely
generated A-module.

(c) (Each element of) R is integral over A.
(d) R is generated as an A-module by elements which are inte-

gral over A.

The implications (b) => (c) ==> (d) => (a) are evident. Consider the
supplementary condition:

(f) R is a finitely generated A-algebra.
We shall prove simultaneously that (a) => (c) and that (a) + (f) implies

(b') R is a finitely generated A-module.
To prove (c) it suffices, by [12], VI, Lemma 2.3, to do so for

each R/P with P a prime ideal of R. Similarly, assuming (f), then
(b') follows once it is known for each R/P9 by [12], VI, Lemma
2.6. Therefore we may assume for both implications that R is a
prime ring. By [12], II, Th. 3.2 there is then an embedding Ra
Mn(K) which is an absolutely irreducible representation. Replacing
A by its image we may assume that A is a subring of K. Let X
be any finite subset of R containing a if-basis of Mn(K), and let Γ
denote the multiplicative monoid generated by X. Then (a) implies
that Tr(Γ) is integral over A, so Theorem 3.3 implies that AΓ is
a finitely generated A-module. It is clear that both implications
(a) =* (c) and (a) + (f) => (b') follow from this. Finally, to prove
(a) => (b) let R' be a finitely generated sub A-algebra of R. The
implication (a) ==> (c) shows, assuming (a), that R' is integral over
A. Therefore the implication (a) + (f) => (b') shows that R' is a
finitely generated A-module, whence (b).

DEFINITION 4.5. Let A be a commutative ring, let R be an
A-algebra, and let n be an integer ^ 1 . We say that R has inte-
gral n-representation type (over A) if, for all absolutely irreducible
representations p: R-> Mm(K) of dimension m ^ n, 1P(R) is integral
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over A.

COROLLARY 4.6. Let A be a commutative noetherian ring and
let R be an A-algebra of integral n-representation type. Let h be
an integer ^ 1 , and let J denote the ideal of R generated by all
elements s2n(xl9 , x2n)

h with (xlf , x2n) eR2n. Then every finitely
generated sub A-algebra of R/J is a finitely generated A-module.

The absolutely irreducible representations of R/J correspond
bijectively with those of R of dimension ^n (see [12], II, Prop.
7.6 and III, Prop. 2.2). Hence R/J is a PI A-algebra satisfying
condition (a) of 4.4, therefore also condition (b). Whence the corol-
lary.

The next proposition gives a convenient "geometric" picture of
the absolutely irreducible representations of an A-algebra finitely
generated as an A-module.

PROPOSITION 4.7. Let A be a commutative noetherian ring and
let R be an A-algebra finitely generated as an A-module. There
exists a finite family of central extensions {see 4.2) pt: R —• Mni{Bτ)
(ί 6 I) with the following properties.

(1) For each i e J, Bt is an integral domain which is a fini-
tely generated As-module for some st e A such that ft(^) Φ 0.

( 2) For any absolutely irreducible representation p: R-+Mn(K)
with K an algebraically closed field, there is an ieI such that nt —
n and an A-algebra homomorphism σ: 2?* —> K such that p is con-
jugate to the composite R —> Mn(Bτ) —> Mn(K).

If A = Z then we may arrange that, for each ie I, pi(R) c
Mn.(Ai), where At is the integral closure of A in Bi9 and is a
finitely generated A-module.

Let P e spec (22). By [12], II, Th. 3.2, P is the kernel of an
absolutely irreducible representation pP: R —> Mnp(KP). By Proposi-
tion 2.2 we may take KP to be a finite extension of the field of
fractions of ρP(A). Then we can choose a fintely generated sub A-
albebra B' of KP such that ρP(R) c Mnp(B') and ρP{R) generates
Mnp{Br) as a JS'-module. For some sPeA such that pP(sP) Φ 0 the
Asp-algebra BP = B'Sp will be a finitely generated A3p-module. In
case A^Z then it follows from Corollary 2.5 that, after extending
KP if necessary, we may further arrange that ρP(R)aMnp(AP)f

where AP is the integral closure of A in BPf and is a finitely gen-
erated A-module.

The finite central extension p(Rsp) c Mnp(BP) induces a map spec
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(Mnp(BP)) —> spec (RSp) which, by Lemma 4.9 below, is surjective.
Hence the image of pP: spec (Mnp(BP)) —> spec (R) is the locally closed
set

UP = V(P) - V(sPR) ,

which is a neighborhood of P in V(P). (For I c ί w e write V(X)
for the set of primes Q in spec (R) which contains X; these are the
closed sets in spec CR) ) The proposition now clearly follows from
the next two claims.

1. spec (R) is covered by a finite number of the sets UP.
2. Let p: R —> Mn(K) be an absolutely irreducible representation

with K algebraically closed and with kernel Qe UP. Then nP = n
and there is an A-algebra homomorphism σ: BP —> K such that p is

conjugate to the composition R ^ Mn(BP) —> Mn(K) .
We prove (1) by noetherian induction. Specifically, let Pt(i e Io)

be the minimal primes of R (i.e., the generic points of the irredu-
cible components of spec(jβ)). Then Uie/0 UP. contains an open dense
set spec (R) — V(Jλ) of spec (JB), where Jx is some ideal of R. Next
let Piiielj) be the generic points of the irreducible components of
of V(J±). Then \JieIoΌIι UP. contains spec(i?) - F(J2), where V(J2)c:
F(JX) and V(J2) contains no generic point of V(Jt). Continuing in
this way, one exhausts spec (R) in a finite number of steps because
spec (jβ) is noetherian.

To prove (2) we first write Q = Ker (p) = ρP\Pf) for some prime
P' e spec (Mnp(BP)). All primes of Mnp(BP) come from BP, so P' is
the kernel of Mnp(BP) -+ Mnp(B') for some quotient B' of BP. Then
the composite p': R -> Mnp(BP) -> Mnp(B') is a central extension with
the same kernel Q as p. Passing to the field of fractions of B' to
make p' an absolutely irreducible representation, and then applying
[12], II, Th. 7.4, we see that nP = n and we obtain an A-algebra
embedding σr of B' into some field extension L of K such that the

composites R K Mn{B') ^ Mn(L) and 72 Λ Mn(K) — Λf#(L) are con-
jugate. Since p\sP) Φ 0, B' is algebraic over the field of fractions
of p'(A), so we must have σ\B') c K (since if is algebraically closed).
Now the composite σ: BP-> B'°->K satisfies claim 2.

REMARK 4.8. The refinement of Proposition 4.7 made when A —
Z applies, more generally, when A is a ring of S-integers in a
global field.

LEMMA 4.9. Let A be a commutative ring, let R be a PI A-
algebra, and let RaS be a central extension {(see 4.2). // Z(S) is
integral over R then S is integral over R, and spec (S) —> spec (R)
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is surjective.

[We say that s e S is integral over R if there exist elements
r0, , rΛ_χ in R such that r0 + + r^s*" 1 + su = 0.] Lemma 4.9
is proved by Shelter in [13], Cor. of Lemma 1 and Theorem 1.

PROPOSITION 4.10. Let RaS be a central extension of nonzero
rings, and let n be an integer ^ 1 . Consider the conditions:

(a) R is an Azumaya algebra of rank n2.
(b) S is an Azumaya algebra of rank w.

Then (a) => (b) and, if Z(S) is integral over R, (b) => (a).

According to M. Artin's theorem (see [12], Ch. VII, Th. 3.3),
(a) is equivalent to (i) and (ii) below:

( i ) R satisfies the identities of n by n matrices.
(ii) No nonzero quotient of R satisfies the identities of (n — 1)

by (n — 1) matrices.
The implication (a) => (b) is clear from the fact that (a) implies

that S — R®7ΛR) ZR(S), and this is a central extension only if ZR(S) =
Z(S). Alternatively, one can appeal to [12], VII, Prop. 3.2. To
prove (b)=*(a) when Z(S) is integral over R it suffices, in view of
Lemma 4.9, to show that (b) => (a) whenever spec (S) —> spec (R) is
surjective. Clearly (i) for S implies (i) for R. To verify (ii) for R
it suffices to show that, for any Pespec(iϋ), R/P does not satisfy
the identities of (n — 1) by (n — 1) matrices. By assumption P =
RΠQ for some Qespec(S). Then R/PaS/Q is a central extension
so, if R/P satisfies the (n — l)-matrix identities so also does S/Q,
by [12], VII, Prop. 3.2 again. But this contradicts (ii) for S;
whence the proposition.

5* Groups of integral w-reprezentation type*

DEFINITION 5.1. Let Γ be a group, n an integer ^ 1 , and A a
commutative ring. We say that Γ has integral n-representation
type over A if the group algebra A[Γ] has this property, in the
sense of 4.5. Equivalently, Γ satisfies:

(a) For every absolutely irreducible representation p: Γ —>
GLm(K), where m ^ n and the field K is an A-algebra, XP(Γ) is
integral over A.

By taking Jordan-Holder series, and adding trivial representa-
tions to increase the dimension to n, if necessary, we see that (a)
is equivalent to:

(b) For every representation p: Γ —> GLn(K), where K is a
field which is an A-algebra, XP(Γ) is integral over A.]
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The same then clearly holds for any commutative A-algebra A'
and for any quotient Γ' of Γ. Moreover, this is a property inherited
by filtered inductive limits of groups. When these conditions hold
for all n ^ 1 we say Γ has integral representation type over A.
When no specific ring A is mentioned it shall be understood that
A = Z. We shall be primarily interested in the cases when A is Z
or a prime field.

PROPOSITION 5.2. Suppose that the group Γ has integral n-re-
presentation type over a commutative noetherian ring A. Let p:
Γ —> GLm(K) be a representation where m ^ n and the field K is an
A-algebra. For any finite subset X of Γ, the sub A-algebra of
Mm(K) generated by ρ(X) is a finitely generated A-module. In
particular p(Γ) is integral over A. If A is a finite field then p(X)
generates a finite group.

This follows from (the implication (a) => (b) of) Theorem 4.4.

PROPOSITION 5.3. Let Γ be a finitely generated group of inte-
gral n-representation type (over Z). There exists a finite family
of representations pf. Γ —> GLn.(Ai)(i e /) with the following proper-
ties.

(1) For each ie I we have nt ^ n and At is an integral closed
domain finitely generated as a Z-module (hence either a ring of
algebraic integers or a finite field). Moreover pt is absolutely ir-
reducible over the field of fractions of A*.

( 2 ) // p: Γ —> GLm(K) is an absolutely irreducible representa-
tion of Γ with m ^ n and K is an algebraically closed field then
there is an ie I such that nt — m and such that there is a homo-
morphism σ: At-* K such that p is conjugate to the composite

Let R = Z[Γ]/J where J is the ideal generated by all s2n(xlf ,
x2n) with (xlf ---,x2n)eZ[ΓYn (cf. 4.1). The absolutely irreducible
representations of dimension <^n of Γ are equivalent to those of
the PI Z-algebra R, and Corollary 4.6 implies that R is a finitely
generated Z-module. Hence the proposition follows from Proposition
4.7 applied to R.

REMARKS 5.4. 1. Proposition 6.3 expresses a strong "rigidity"
property of the absolutely irreducible representations of Γ of dimen-
sion :g n. For example Card (I) bounds the number of such repre-
sentations over any algebraically closed field, of any characteristic.
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2. As is evident from its proof, Proposition 5.3 admits an
analogue for any commutative noetherian ring A in place of Z. For
example when A is a prime field of characteristic p it asserts that
Γ has only finitely many isomorphism classes of absolutely irreduci-
ble representations of dimension ^n in characteristic p, and that
each of them is definable over a finite extension of A. Since these
classes of representations can, in general, be formed into an
algebraic variety V over A (cf. [12], IV, Th. 1.8), the preceeding
conclusion can be interpreted as saying that dim V = 0.

PROPOSITION 5.5. The following conditions on a group Γ are
equivalent.

(a) Γ has integral ^-representation type over some commuta-
tive ring A Φ 0.

(b) The abelianization Γab of Γ is a torsion group.

Obviously (b) => (a). Suppose, on the other hand, that some s e
Γ has image in Γab of infinite order. Let F be a residue class field
of A, X an indeterminate, and K an algebraic closure of F(X).
Since K* — GLt(K) is a divisible group there is a linear character
X: Γ-+Kx such that X(s) — X, an element not integral over A;
whence the proposition.

Subgroups of finite index 5.6. Let Γ be a group and Γ' a
subgroup of finite index r. Let A be a commutative noetherian
ring, and let K be a field which is an A-algebra. If p: Γ->GLn(K)
is a representation and ρ(Γ') is integral over A, then so also is
p(Γ), since each seΓ has some positive power in Γ'. In view of
Proposition 5.2, this proves assertion (i) of Proposition 5.7 below.

Let pf: Γ' -^ GLn(K) be a representation. We then have an
induced representation

p = lnάΓ

Γ,(p'):Γ > GLnr(K) .

For seΓ we have

where X°p* is the extension of Xp, to Γ vanishing on Γ — Γ'. In
particular Xp(s) is a Z-linear combination of the values of Xp,. If
p\Γ') is integral over A so also is p(Γ). In fact Γ' contains a sub-
group Γ1 which is normal and of finite index in Γ, so it suffices to
show that p(Γt) is integral over A. If s e ^ then t^steΓ^Γ' for
all teΓf so the decomposition Knr — ®tzΓίΓ,t® Kn is stable under
pis), and p(s) acts on t ® Kn like p'it^st) acts on Kn; whence the
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integrality of p(s). Conversely, if p(Γ) is integral over A then,
since pf is a subrepresentation of p \ Γ', p'(Γ') is likewise integral
over A. Using Proposition 5.2 again this yields assertion (ii) of
Proposition 5.7 which follows.

PROPOSITION 5.7. Let Γ be a group, Γr a subgroup of finite
index r, n an integer ^ 1 , and A a commutative noetherian ring.

( i ) If Γ1 has integral n-representation type over A then so
also does Γ.

(ii) If Γ has integral nr-representation type over A then Γ'
has integral n-representation type over A.

COROLLARY 5.8. Γ has integral representation type over A if
and only if Γr has.

COROLLARY 5.9. Let Γ be a finitely generated solvable group.
If Γ has integral representation type over some commutative ring
A Φ 0 then Γ is finite.

Replacing A by one of its residue class fields, we may assume
that A is a field, hence noetherian. Proposition 5.5 implies that the
derived group Γ' of Γ has finite index in Γ, and Corollary 5.8 then
implies that Γ' has integral representation type over A. By induc-
tion on the derived length, we conclude that Γ', hence also Γ, is
finite.

COROLLARY 5.10. Let Γ be a group of integral representation
type over some commutative ring A Φ 0. Then Γ satisfies condi-
tion:

(Γ Ab) For every subgroup Γx of Unite index in Γy the group
Γlh is torsion.
If Γ is finitely generated it even satisfies:

(F Ab) For every subgroup Γ± of finite index in Γ, the group
Γlh is finite.

After replacing A by one of its residue class fields, condition
(T Ab) results from Corollary 5.8 and Proposition 5.5. If Γ is finitely
generated then so also is each Γ1 as above, whence (F Ab).

PROPOSITION 5.11. Let Γ = Γλ x Γ2, a direct product of two
groups, let n be an integer ^ 1 , and let A be a commutative ring.
Then Γ has integral n-representation type over A if and only if
each Γi has.
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In fact the absolutely irreducible representations p of Γ decom-
pose as p — px®Pz with pt an absolutely irreducible representation
of Γ,(ί = 1, 2). Then if s.eΓ, we have Xp(su s2) = XpfrJXpfa). The
proposition results immediately from this.

EXAMPLES 5.12. 1. Groups Γ of integral 1-representation type
are described in Proposition 5.5 as those for which Γab is torsion.

2. A substantial class of groups of integral 2-representation
type is furnished by Serre's Theorem 6.4 below. It contains all
finitely generated groups of integral 1-representation type which
are not nontrivial amalgamated free products. A construction of
Shalen shows that free products are almost never of integral repre-
sentation type (Corollary 8.4 below).

3. Let Γ be a group of integral ^-representation type over a
field K. Then there are only finitely many classes of completely
reducible w-dimensional representations of Γ over K (Proposition
5.3). However the same need not be true of all ^-dimensional repre-
sentations of Γ over K. If char (K) = p > 0 this can be seen
already with Γ an elementary p-group of type (p, p). Examples in
characteristic zero are given in § 7 below (see 7.9).

4. Groups of integral representation type clearly include all
torsion groups. They are stable under passage to sub (or over)
groups of finite index (Proposition 5.7), under formation of filtered
inductive limits, of direct products (Proposition 5.11), and even of
arbitrary group extensions (Corollary 9.9).

5. Many arithmetic groups, for example SLn(Z) with n ^ 3
(but not n — 2), are of integral representation type. Such examples
are discussed in § 10 below.

6* Groups of integral 2-representation type: Serre's theorem
and Shalen's conjecture* Examples of groups of integral 2-repre-
sentation type are furnished by Theorem 6.4 below of Serre. We
use Serre's methods also to prove a conjecture of P. Shalen (Corollary
6.7).

The Property (FA) 6.1. A group Γ is said (by Serre [15]) to
have property (FA) if, whenever Γ acts (without inversion of edges)
on a tree X, then the tree XΓ of fixed points of Γ is not empty.
The group theoretic significance of this is expressed below in terms
of "amalgams". We say, again following Serre, that Γ is an
amalgam if Γ is a free product with amalgamation Γ0*ΛΓ1 with
A Φ ΓH = 0, 1).

THEOREM 6.2 (Serre, [15], Th. 1). A group Γ has property
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(FA) if and only if the following three conditions hold.
(a) Γ has no infinite cyclic quotient.
(b) Γ is not an amalgam.
(c) Γ is not the union of any chain Γ i C c Γ . c of

proper subgroups.

REMARKS 6.3. 1. Consider the following conditions.
(a') Γab is a torsion group.
(c') Γ is countable.
(c") Γ is finitely generated.

It is clear that ((c) + (c'))~(c") and that ((a') + (e")) => (a). Koppel-
berg and Tits [10] give examples satisfying (a), (b), and (c) but not

(C).
2. It is shown in [3], Th. 3.9, that Γ satisfies (a) and (b) if

and only if Γ has the following property (FA'): Whenever Γ acts
(without inversion of edges) on a tree X, each element of Γ fixes
some vertex of X. Therefore Serre's proof of Proposition 2 in [15]
yields the following result.

THEOREM 6.4 (Serre [15]). Let Γ be a group satisfying (a) and
(b) o/6.2 (i.e., of type (FA')). Let ρ:Γ-+GL2(K) be a representa-
tion such that p(Γ) c GL2(F) for some finitely generated extension
F of the prime field of K. (The latter is automatic if Γ is finitely
generated.) Then for all seΓ the eigenvalues of p(s) are integral
over Z. In particular a finitely generated group of type (FA) has
integral ^-representation type.

We shall need the following refinement of this result.

THEOREM 6.5. Let F be a field finitely generated over its prime
field, and let F be an algebraic closure of F. Let Γ be a subgroup
of GL2(F), and let Γu denote the group generated by all unipotent
elements in Γ; Γu is a normal subgroup of Γ. Assume that the
following conditions hold.

(a") Γ/Γu has no infinite cyclic quotient.
(c) Γ is not an amalgam.

Then one of the following cases occurs.
(1) There is an se GL2(F) and an integer m ^ 1 such that

sΓs'1 consists of triangular matricesί^ Λ with am = dm — 1. If Γ

is either infinite or nonabelian we may choose s e GL2(F).
(2) Γ acts irreducibly on F2, and there is an s e GL2(F) such

that sΓs^aGL^A), where A is a subring of F finitely generated
as a Z-module.
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Before proving the theorem we draw some consequences. Note
that the ring A in case (2) is either a ring of algebraic integers
(char (F) == 0) or a finite field (char (F) > 0).

COROLLARY 6.6. In the setting of 6.5 assume that char (F) =
p > 0. Assume further that either (i) Γ is finitely generated, or
that (ii) Γ acts irreducibly on F2. Then Γ is a finite group.

In case (2) A is a finite field so the conclusion follows. Assume
therefore that we are in case (1). Then condition (ii) implies that
Γu = {1}, so card (Γ) ^ m2. If (i) holds then also Γ is finite since
a finitely generated group of triangular matrices as in (1) is clearly
finite in characteristic p > 0.

COROLLARY 6.7 (P. Shalen's conjecture). Let Γ be a finitely
generated subgroup of GL2(C) with the following properties.

(i) There is a set XdC of transcendence degree ^ 2 over C

(1 x\
Q 1 )(x e X) belong to Γ and they, to-

gether with the commutator subgroup (Γ, Γ) generate a subgroup of
finite index in Γ.

(ii) Γ contains a matrix which is not upper triangular.
Then Γ is an amalgam.

Suppose, on the contrary, that Γ were not an amalgam, i.e., we
have condition (b) of 6.5. Property (i) clearly implies condition (a")
of 6.5 as well. In applying Theorem 6.5 we take for F the field
generated by the matrix coefficients of a finite set of generators of
Γ. It then follows that we are in case (1) or case (2) of 6.5. We
exclude case (1) by showing that Γ acts irreducibly on C2. Indeed
if x Φ 0 belongs to X then e(x) leaves a unique line L of C2 invari-
ant, and (ii) implies that L is not invariant, under all of Γ. Thus
we are in case (2). But then it follows from Corollary 2.7 that x
has transcendence degree ^ 1 over Q, contradicting (i). This con-
tradiction proves the corollary.

The proof of Theorem 6.5 uses the following more or less well
known lemma.

LEMMA 6.8. Let F be a field finitely generated over its prime
field Fp(p = char (F))9 let E be the algebraic closure of Fp in F,
and let A be the integral closure of Z in F (or E).

(1) E is a finite extension of Fp. Ifp>0 then A = E. If
p = 0 then A is the ring of algebraic integers of E.

(2) Let V denote the set of discrete (rank 1) valuations of F.
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For each v e V let Aυ = {xe F\ v(x) ^ 0}, the valuation ring of v.
Then

(3) Given an integer n^l, there is an integer m = m(F, n)^
1 such that if w is a root of unity of degree ^n over F then wm = l.

(1) follows from Lemma 3.7 and (3) is proved in [2], § 9, Prop.
(A.3).

We prove (2) by induction on d, the transcendence degree of F
over Fp. The case d = 0 is well known, so suppose that d Ξ> 1. Let
L be an intermediate extension of transcendence degree d — 1 over
Fp and algebraically closed in F. Then F is the function field of a
nonsingular protective algebraic curve x over L. If feFx and
v(f) ^ 0 for all valuations v of F over L then / is a rational func-
tion on X vvith no poles, hence a constant, i.e., feΓ. Next note
that, by the extension theorem for places, each discrete valuation
ring of L is contained in one of F. This remark, plus the induction
hypothesis applied to Γ now establishes (2).

6.9. Proof of 6.5. Let V be the set of discrete valuations of F,
as in 6.8 (2). Let v eV, let Av be its valuation ring, and let Xv be
the tree associated to v as in [14], Ch. II, § 1. The kernel GL2(F)°
of t det: GL2(F) —>Z acts without inversion o n l r Hypothesis (a")
implies that Γ cGL2{F)\ Each unipotent element of GL2(F) fixes
some vertex of Xv (cf. [14], p. II-ll). Hence Γu is contained in
the subgroup Γo of Γ generated by the stabilizers in Γ of vertices
of Xv. The quotient group Γ/Γo is isomorphic to the fundamental
group of the quotient graph Γ\Xυ (cf. [14], Ch. I, § 5). The latter
is a free group, so (a") again implies that it is trivial, i.e., Γ\Xυ is
simply connected, hence a tree. Since Γ is not an amalgam (condi-
tion (b)) one now concludes, as in Serre's proof of Theorem 6.3 (cf.
also [3], Prop. 3.7), that Γ fixes some vertex of Xυ. By Proposition
2 of [14], p. II-ll, this implies that Γ is conjugate to a subgroup of
GL2{Aυ), so the coefficients of the characteristic polynomials of ele-
ments of Γ belong to Av. This being true for every v e V it now
follows from Lemma 6.8 (2) that these coefficients belong to A, the
integral closure of Z in F.

Suppose Γ acts reducibly on F2. Then there is an element s e
GL2(F) such that every element t e sΓs'1 is upper triangular: t —

( 0 ί/ ^ e m a P s ί l - > ^ a r e homomorphisms Γ - > F X , so (a") im-
plies that the elements tti are roots of unity. Being eigenvalues
of elements of GL2(F), they have degree <;2 over F. It follows
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therefore from 6.8 (3) that there is an m( = m(F, 2)) such that £« = 1
for all t G sΓs"1. If Γ is either infinite or nonabelian then the pro-
jection ( J{ / / •—* (rw ) ^ a s nontrivial kernel, so Γ contains a uni-
potent element u Φ 1. Since % leaves a unique line L of F2 invariant,
and L is defined over F, it follows that we can take s above in
GL2(F). For once sus"1 is triangular so must sΓs~x be also. This
accounts for case (1).

Suppose finally that Γ acts irreducibly on F2. We have Tr(Γ)c
A. It follows therefore from Proposition 2.2 and Corollary 2.5 that
there is a finite extension L of the field of fractions E of A, in
which A has integral closure B, such that sΓs~ι aGL2(B) for some
seGL2(F). This proves Theorem 6.5.

REMARK 6.10. If, in Theorem 6.5, we drop the assumption that
F is finitely generated over its prime field, the proof still shows
that the coefficients of the characteristic polynomials of elements of
Γ belong to A = f\vev Avy where V is the set of discrete (rank 1)
valuations of F. An example of such a case is Γ = SL2(ZP) in
GL2(QP). According to [3], Th. 5.2 any profinite group (like Γ)
satisfies conditions (a) and (b) of Theorem 6.3.

Problem 6.11. Characterize finitely generated groups of integral
^-representation type in purely group theoretic terms.

In order that a finitely generated group Γ be of integral 2-re-
presentation type it is necessary that Γ satisfy

(a) Γab is finite
(Proposition 5.5), and it suffices that Γ satisfy (a) and

(b) Γ is not an amalgam
(Theorem 6.4). A solution to the above problem might therefore be
sought by attempting to characterize intrinsically the kinds of
amalgams that arise from actions of GL2(F) on trees Xv as in the
proof of Theorem 6.5.

A finitely generated group of integral 2-representation type
which does not satisfy (b) can be obtained by taking a free product
Γ = /\*JΓ2 of finite groups Γt neither of which have nontrivial linear
representations of dimension 2 over any field, e.g., Γ1 = Γ2 — SLB(Fδ).
It follows from Proposition 8.3, below, that such a Γ has faithful
linear representations in any characteristic.

7* Some calculations of 2-dimensional representations•

NOTATION 7.1. Γp denotes a cyclic group of prime order p with
generator s, and N denotes a .Γp-module which is a finitely generated
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free abelian group and such that

(1) sx = x ===> x = 0, for x e N .

This implies that N is a torsion free module over the ring

R = Z[Γp]/a + «+•••+ β ^ Z f Γ J

of pth cyclotomic integers; say N is of rank m over R. We propose
to classify two dimensional complex representations of the semi-
direct product

Γ = N x Γp

7.2. Γab is isomorphic to H0(ΓP9 N) x Γp which, in view of (1), is an
elementary p-group of order pm+1. Hence Γ has integral 1-repre-
sentation type, (Proposition 5.5). Since N does not have integral
1-representation type (if N Φ 0) it follows from Proposition 5.7 that
Γ does not have integral p-representation type.

Diagonal representations 7.3. They are of the form

where X, Xf\ Γ —> Cx are linear characters. In view of 7.2 there are
only finitely many such. Clearly δZtΓ and δXvZ[ are isomorphic if and
only if {Z, Z'} = {Zlf Zί}.

7.4. Let X: Γp —> Cx be a linear character, thus making C into
a /^-module, which we denote Cz. Let a: N-±Cχ be a Γp-homomor-
p h i s m , i . e . , a ( x + y ) = a(x) + α ( ^ / ) a n d a ( t x ) = X(t)a(x) f o r x , y e N
and ί 6 Γp. Define p*,*: Γ -> GL2(C) by

t, β = « » *

for xeN and ί 6Γ p . Since (a?, ί)(aj', ί') = (α? + ίa?', «') in Γ we see
that |0χ>α is indeed a representation. If X = 1 then (1) implies that
α = 0. Whenever a = 0 we just recover

where X is viewed on the left as a character of Γ.

7.5. Tfce case p = 2. Then (1) implies that s# = — x for
For any linear character X: N—>CX we can then define the "dihedral"
representation σχ by

( Qj and oM =
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for xeN. In fact σχ is the induced representation,

σχ=lnάΓ

N(X).

It is easy to see that σx and σx, are isomorphic if and only if X1 — X
or X* = X"1.

PROPOSITION 7.6. Let p: Γ -> GL2(C) be a representation. One
and only one of the following cases occurs.

(1) There are linear characters X, X'\ Γ -+CX, unique up to
order, such that p is isomorphic to dXiX, (see 7.3).

(2) p — 2 and there is a linear character X: N—>CX such that
XφX~x and such that p is isomorphic to σx (see 7.5). The set {X, X"1}
is uniquely determined by p.

( 3 ) There is a nontrivial linear character X: Γp —> C x, a non-
zero Γp-homomorphism a:N-^>Cx, and a linear character X: Γ-^CX

such that p is isomorphic to X (x) pXi(X (see 7.4). Two such representa-
tions X ® px,a and X' (g) px>,a' are isomorphic if and only if X = λ',
X — X\ and a' = ua for some u e Cx.

Suppose first that p(N) is diagonalizable. If p(N) consists of
scalars then p(Γ) is abelian, hence finite by 7.2, and we are in case
(1). Otherwise the centralizer of p(N) (assumed now in diagonal
form) is the diagonal group T, so p(Γ) lies in the normalizer W =

T x (w) of T, where w = (9 J \ Either ρ(Γ)aT, case (1) again,

or p = 2 and p(s) g T. Conjugating by an element of T we can then
make p(s) = w. Since we must then have wp(x)w~1 = p(x)~1 it follows
that p — σx for some linear character X: N—> Cx. If X2 — 1 then
X(N) consists of scalars, the case treated above. Otherwise ρ(Γ) is
nonabelian, so cases (1) and (2) are exclusive and exhaust those for
which p(N) is diagonalizable.

Assume now that p(N) is not diagonalizable. Being abelian, it
then leaves invariant a unique line L in C2. Since N <| Γ the line
L is Γ-invariant. Let X:Γ~>CX be the character of Γ's action on
C2/L; this is evidently intrinsic to p. Replacing p by λ " 1 ® ^ we
reduce to the case λ = 1. Let now X: Γ —> Cx be the character of
Γ's action on L. If X(s) = 1 then p(s) = 1 so p(Γ) = p(N) is abelian,
hence finite, which is impossible since p(N) is not diagonalizable.
Let U be the X(s) eigenspace of p(s). A basis adapted to the de-
composition C2 = L φ 1/ then puts p in the form

(Άt) a(t)\

\0 l)

for some map a:Γ->C such that a(W) = a(t) + X(t)a(t') for t, t'eΓ.
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Let M — Ker (Z), a subgroup of index p in Γ, by 7.2. We claim
that M = N. Otherwise Γ = Af JV, and No = M Π N has index p in
N. We have the commutator relations

(1 - s)iV0 - (Γ, iV0) = (ikf-iSΓ, No) - (Λf, iVo) c (λf, ΛΓ) ,

so that Mah is finite. But ^(Λf) = (J a W ) is then a finite uni-

potent group, so α = 0 and p = δχ>1, contrary to hypothesis. Now
since Ker (X) = N we can identify X with a character of ΓP=Γ/N.
For teΓP, we see that |θ(ί) is diagonal (i.e., a(t) = 0) and so, for

(a, t) - (a?, l) (0, t) in Γ, we have p(x, t) = ( ψ α

χ

( ί ) ) , i.e., p = <7z,α

as in 7.4. The basis chosen above is intrinsic to p up to multipli-
cation by scalars, and such a change has the effect of multiplying
a by a nonzero scalar. Whence the proposition.

7.7. Proposition 7.6 parametrizes the isomorphism classes of
representations p: Γ —> GL2(C). Case (1) occurs when p is completely
reducible, but not irreducible. There are then only finitely many
possibilities.

7.8. Case (2) gives the only irreducible actions. Choosing an
isomorphism N = Zm the %'s in case (2) vary over elements of
Horn (Zm, Cx) ^ (CXΓ such that V Φ 1. If T = (Cx)m and T2 = {x e
TI x2 = 1} then the classes of p's in case (2) are parametrized by
T — T2 modulo the action x\->x~~\ Thus, when p = 2 and m>0, Γ
is not of finite ^-representation type over C (cf. 7.2).

7.9. Case (3) corresponds to noncompletely reducible represen-
tations. View N as a module, say of rank m, over the ring R
of pth cyclotomic integers. Then, as Γ^-module, C®z N~(C®zR)m —
(Θz Cχ)w> where X varies over the nontrivial linear characters of
Γp. It follows that KomΓp(N, Cx) = Ή.omcίΓp](C®zN, Cχ)^Cm. Thus,
if we fix the (discrete) parameters λ and X in case (3), the isomor-
phism classes of possible |θ's are given by nonzero aeCm modulo
the action of Cx, i.e., by a protective space Pm~\C). This yields a
nondiscrete parametrization as soon as m ^ 2. Note that this may
happen for p ;> 3 when Γ has integral 2-representation type over
Q, because XP{Γ) is integral over Z in cases (1) and (3).

7.10. Let JVQ = (Γ, Γ) = (1 — s)N, the commutator subgroup of
Γ. Suppose that p Φ 2. Then for all p as above, ρ(N0) is an abelian
group of unipotent matrices. Let / denote the augmentation ideal
of Z[N0], and let J = I-Z[Γ]. Then for all representations p: Z[Γ] ->
M2(K) we see that p(Jf — 0. Moreover Z[Γ]/J2 is a finitely gener-
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ated Z-module. This illustrates the kind of phenomenon described
in Corollary 4.6.

7.11. Let K be an algebraically closed field of characteristic
q > 0. If q Φ p then the arguments and conclusions above apply
with no substantial change to representations p: Γ —> GL2{K).

7.12. Suppose that q = p Φ 2. Then arguments like those above
can be used to show that every p: Γ —• GL2(K) is isomorphic to some

1 a(t)

where a: Γ —> K is an additive character, determined by p up to
multiplication by a nonzero scalar. With the notation of 7.9 we
have Γab ~ (Z/pZ)m+1, so the isomorphism classes of nontrivial p's
are parametrized by Pm(K).

7.13. If q — p = 2 the same description applies to reducible
representations. However irreducible ones may exist, and are ex-
actly as in case (2) of 7.6.

7.14. It follows from the above that Γ has integral 2-repre-
sentation type over Z if and only if p Φ 2 or p — 2 and m = 0,
where m is as in 7.9. However the reducible representations
p: Γ —> GL2(K) are discretely parametrized if and only if either q Φ
p and m <̂  1 or q — p and m — 0.

8. Linear representations of free products: Shalen's costruc-
tion* The following construction of P. Shalen [17] is used to show
that free products are not of integral representation type.

PROPOSITION 8.1. Let K be a field, n and integer ^2, and Γ, Γ'
subgroups of GLn(K) satisfying:

(a) H = Γ Π Γ' consists of diagonal matrices; and
(b) For seΓ — H (resp. s' eΓf — H) we have

snl Φ 0 (resp. s[n Φ 0). (uis denotes the (i, j) coefficient ueMn(K).)
Let T be an indeterminate and define

p:G = Γ*HΓ > GLn{K[T, Γ"1])

by p(s) = tst"1 for seΓ and p(s') = s' for s' e Γ ' , where t = diag
(T, T2, •••, Tn). An element of G not conjugate to an element of
Γ U Γ' is conjugate to one of the form

0/ <$<$*•••<$ <?'
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with SiβΓ — H and s-eΓf — H(i. = 1, , r). ΓAe highest degree
term in the Laurent polynomial Xp(u) has degree r(n — 1).

This is proved by Shalen in [17], Lemma 1.1 and the proof of
Proposition 1.3. In applying Proposition 8.1 we use the next lemma
to secure conditions (a) and (b).

LEMMA 8.2. Let K be a field, n and integer 2^2, and x — (xi5)
an n by n matrix with indeterminate coefficients. If se Mn(K) is
not a scalar matrix, and if u — xsx'1e Mn(K(x)), then each coeffici-
ent utj of u is transcendental over K.

Write utj — uiό{x), viewing x as a variable, which we may
specialize. If some i%(#) is not transcendental over K then it
belongs to K, and hence is a constant c as a function of x. Specializ-
ing x to permutation matrices we conclude that uσ{ί)σ{j)(x) is likewise
the same constant c for all permutations σ of {1, •••, n}. We now
distinguish the cases i Φ j and i = j . If i Φ j then, putting s in
(upper or lower) triangular form over an algebraic closure of K,
we see that c = 0 so all conjugates of s are diagonal, and hence s
is a scalar. If i = j then s = cl + sf where all conjugates of sr

have zero diagonal. Conjugating s' by suitable elementary matrices
one concludes that s' = 0, i.e., s is a scalar.

PROPOSITION 8.3. Let K be a field, n an integer ^2, and Γ, Γ
subgroups of GLn(K). Let H denote the group of scalar matrices
in Γ Π Γ' and put G — Γ*HΓ'. Let L be a field extension of trans-
cendence degree ^n2 + 1 over K. Then there is a faithful repre-
sentation p:G —> GLn(L) such that p \ Γ and p \ Γr are conjugate to
the inclusions, and such that XP(s) is transcendental over K for any
s eG not conjugate to an element of Γ U Γ'.

Choose x = (Xij) 6 GLn(L) with coefficients algebraically independ-
ent over K, and let Γ1 = xΓx~ι and Γ[ = xΓ'x~ι in GLn{K^), where
Kγ = K(X). It follows from Lemma 8.2 that Γx Π Γ[ = H and that,
if s e /\ — H or if seΓ[ — H, then all coefficients of s are trans-
cendental over K, in particular =£0. Thus Klf Γl9 Γ[ satisfy the
hypotheses of Proposition 8.1. Choose TeL transcendental over Kx.
Then Proposition 8.1 furnishes a representation p with the properties
claimed.

COROLLARY 8.4. Let K be a field and n an integer ^2 . Let
Γ and Γf be groups which have nontrίvial representations in
GLn(K). Then Γ*Γ' is not of integral n-representation type over K.



GROUPS OF INTEGRAL REPRESENTATION TYPE 45

Let p: Γ -» GLn{K) and p': Γ" -~> GLn(K) be nontrivial represen-
tations. If either of them is scalar we can replace one of its
diagonal entries by 1 to make it nonscalar. Now let H denote
the group of scalar matrices in p(Γ) ΓΊ p\Γ')\ then H Φ p{Γ) and
H Φ p'(Γr). If L is a suitable transcendental extension of K then
Proposition 8.3 furnishes a faithful representation p{Γ)*Hp\Γ') —>
GLn{L) whose character takes values transcendental over K; whence
the corollary.

Problem 8.5. Which amalgamated free products admit faithful
linear representations'! This problem is raised by Shalen in [17],
where he treats some very special cases of it.

9* Integral representation type and group extensions•

NOTATION 9.1. We fix an integrally closed domain A whose
field of fractions F is a finite extension of its prime field. Thus A
is a ring of fractions of the integral closure of Z in F; it is a
Dedekind domain. For any group G we shall write An(G) to indicate
that G has integral ^-representation type over A.

We fix a group G with a normal subgroup H. Let p: G—>GLm(K)
be an absolutely irreducible representation with K an algebraically
closed field which is an A-algebra. We consider also the associated
adjoint representation

a = Adop = p® p*: G — Autκ^e(Mm(K)) c

Our aim is to give criteria for the integrality of p(G) over A.

LEMMA 9.2. // det (p(G)) and a(G) are integral over A then
p(G) is integral over A.

Let seG and let wu '- ,wm be the eigenvalues of p(s). Since
a = p(x)p* the eigenvalues of a(s) are all WiWj1. By assumption
the latter are integral over A. Fix an i, put w = wt, and write
Wj — wvd, so that each vd is integral over A. Let d = det (p(s)).
Then d = wmv> where v = TljV0, and d and d~1 are integral over A.
Therefore w is integral over A; whence the lemma.

PROPOSITION 9.3. Suppose that H is central in G. Then

(Λ(ί?) + AAG/H)) — AJfi) .

We must show that p(G) is integral over A if m <L n. The
condition Aλ(G) implies that det^G) consists of roots of unity (cf.
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Proposition 5.5). Our conclusion follows therefore from Lemma 9.2
once we show that a(G) is integral over A. Since H is central p(H)
consists of scalars, so a is trivial on H. Therefore a comes from
a representation of G/H of dimension m2 <; n2

} so the integrality of
a(G) follows from A^GjH).

REMARK 9.4. Clearly (A^H) + A^G/H)) ===> A,(G), as the exact
sequence Hab -> Gah -> (G/H)ab -> 1 shows. Therefore one may sub-
stitute A^iϊ) for Ai(G) in the hypothesis of 9.3.

LEMMA 9.5. Assume that ρ{H) is integral over A and acts
irreducibly on Km, and that (G/H)ab is torsion (i.e., A^G/H)). Then
ρ(G) is integral over A.

We may first replace G and H by their images in GLm(K). Let
D denote the group of scalar matrices d I such that d and d~ι are
integral over A. All of our assumptions are preserved if we enlarge
G, H to JD G, D'H; thus we may assume further that DaH. Let
s e G. Since (G/H)ab is torsion and det (G) is abelian it follows that
some power of d = det (s) belongs to det (H), and so is integral over
A. Now d~ι8m 6 (?! = G Π SLm(K) because d IeDaG. According to
Corollary 2.9 (?! is integral over A. Now the integrality of d~1sm

over A implies that of s, whence the lemma.

PROPOSITION 9.6. Assume Ami{GjH) and that p(H) is integral
over A. Then p{G) is integral over A.

Case 1. p | H is irreducible. Then the integrality of p(G)
follows from Lemma 9.5 using only A^G/H), not the full force ofΓ

Case 2. p\H is isotypie. Then K p(H) is a simple Z-algebra
and we can choose coordinates so that

Applying the Skolem-Noether theorem to MP(K) one concludes that
the normalizer of MP{K) in GLm{K) is GLP(K) (x) GLq(K). Note that
p(G) is contained in this normalizer of K-p(H). Let ρq: G->PGLq(K)
be the homomorphism obtained by factoring out scalars in GLP{K)®
GLq(K) and projecting on the second factor. Note that pq is trivial
on H. Form the cartesian square (fibre product),
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G -£*-> SL
q
(K)

PQ

Then π is surjective, Ker (π) is a finite central subgroup of G, and
π maps Ker (pq) isomorphically to Ker (pq). Let HcKeτ(pq) be the
inverse image by π of J ϊ c K e r (ρq). Then Jϊ = π~\H) D Ker (^g) is
a normal subgroup of G. In the exact commutative diagram,

1 > H > G >G' > 1

I - 1- I -
π' is surjective with finite central kernel. By Proposition 9.3 and
Remark 9.4 therefore we have Am(G'). Since pq is trivial on H (and
q <. m) we conclude that pq(G) is integral over A. Now define pp:
G -> GLP(K) by the formula

p(π(s)) = pp(s) (x) pq(s)

for s e G . If we show that pp(G) is integral over A the integrality
oί*p(G) over A will follow. Since pp(s) (x) l = lo(π(s)) for s e H(soπ(s) e
H) it follows that ρp(H) is integral over A and /op | H is irreducible.
Therefore the desired integrality of pp follows from case 1.

General case. By Clifford's theorem (see [9], §§ 49-51) p =
I n d i ^ ) where Gx is the stabilizer in G of an isotypic component
of p I H, say of dimension mlf and px: Gx —> GLmχ{K) is the corres-
ponding representation. Clearly ^ ( i ϊ ) is integral over A. We have
m = m^r where r = [G: GJ. If p^G^ is integral over A then so
also is /)(G), by 5.6. Putting G[ = Gi/iϊ, the integrality of ft^)
over A will follow from case 2, once we verify the hypothesis
Aml(G[). Since G[ has index r in G' — G/H it follows from Proposi-
tion 5.7 that Am\r(G') ==> Am\{G[). Since m\r ^ m2 our hypothesis
Am2(G') therefore implies Am\(G[). This completes the proof of Pro-
position 9.6.

LEMMA 9.7. Assume that H is virtually solvable (i.e., that H
has a solvable subgroup of finite index). Assume further that for
every subgroup Gλ of index deviding m in G, the group Glh is tor-
sion. Then there is a subgroup Ho of finite index in H such that
p(H0) is conjugate to a diagonal group with roots of unity on the
diagonal. In particular if seH then the eigenvalues of p(s) are
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roots of unity.

Replacing G by p(G) we may assume that GdGLm{K). Let H
denote the Zariski closure of if, Ho its identity component, and Ho =
H n 3Q. The virtual solvability of H implies the solvability of 30.
The Lie-Kolchin theorem permits us to assume that Ho is upper
triangular. Since G normalizes H it likewise normalizes H and Ho,
so Ho acts completely reducibly on Km. Therefore we can even
diagonalize 30. It remains to show that the diagonal entries in Ho

are roots of unity. Let V be an Ho isotypic subspace of Km, on
which Ho therefore acts by scalars, which we must show are roots
of unity. Let Gx be the stabilizer in G of V and p1:G1-^GL{V)
the corresponding representation. Then Gλ has finite index dividing
m in G since p = Indg/ft) (by Clifford's theorem). By hypothesis
Glh is torsion, so det (ft(JEZo)) is torsion. It follows that the scalars

Ήo I y have finite order, as claimed.

THEOREM 9.8. Let n be an integer ^ 1 and assume A^G/H)
as well as one or the other of the following conditions: (i) An(H);
or (ii) H is virtually solvable and A^Gj) for every subgroup Gλ of
index ^n in G. Then An(G).

Assuming that m <; n we must show that p(G) is integral over
A. This will follow from Proposition 9.6 once we show that p(H)
is integral over A, a condition that follows immediately from (i),
and which results from Lemma 9.7 if we assume (ii).

COROLLARY 9.9. Assume that G/H has integral representation
type over A and that either H does likewise, or else that H is
virtually solvable and Glh is torsion for all subgroups Gx of finite
index in G. Then G has integral representation type over A.

10* Algebraic and arithmetic groups*

PROPOSITION 10.1. Let K be an algebraically closed field of
characteristic p ^ 0, and let Γ be a subgroup of GLn(K).

(a) Suppose that p > 0 and that Γ has integral representation
type over the prime field of K. Then every finitely generated sub-
group of Γ is finite.

(b) Suppose that Γ satisfies condition:
(F Ab) If Γ± is a subgroup of finite index in Γ then Γj6 is a

finite group.
This is the case for example if Γ is finitely generated and of inte-
gral representation type over some field (Corollary 5.10). Let G be
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the Zariski closure of Γ, Go its identity component, and U its uni-
potent radical. Then we have the commutator relations G0 = (G0, Go)
and (hence) U = (G09 U), and the group Go/U is semi-simple.

Assertion (a) follows from Proposition 5.2. Put Γo = Γf]GQ and
ΓΊ = (ΓOf Γo). Condition (F Ab) implies that Γx has finite index in
Γ, so Γx is Zariski dense in Go, whence GQ = (GQ, Go) (cf. [5], Ch. 1,
2.4). Now Go is a semidirect product UΉ, with H reductive, so
Glh = (U/(G0, U)) x Hab, whence U = (Go, U) and H = (fl, J5Γ). Since
the derived group of a reductive group is semi-simple this proves
(b).

10.2. In view of Proposition 10.1, interesting linear groups of
integral representation type are to be found only in characteristic
zero. Let G be an affine algebraic group defined over a number
field F, let G = G(F), and let Γ be a subgroup of G which is
Zariski dense in G. We seek conditions that ensure that:

(IRT) Γ has integral representation type over Q.

This depends only on the commensurability class of Γ (Corollary
5.8) so, after passing to subgroups of finite index, we may assume
that G is connected. Let U denote the unipotent radical of G and
U = U(F). In order to have (IRT) we must (by 10.1) assume that
Q: = (<?, G), and hence that

H — (G> U) a n ( i GJU is semi-simple.

In certain cases these conditions suffice to imply condition (F Ab) of
10.1 (b) for Γ, in which case it follows from Corollary 9.9 that
(IRT) holds if and only if its analogue holds for Γ/Γ Π U in G/U.
Thus we are led to consider the case when G is semi-simple. Let
H = RF/QG be the algebraic group over Q obtained by restriction of
scalars to Q, so that H(Q) = G(F) = G, and let p:H-±GLn be an
algebraic representation. Then p(G) is integral over Q. Borel and
Tits [6] have shown, in many cases (for example if the F-simple
factors of G are all of i^-rank ^1), that every linear representation
of G arises from an algebraic representation of the simply connected
covering group of H. In such cases therefore G has integral repre-
sentation type over Q. The same then follows for Γ clearly when-
ever Γ is ζcintimately embedded" in G, in the following sense: Given
a representation p: Γ —> GLn(K), there is an extension K' of K and
a unique representation p': (?-> GLn(K') which agrees with p on a
subgroup of finite index in Γ. This condition is known to hold in
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many cases when Γ is an arithmetic or S-arithmetic subgroup of
G (cf. [4], § 16 and [16], 2.7). It is a consequence of the strong
approximation theorem plus a qualitative form of the congruence
subgroup theorem, whenever these are valid for F, S, and G (loc.
cit.).

EXAMPLE 10.3. Let Γ = SLn(Z) with n ^ 3. Γ is intimately
embedded in SLn(Q), and Γ has integral representation type over
Z. Let Γ9 be the semi-direct product of Γ with the Γ-module Z \
Then it is easily shown that Γ' satisfies condition (F Ab) of 10.1 (b),
so it follows from Corollary 9.9 that Γ' likewise has integral repre-
sentation type over Z.

Question 10.4. Let Γ be a finitely generated group of integral
representation type over Q, and with a faithful linear representation
over Q. I know of no such groups which cannot be intimately
embedded in the Q-rational points of some algebraic group over Q.
Is this perhaps always the case? If Γ is even of integral repre-
sentation type over Z must it then be an arithmetic group?

Question 10.5. Let Γ be a finitely generated group of integral
representation type over Z whose linear representations separate
points of Γ. Does Γ then have a faithful linear representation
over Q?
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