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Introduction. Let I' be a group, o:I'->GL,(K) a matrix
representation over some field K, and X, its character: X,(s)="Tr(o(s)).
The theme of this paper is, generally spaking, to draw conclusions
about I or o(I') from finiteness assumptions on X,(I"). The proto-
type of such results is Burnside’s theorem saying, when p is absolutely
irreducible, that if X,(I") is finite then o(I") is finite. This yielded
his affirmative solution of the “Burnside problem” for linear groups.
The same argument shows, when K is a locally compact field (like
R or C) that we may replace “finite” by “bounded”, and conclude
from boundedness of X,(I") that the closure of po(I") is compact. This
yields an affirmative answer to a question posed to us by Ken Millett.
Independently, Kaplansky asked us whether a subgroup of GL,(C),
each element of which is conjugate to a unitary matrix, is itself
conjugate to a subgroup of U,(C). We give a counterexample.
These results occupy § 1.

The rest of the paper is devoted to the introduction and study
of the following notion. Let A be a commutative ring and % an
integer =1. A group /' is said to have integral n-representation
type over A if, for any field K which is an A-algebra, and any
representation o: I' - GL,(K), the elements X,(s)e K for sel’ are
all integral over A, i.e., roots of a monic polynomial with coefficients
in A (Def. 5.1). We conclude from this, when A is noetherian, that,
for any finite subset X of 77, the sub A-algebra of M,(K) generated
by o(X) is a finitely generated A-module, (Prop. 5.2). Further, I
has only finitely many conjugacy classes of irreducible representa-
tions of dimension <n over any field K as above (Prop. 5.3). These
and other strong finiteness properties are deduced from the theory
of rings with polynomial identities, as developed in Procesi’s book
[12]. In §§2-4 we give a rendering of this source material adapted
to the present applications.

The case of main interest is when 4 = Z, which we now assume.
A group ' has integral l-representation type if and only if I'* is
a torsion group (Prop. 5.5). Serre [15] has furnished a class of
finitely generated groups I” of integral 2-representation type, namely
those with the fixed point property for actions on trees (Th. 6.4).
This is equivalent to I'*®* being finite and I" not being a nontrivial
amalgamated free product (Th. 6.2). We derive a useful refinement
(Th. 6.5) of Serre’s theorem in order to prove (Cor. 6.7) a conjecture

15



16 HYMAN BASS

of P. Shalen asserting that certain subgroups of GL.,C) are non-
trivial amalgamated free products. (Shalen’s persistent solicitation

of this proof is responsible for the present paper.)

We say that I has integral representation type if it has integral
n-representation type for all # = 1. Examples include all torsion
groups and many arithmetic groups, e.g., SL,.(Z) for n = 3 (but not
n = 2). In fact variations on these examples account for essentially
all known finitely generated linear groups of integral representation
type (cf. §10). Groups of integral representation type are stable
under passage to quotients and to subgroups of finite index (Cor.
5.8), and under formation of direect products (Prop. 5.11) (but not
free products (Cor. 8.4), and even of arbitrary group extensions
(Cor. 9.9)). The proof of the latter result is slightly intricate. The
only finitely generated solvable groups of integral representation
type are the finite ones (Cor. 5.9).

1. Groups of bounded character.

NOTATION 1.1. We fix an algebraically closed field K, a multi-
plicative monoid I" in the K-algebra M,(K) of n by m matrices, and
we write Tr (I") = {Tr (s) |sel}.

We answer below the following questions of Ken Millett and I.
Kaplansky. Suppose that K =C and that I" is a group whose
elements all have eigenvalues all of absolute value 1. Then I' is
conjugate to a subgroup of

U, *
.

0 U,

where U,, = U,,(C) denotes the unitary group (Cor. 1.8). This
affirmatively responds to a question posed to us by Millett.
Kaplansky independently asked us whether, under the additional
assumption that each element of I is semi-simple (i.e., diagonalizable),
one can take * = 0 above. Equivalently, if each element of I' is
conjugate to an element of U,(C), is I" conjugate to a subgroup of
U.(C)? We furnish a counterexample in 1.10 below. Our results
are based on a classical argument of Burnside which we now recall.

THe BURNSIDE LEMMA 1.2. Suppose that I’ acts irreducibly on
K».

(a) I' contains a basis s, -+, 8, of M,(K). Let t,---,t, be
the dual basis relative to the trace form: Tr (t8;) = 0,1 =1, 5= nb).

(b) For any se M,(K) we have s = >, Tr (ss)t,. Hence
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(1) rcsTr D, .

This is classical. Briefly, the K-linear span KI" of I' is a K-
algebra with faithful simple module V = K”. Schur’s lemma says
that the division algebra Endy; (V) is K (since K is algebraically
closed), and Wedderburn theory then gives KI' = End (V) =M, (K).
The trace form (z, y)+— Tr (xy) on M,(K) is nondegenerate, whence
the existence of the dual basis (¢,). If s = >, a4, € M (K) with a, €
K then Tr(ss;) = >, a; Tr (¢,5;) = a;. If sel” then ss;el” for all j,
so a; € Tr (I'). Whence the lemma.

COROLLARY 1.8. Suppose that I' acts irreducibly on K™

(a) (Burnside) If Tr (I") s finite then [I' is finite. In fact
Card (I") £ (Card (Tr (I")™.

(b) Suppose that K admits an absolute value relative to which
Tr (I') is bounded. Then I' is bounded im M, (K).

(¢) Suppose that K is a nondiscrete locally compact field and
that Tr(I") is bounded. Then the closure I' of I' in M,(K) is
compact.

Both (a) and (b) are immediate from (1) above, and (¢) follows
from (b).

REMARK 1.4. The only algebraically closed locally compact non-
discrete field is C. However other locally compact fields may be
admitted in (¢) provided that we assume the action of I" on K" is
absolutely completely reducible.

1.5. When I' acts not necessarily irreducibly on K* we can
choose a Jordan-Holder series
(2) 0=V,cV,c.--CcV,=K"

for the I'-module K”. Relative to a basis of K" adapted to (2) the
elements s " take the matrix form

(3) s =

0 s,
where s, € M, (K) is the matrix of the action s induces on the n,-
dimensional space V,/V,_(¢ =1, ---, 7). The maps+ s, is a homo-
morphism of I" onto a monoid I', c M, (K) which acts irreducibly on

K™, so the preceeding results apply to each I',. If I' acts com-
pletely reducibly on K” then we may choose the basis above so that
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* = 0 in (3), i.e., s is in block diagonal form.

1.6. Suppose now that I" is a group. The map

S: * S 0
(4) s = — g = : .
0 s, 0 s,

is a homomorphism from 7" onto a subgroup /I” of GL,(K), isomor-
phic to a subgroup of I', X .-+ X I',. The kernel I', of (4) consists

of unipotent matrices <of the form <(1) . ;)) If char (K) =0 then

I', is a torsion free group. If char (K)=p > 0 then I', has exponent
p*: 8" =1 for all sel,.

COROLLARY 1.7 (Burnside). Suppose that I’ is a group of
exponent e:s* =1 for all se€l’. Then there is a constant ¢ = ¢(n, e)
such that the unipotent group I, has index =<c¢ in I'. If char (K)
does mot divide e then I', = {1} so Card (I') < ec.

In view of 1.6 it suffices to bound each Card (I",) by a constant
depending on » and ¢ alone. From 1.3 (a) we have Card (I";))<Card
(Tr(I"))*. Since n; < n it suffices to bound Tr (I"). If sel’, then
Tr(s) is a sum of =, eth roots of unity, and there are at most e
such sums. This proves the corollary. One can, for example, take
¢ = () = e™.

COROLLARY 1.8. Let I' be a subgroup of GL,(C) such that the
set of etgenvalues of elements of I' is bounded.
(a) I' is conjugate to a subgroup of

U,, *
‘ U.,
(%) .
0 U.,,
where U,, denotes the unitary group U, ,(C).
(b) The set I', of unipotent elements of I' is a normal sub-
group of I', and I'|/T", is isomorphic to a subgroup of U,(C).
(e) If I' acts completely reducibly on C™ them I is conjugate
to a subgroup of U,(C) (and conversely).

With the notation of 1.6 above, the hypothesis on eigenvalues
implies that each I, cGL,(C) has bounded trace, so 1.3 (c) implies
that the closure I”, is compact, hence conjugate to a subgroup of
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U,,(C); whence (a). The homomorphism (4) then maps I' onto a
0
ny

subgroup I” of c U,(C), which has no unipotent ele-

0 U.,
ments #1. It follows that the kernel I, of (4) consists of all
unipotent elements of I', thus proving (b). If I' acts completely
reducibly on C", then, as remarked in 1.5, we can take = = 0 in (5),

whence (c).

Kaplansky’s Problem 1.9. Let I’ be as in 1.8, and assume that
each element of I' is semi-simple (i.e., diagonalizable). Kaplansky
asked whether it then follows that I' is conjugate to a subgroup
of U,(C). Note that I', = {1}, so it follows from 1.8 (b) that I is
isomorphic to a subgroup of U,(C). We shall show, nonetheless,
that the answer to Kaplansky’s problem is negative.

Counterexample 1.10. If weSU,C) and w *= 1 then neither
eigenvalue of w can equal 1 (because their product is 1, and SU,C)
contains no unipotent elements 1); hence w — 1 is invertible. It

follows that for any ¢ = (gl) € C? the element
2

(6) (¥ “)eSLw)
\0 1 ?

is semi-simple. Indeed, if b e C*? then

@ ol e 6T

Taking b = (w — 1)7'¢ we obtain the semi-simple matrix <8U 0).
Now let I” be a free subgroup of SU,C) with free basis u, v.
Such free groups are well known to exist, for example by Tits’
theorem [T] (since SU,C) is connected and nonsolvable). Since
% # v we have (u — 1) = (v — 1)7%, so there is an a € C? such that

(8) w—1D"a#*w-—1D"a.
Now let I' denote the group

(33 (e

The obvious projection I' — 1" is an isomorphism since I” is free
with basis u, v. It follows that each nontrivial element of I" is of
the form (6) with w == 1, and hence is semi-simple. Moreover the
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elements of I' evidently have eigenvalues on the unit circle. Thus
I' provides the promised counterexample to Kaplansky’s problem
once we show that I" is not conjugate to a subgroup of U,(C). For
this it suffices to show that I" does not act completely reducibly on
C:. Let le, e, ¢, be the standard basis of C°. Then I leaves C*=
C,, + Ce, invariant. If the action were completely reducible then we

could find a vector f=b.e,+be,+e¢, such that I" leaves Cf invariant.

Putting b = (lIZl) it would then follow that (3 l{) conjugates I' into
2

(block) diagonal form. According to (7) we must then have b=(w—
1)7%¢ for each nontrivial element (6) of I". But this contradicts (8),
whence our claim.

REMARK 1.11. The closure G of I' is the full group

[SUZ(C)Cz
0 1 } '

I owe the following proof of this to Serre. Since each element
#1 in I' is conjugate to an element of infinite order in SU,C), it
generates a dense subgroup of a circle group in G; it follows that
G is connected. It’s projection in SULC) is connected and nonsolva-
ble, since it contains the free group /’. The proper connected sub-
groups of SU,(C) are abelian, so G projects onto SULC). Let g be
the Lie algebra of G and n the kernel of the Lie algebra projection
09— suy(C). If n =0 then g is conjugate to su,(C) so G is con-
jugate to SU,C), contrary to what we proved above. Therefore n»
is a (real) vector space #0 in C* Since p above is surjective, n is
stable under su,(C), which acts irreducibly on C? It follows that
n = C? so

_{suz(C)Cz
=" ]

whence the result.
2. Absolutely irreducible monoids of integral character.

NoTATION 2.1. As in 1.1, K is an algebraically closed field and
I’ is a multiplicative submonoid of M,(K). We further assume that
I acts irreducibly on K", so that the Burnside Lemma 1.2 furnishes
a K-basis s, -+-, 8,2 in I' of M,(K), and the dual basis ¢, ---, £,
Tr (¢8;) = 0,58, 5 =1, ---, n*). For any subring A of K we write
AT’ for the sub A-module of M,(K) generated by I': A" is an A-
algebra.

The next result records some more or less standard facts. We
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shall draw some simple consequences to be applied later.

PROPOSITION 2.2. Let A be a subring of K with field of frac-
tions F. Assume that

(1) Tr(IVcA.
(a) We hawve
S As,C AI'C 3 At

where the right and left hand terms are free A-modules of rank n’.

(b) The mnatural homomorphism K@, Al — KI' = M, (K) s
bijective (i.e., A" is an “A-structure” on M, (K)).

(e) FI is a central simple F-algebra of dimension n?, hence
isomorphic to M, (D) where D is a division algebra of dimension s*
over the center F, with rs = n. (The integer s is called the Schur
index of the representation of I' on K™.)

(d) There is an extension E of degree s of F in K, isomorphic
to a maximal subfield of D, such that EI'(=E @y FI') is isomorphic
to the H-algebra M,(H).

(e) EI s conjugate in M, (K) to M,(K).

Assertion (a) is immediate from 1.2 (b), and it clearly implies
(b). Assertion (b) applied to A = F implies that FI" is a central
simple F-algebra of dimension #®. The rest of (¢) follows from
Wedderburn structure theory. A maximal subfield E of D can be
embedded in K as an extension of F. Such an E has degree s over
F and splits the F-algebra FI' = M,.(D) (cf. [9], Th. 68.6) whence
(d). We now have an FE-algebra isomorphism f: M, (E)—~ElcM,(K),
as well as the inclusion g¢: M, (E)— M,(K). Tensoring with K pro-
duces two K-algebra isomorphisms f’ and ¢’ from M, (K) to M,(K).
They define M,(K)-module structures on K" which must clearly be
isomorphic, i.e., f' is conjugate to g’, whence (e).

COROLLARY 2.3. Let A be a meotherian subring of K with field
of fractions F. Assume that the integral closure of A in any finite
extension of F 1is a finitely generated A-module. Assume further
that

(2) Tr (I') is integral over A
(i.e., that each element of Tr (I') is so) and that
(8) Tr(INYC L for some finitely generated field extension L of F.

Then Al is a finitely generated A-module.
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The algebraic closure E of F in L is a finite extension of F
(cf. Lemma 3.7 below) so the integral closure B of A in E (or L)
is, by hypothesis, a finitely generated A-module. Conditions (2) and
(3) imply that Tr (I")C B, so 2.2 (a) implies that BI" is contained in
a finitely generated B-module. Since A is noetherian it follows that
A’ © BI' is a finitely generated A-module.

REMARK 2.4. In practice condition (3) is typically assured by
having I"'c M,(L). This is the case (for suitable L) whenever I is
contained in a finitely generated sub A-algebra of M,(K). The
corollary applies notably when A is a finite field, and then implies
that I' is finite.

COROLLARY 2.5. In Proposition 2.2 suppose that F is a finite
extension of the prime field of K. Then there is a finite extension
L of F in K such that, if B is the integral closure of A in L,
then sI'sT*c M,(B) for some seGL,(K).

If char (K) > 0 then A = F, a finite field, and the corollary is
just part(e) of 2.2. Assume therefore that F is a finite extension
of Q. By 2.2 (e) we may, after a conjugation, assume that I"'C
M,(E) for some finite extension E of F. Let C denote the integral
closure of A in E. Then C is the ring of S-integers of E, where
S is a (possibly infinite) set of primes of E containing all archimedean
primes. In particular C is a ring of fractions of the ring of
algebraic integers of E so it is a Dedekind ring and, by 2.2 (a),
CI' is a C-order in the FKE-algebra M,(E). Therefore I' leaves
invariant a finitely generated C-module P C E"™ which contains an
E-basis of E*. There is a finite extension L of E (for example the
Hilbert class field of E) such that all ideals of C become prin-
cipal in the integral closure B of C in L. Then the B-module
B®:;Pc L" is free. Choosing a B-basis of B@,P produces the
desired conjugation of I into M, (B).

Elementary matrices 2.6. Let e,; denote the matrix with 1 in
the (4, j)-coordinate and zero elsewhere. If 4=+ j then €%, =0 so
we have the group homomorphism

ar—ef; =1+ aey;
from K to SL,(K).

COROLLARY 2.7. Let N be an additive subgroup of K such that
e I'. Let A be a subring of K containing Tr (I'). Then there is
an element ¢ = 0 in K such that cNC A. If A has transcendence
degree d over a subfield K, of K then the field K(N) has trans-
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cendence degree <d + 1 over K,.

The last assertion follows from the first one in view of the field
inclusion K(N)c K(A4,¢). If ebcI' then Ne,cC AI'. There is
nothing to prove if N = {0}, so choose a # 0 in N. Then f = ae,
belongs to A, and Na'f Cc AI'. Write f = 3, a;t; as in 2.2 (a),
with a, ¢ At =1, ---,%n?). Then we have Na'a;,C A for each <.
Choosing 7 so that a, # 0 we can take ¢ = a™'a, in the corollary.

PrOPOSITION 2.8. Let A be a subring of K whose field of frac-
tions F is a finite extension of the prime field of K. Assume
that

(2) Tr (I') 1s integral over A.

Let G be tke'normalizw of I' in SL,(K). Then G 1is integral over
A.

Let se@, i.e., sl's7' =1 and det(s) =1. We must show thats
is integral over A. Choose a finitely generated submonoid 17, of I’
containing a K-basis of M,(K), and let I” denote the submonoid of
I’ generated by U,czs™fs™™. Then I acts irreducibly on K=",
s["s™* =TI and I" < M,(L) for some finitely generated field extension
L of F. Replacing I" by I therefore, we are allowed to add condi-
tion (3) of 2.3 to our assumptions. We may enlarge A to its integral
closure, so that A is a ring of fractions of the integral closure of
Z in F. 1t follows that A is an “excellent ring” (see [11], §34)
and, in particular, satisfies the hypothesis of 2.3. We are now
entitled to conclude from Corollary 2.8 that Al is a finitely generated
A-module, hence so also is Tr (AI'). Now enlarging A to the integral
closure of A[Tr (I)], we may assume further that Tr(I") C A (condi-
tion (1) of 2.2). Then, in view of Corollary 2.5, we may enlarge A
again to its integral closure in a finite extension of F, and conjugate
I (and 8), so as to arrange that I"c M,(4). Then Al is an A-order
in M, (F). If char(K)=p >0 then A = F is a finite field so Al
is finite, and its centralizer has finite index in its normalizer. The
centralizer of AI' consists of scalars, and the sealars in SL,.(K)
form a finite group, so G is finite in this case, hence jintegral over
Z. Suppose therefore that char (K) =0, so that F is a number
field and A is a ring of fractions of the ring of algebraic integers
in F. It follows that A-orders in semi-simple F-algebras satisfy
the Jordan-Zassenhaus theorem (see [1], Ch. X, Th. 2.4). Therefore,
as in the proof of Th. 2.9 of [1], Ch. X, one concludes that the
group In Aut (Al') of inner automorphisms of Al ‘has finite index
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in Aut (AI'). The normalizer G of I" in SL,(K) maps naturally to
Aut (AT'), J]and the inverse image G, of In Aut(I") has finite index
in G. Hence some power ¢ = g? of s yields an inner automorphism
of AI', in other words there is a unit u of AI" such that uxu™=
t x t7* for all xe AI'. Since the centralizer of AI’ is K we have
t = wu for some weK. But 1=det(t) = w"det(u). Since AI'C
M,(A) we have w" = det (u)™*e A so w is integral over A. Hence
t = wu is integral over A, and so also is s (because s? = t); whence
the proposition.

COROLLARY 2.9. Let A and I' be as in 2.8. Let G be a sub-
group of GL,(K) that normalizes I' and such that G is a torsion
group. Then G s integral over A.

Let G, =GN SL,(K). Then G, is integral over A by Proposi-
tion 2.8. Since G/G, is an abelian group the hypothesis implies that
every s € (G has some positive power in G,, so s is integral over A.

3. A finiteness theorem.

NoTATION 8.1. Let B be a commutative ring and let I' be a
multiplicative submonoid of M,(B) which contains a set s, - -, s,
which generates M,(B) as a B-module. Let A be a subring of B,
and let AI' denote the sub A-module of M,(B) generated by ['; it
is an A-algebra.

Our aim is to show, under suitable finiteness assumptions, that
Al is a finitely generated A-module. The proof is a slight refine-
ment of arguments in Procesi [12], Ch. VI, but the formulation below
is more convenient for our applications.

We begin with an integral form of the Burnside lemma.

LEMMA 3.2. (a) There exist elements t,, ---,t,€ M,(B) such
that, for all se M, (B) we have

(1) s = >, Tr (s8,)t, .
(b) If Tr(I)C A then
S As, CAI'C 3 At .

() If Tr(IN)c A and A 1is moetherian then AL is a finitely
generated A-module.

The trace form on the finitely generated free B-module M,(B)
induces an isomorphism from M,(B) to Homj(M,(B), B), so (a)
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follows from [7], p. II. 46, Prop. 12.
The implications (a) = (b) and (b) = (¢) are immediate, whence
the lemma.

THEOREM 3.3. Suppose A is a mnoetherian subring of B and
that (each element of) Tr (I') is integral over A. Suppose further
that I' is a finitely gemerated monoid. Then Al is a finitely
generated A-module.

The proof proceeds by several successive reductions.

1. We may assume that B is a finitely generated A-algebra.
Indeed we may replace B by the sub A-algebra B’ of B generated
by the matrix entries of the elements of a finite set of generators
of I, including s,, ---, s,, plus the coefficients in B used to express
the basic matrices e¢;; as linear combinations of s, ---, s,. Then
I' c M,(B’) still satisfies our hypotheses, and B’ is a finitely generated
A-algebra.

2. We may assume that A is a local ring. In fact it follows
from [12], VI, Lemma 2.4 that AI" is a finitely generated A-module
provided that A,l" is a finitely generated A,-module for all primes
p of A.

3. We may assume that the local ring A is complete. In fact
the completion Aof Ais a faithfully flat A-module so that Al is
a finitely generated A-module provided that ﬁ@A Al is a finitely
generated A-module ({8], Ch. I, §3, no. 6, Prop. 11). But we have
AQ. AI’CA®AM(B) M(B) where B = A®, B, a finitely gen-
erated A-algebra. Further A®A AT’ = A’ where I denotes the
image of I in M,(B) and Tr (I") is integral over A since Tr com-
mutes with base change.

4. We may assume that B is reduced, i.e., that the nil radical
N of B is zero. In fact let A’ denote the image of A in B’=B/N,
and [” the image of I' in M,(B’). We have a commutative exact
diagram

0 — M,(N) — M,(B) —> M,(B')—0
U U U
0— J — AI' — AT —0

where J = M, (N) N Al is a nilpotent ideal (because B is noetherian).
If we know the theorem for: B’, which is a reduced finitely gener-
ated A’-algebra; A’, which is complete loeal; and I, which is finitely
generated with Tr (I) integral over A’, then it follows that A'I"’
is a finitely generated A’-module. Let P be any prime ideal of AIl.
Then p contains the nilpotent ideal J so AIl'/p, being a quotient of
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A'T’, is a finitely generated A-module. It now follows from [12],
VI, Lemma 2.6 that AI" is a finitely generated A-module.

5. The integral closure A, of A in B 1is a finitely generated
A-module. This follows from Lemma 3.4 below.

Now to prove the theorem note that Tr(/))C A,, and A, is
noetherian, by (5), so it follows from 3.2 (¢) that A,I" is a finitely
generated A,-module. By (5) again it follows that AI'C Al is a
finitely generated A-module.

LEMMA 3.4. Let A be a complete moetherian local ring, let B
be a finitely gemerated commutative A-algebra which is reduced, and
let A’ be the imtegral closure of A im B. Then A’ is a finitely
generated A-module.

Since B is noetherian and reduced we have 0 =p N---Np,
where the p, are the minimal primes of B. Let B, = B/p, and let
A, denote the integral closure of A in B,. Then clearly A' I, A,
so if each A, is a finitely generated A-module so also is 4’. We
may therefore assume that B is an integral domain. Replacing A
by its image we may further assume that AcC B. Let FCL be
the corresponding fields of fractions and let E denote the algebraic
closure of F in L. Since L is a finitely generated field extension
of F' the same is true of the intermediate extensions (Lemma 3.7
below), so E is a finite extension of F. Clearly A’ is the integral
closure of A in F, so it is a finitely generated A-module by Nagata’s
theorem ([11], Cor. 2 of Th. 31. C).

COROLLARY 3.5. Suppose that A is a noetherian subring of B
and that Tr (") is integral over A. Then every finitely gemerated
sub A-algebra of AL is a finitely generated A-module. In particular
Al is integral over A.

Let X be a finite subset of AI'. Let Y be a finite subset of
I’', and I’ the submonoid of I" generated by Y. We can choose Y
large enough to contain s, ---, s, (see 3.1) and so that X c Al".
Theorem 3.3 implies that A" is a finitely generated A-module. So
likewise therefore is the sub A-algebra generated by X.

REMARK 3.6. The results 3.2, 3.3, and 3.5 remain valid if M, (B)
is replaced by any Azumaya B-algebra S of rank »? and Tr by the
reduced trace. In fact there is a faithfully flat commutative B-
algebra B’ such that B’'@;S is isomorphic to M,(B’), and this
reduces these questions to the case treated above.

We close this section with a lemma used in the proof of 3.4
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above, for which we could not locate a convenient reference.

LEMMA 3.7. Let FFC EC L be fields. If L is a finitely generated
extension of F then so also is E. In particular the algebraic closure
of F'in L is a finite extension of F.

Let T be a transcendence base of L over F such that 7, = TN
F is one of K over F. Then FE is algebraic over F(T,), and of
degree at most that of L over F(T), which is finite. Whence the

lemma.

4. Integral PI algebras and integral mn-representation type.
We first recall some terminology from Procesi [12].

Polynomial identities 4.1. Let A be a commutative ring, and

let R be an A-algebra. A polynomial f(X, ---, X,) in non commut-
ing indeterminates and coefficients in A is called a polynomial
identity of R if f(zx, ---, z,) =0 for all (x,, ---, x,) € R". Write ¢(f)

for the ideal of A generated by the coefficients of f. One calls R
a Pl A-clgebra if it satisfies a polynomial identity f such that ¢(f)=
A. It then follows from a theorem of Amitsur ([12], II, Th. 4.1)
that R satisfies an identity of the form s for some integers n, m=
1, where

( 1 ) Sn(XU Tty Xn) = Z sgn (0)X0(1) tt 'er(n) ’

with ¢ ranging over all permutations of {1, ---, n}. The ring M,(A)
satisfies the “standard identity” s,, of n by n# matrices; this is the
well known theorem of Amitsur-Levitzky (|12}, I, Th. 5.2).

Central extemsions 4.2. A ring homomorphism p: R — S is called
an extension if S, as R-module via p, is generated by the centralizer
ZJ(S) of Rin S: Z,(S) ={seS|sp(r) = p(r)s for all »re R}. If S, as
R-module, is even generated by the center Z(S) = Z«(S) of S then
o is called a central extemsion.

Absolutely irreducible representations 4.3. Let R be a ring. A
(matrix) representation (of dimension n over a commutative ring
K) is a ring homomorphism p: R — M,(K). The character of o is
X, = Trop: R->K. The center of M,(K) consists of the scalars K,
s0 o is a central extension if and only if o(R) generates M, (K) as
a K-module. In this case o induces a homomorphism from the
center Z(R) to K. Hence if R is an A-algebra for some commuta-
tive ring A 'then p induces a homomorphism from A to K relative
to which o and X, are A-linear. We call o an absolutely irreducible
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representation if p is a central extension and K is a field. Then
Oo(R) contains a K-basis of M, (K), and po(R) acts irreducibly on L”
for all field extensions L of K. Indeed these conditions are each
equivalent to the absolute irreducibility of p, by the Burnside
lemma 1.2. ‘

The following theorem slightly elaborates some results of Procesi
([12], Ch. VI).

THEOREM 4.4. Let A be a commutative nmoetherian ring, and
let R be a PI A-algebra. The following conditions are equivalent.

(a) For every absolutely irreducible representation p: R—M,(K)
of R, X,(R) (in K) is integral over A.

(b) Ewvery finitely generated sub A-algebra of R 1is a finitely
generated A-module.

(e¢) (Hach element of) R is integral over A.

(d) R is generated as an A-module by elements which are inte-
gral over A.

The implications (b) = (¢) = (d) = (a) are evident. Consider the
supplementary condition:

(f) R is a finitely generated A-algebra.

We shall prove simultaneously that (a) = (¢) and that (a)+ (f) implies

(b") R is a finitely generated A-module.

To prove (e) it suffices, by [12], VI, Lemma 2.3, to do so for
each R/P with P a prime ideal of R. Similarly, assuming (f), then
(b’) follows once it is known for each R/P, by [12], VI, Lemma
2.6. Therefore we may assume for both implications that R is a
prime ring. By [12], II, Th. 3.2 there is then an embedding R C
M,(K) which is an absolutely irreducible representation. Replacing
A by its image we may assume that A is a subring of K. Let X
be any finite subset of R containing a K-basis of M,(K), and let I”
denote the multiplicative monoid generated by X. Then (a) implies
that Tr (I") is integral over A, so Theorem 3.3 implies that Al is
a finitely generated A-module. It is clear that both implications
(a) = (c) and (a) + (f)=(b’) follow from this. Finally, to prove
(a)=(b) let R’ be a finitely generated sub A-algebra of R. The
implication (a)=(¢) shows, assuming (a), that R’ is integral over
A. Therefore the implication (a) + (f)= (b’) shows that R’ is a
finitely generated A-module, whence (b).

DEFINITION 4.5. Let A be a commutative ring, let B be an
A-algebra, and let n be an integer =1. We say that R has inte-
gral n-representation type (over A) if, for all absolutely irreducible
representations p: R — M,(K) of dimension m < n, X,(R) is integral
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over A.

COROLLARY 4.6. Let A be a commutative noetherian ring and
let R be an A-algebra of integral m-representation type. Let h be
an integer =1, and let J denote the ideal of R gemerated by all
elements 8, (%, + -, Tp)* with (X, ---, &,,) € R™. Then every finitely
generated sub A-algebra of R/J is a finitely generated A-module.

The absolutely irreducible representations of R/J correspond
bijectively with those of R of dimension =n (see [12], II, Prop.
7.6 and III, Prop. 2.2). Hence R/J is a PI A-algebra satisfying
condition (a) of 4.4, therefore also condition (b). Whence the corol-
lary.

The next proposition gives a convenient ‘“geometric” picture of
the absolutely irreducible representations of an A-algebra finitely
generated as an A-module.

PROPOSITION 4.7. Let A be a commutative noetherian ring and
let R be an A-algebra finitely generated as an A-module. There
exists a finite family of cemtral extensions (see 4.2) p;: R — M, (B,)
(teI) with the following properties.

(1) For each 1€l B; is an integral domain which is a fint-
tely generated A,-module for some s, € A such that os;) # 0.

(2) For any absolutely irreducible representation p: R—M,(K)
with K an algebraically closed field, there 1s an © €I such that n; =
n and an A-algebra homomorphism o: B,— K such that o is con-
jugate to the composite R&M,,(Bi)iM,,(K).

If A=2Z then we may arrange that, for each 1el, p(R)C
M, (A;), where A, is the integral closure of A im B;, and is a
finitely generated A-module.

Let Pespec(R). By [12], II, Th. 8.2, P is the kernel of an
absolutely irreducible representation p,: R — M, (Kz). By Proposi-
tion 2.2 we may take K, to be a finite extension of the field of
fractions of p,(4). Then we can choose a fintely generated sub A-
albebra B’ of K, such that ©x(R)C M, (B’) and pp(R) generates
M, (B') as a B'-module. For some spc A such that pp(sp) # 0 the
A, -algebra B, = B/, will be a finitely generated A, -module. In
case A = Z then it follows from Corollary 2.5 that, after extending
K, if necessary, we may further arrange that ox(R)cC M, (Ap),
where A, is the integral closure of A in B, and is a finitely gen-
erated A-module.

The finite central extension o(R,,) € M, (Bp) induces a map spec



30 HYMAN BASS

(M, (Bp)) — spec (R,,) which, by Lemma 4.9 below, is surjective.
Hence the image of p3: spec (M, .(B»r)) — spec (R) is the locally closed
set

Up = V(P) — V(spR),

which is a neighborhood of P in V(P). (For X C R we write V(X)
for the set of primes @ in spec (R) which contains X; these are the
closed sets in spec (R).) The proposition now clearly follows from
the next two claims.

1. spec (R) is covered by a finite number of the sets Us.

2. Let p: R — M,(K) be an absolutely irreducible representation
with K algebraically closed and with kernel Qe U,. Then %, =n
and there is an A-algebra homomorphism o: B, — K such that o is
conjugate to the composition R M,(By) - M,(K) .

We prove (1) by noetherian induction. Specifically, let P, ¢ I,)
be the minimal primes of R (i.e., the generic points of the irredu-
cible components of spec (R)). Then U,.;, Up, contains an open dense
set spec (R) — V(J,) of spec (R), where J, is some ideal of B. Next
let P(iel) be the generic points of the irreducible components of
of V(J)). Then Uiz, Usp, contains spec (R) — V(J;), where V(J,)C
V(J,) and V(J,) contains no generic point of V(J,). Continuing in
this way, one exhausts spec (R) in a finite number of steps because
spec (R) is noetherian.

To prove (2) we first write @ = Ker (0) = pz'(P’) for some prime
P’ e spec (M, ,(By)). All primes of M, (Bp) come from By, so P’ is
the kernel of M, (By) — M, (B’) for some quotient B’ of B,. Then
the composite o": R — M, (Bp) — M, (B’) is a central extension with
the same kernel @ as p. Passing to the field of fractions of B’ to
make o' an absolutely irreducible representation, and then applying
[12], II, Th. 7.4, we see that n, = n and we obtain an A-algebra
embedding ¢’ 9f B’ into,some field extension L of K such that the
composites R %> M,(B’) 5 M, (L) and R->M,(K)=> M,(L) are con-
jugate. Since p'(sp) # 0, B’ is algebraic over the field of fractions
of p'(A), so we must have ¢'(B’) <,: K (since K is algebraically closed).

Now the composite o: B, — B’ 7, K satisfies claim 2.

REMARK 4.8. The refinement of Proposition 4.7 made when A=
Z applies, more generally, when A4 is a ring of S-integers in a
global field.

LeMMA 4.9. Let A be a commutative ring, let R be a PI A-
algebra, and let RC S be a central extension |(see 4.2). If Z(S) is
wntegral over R them S is integral over R, and spec (S)— spec (R)
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18 surjective.

[We say that se S is integral over R if there exist elements
Yo ***, Tuy in R such that )+ - + 7,_,8"*+ s" =0.] Lemma 4.9
is proved by Shelter in [13], Cor. of Lemma 1 and Theorem 1.

PROPOSITION 4.10. Let RC S be a central extension of monzero
rings, and let n be an integer =1. Consider the conditions:

(a) R 1is an Azumaya algebra of rank n.

(b) S is an Azumaya algebra of rank n’.
Then (a) = (b) and, if Z(S) is integral over R, (b)= (a).

According to M. Artin’s theorem (see [12], Ch. VII, Th. 3.3),
(a) 1s equivalent to (i) and (ii) below:

(1) R satisfies the identities of n by n matrices.

(ii) No nonzero quotient of R satisfies the identities of (n — 1)
by (n — 1) matrices.

The implication (a) = (b) is clear from the fact that (a) implies
that S = R® . Z:(S), and this is a central extension only if Z,(S)=
Z(S). Alternatively, one can appeal to [12], VII, Prop. 3.2. To
prove (b) = (a) when Z(S) is integral over R it suffices, in view of
Lemma 4.9, to show that (b) = (a) whenever spec (S)— spec(R) is
surjective. Clearly (i) for S implies (i) for B. To verify (ii) for R
it suffices to show that, for any Pespec (R), R/P does not satisfy
the identities of (n — 1) by (# — 1) matrices. By assumption P =
RN Q for some Qespec(S). Then R/PC S/Q is a central extension
so, if R/P satisfies the (n — 1)-matrix identities so also does S/Q,
by [12], VII, Prop. 3.2 again. But this contradicts (ii) for S;
whence the proposition.

5. Groups of integral n-reprezentation type.

DEFINITION 5.1. Let /" be a group, # an integer =1, and A a
commutative ring. We say that 7' has integral n-representation
type over A if the group algebra A[/'] has this property, in the
sense of 4.5. Hquivalently, I satisfies:

(a) For every absolutely irreducible representation p:/71" —
GL,(K), where m <n and the field K is an A-algebra, X, (I") is
integral over A.

By taking Jordan-Holder series, and adding trivial representa-
tions to increase the dimension to =, if necessary, we see that (a)
is equivalent to:

(b) For every representation p:I"— GL,(K), where K is a
field which is an A-algebra, X,(I") is integral over A.
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The same then clearly holds for any commutative A-algebra A’
and for any quotient I of I". Moreover, this is a property inherited
by filtered inductive limits of groups. When these conditions hold
for all n =1 we say I' has integral representation type over A.
When no specific ring A is mentioned it shall be understood that
A = Z. We shall be primarily interested in the cases when A4 is Z
or a prime field.

PROPOSITION 5.2. Suppose that the group I’ has integral n-re-
presentation typve over a commutative noetherian ring A. Let p:
I' - GL,(K) be a representation where m < n and the field K is an
A-algebra. For any finite subset X of I, the sub A-algebra of
M, (K) generated by o(X) is a finitely generated A-module. In
particular o(I") is integral over A. If A is a finite field then o(X)
generates a finite group.

This follows from (the implication (a) = (b) of) Theorem 4.4.

PROPOSITION 5.8. Let I' be a finitely gemerated group of inte-
gral n-representation type (over Z). There exists a finite family
of representations p;: I' — GL,(A;)i€I) with the following proper-
ties.

(1) For each i€l we have n; = n and A; is an integral closed
domain finitely generated as a Z-module (hence either a ring of
algebraic integers or a finite field). Moreover p, is absolutely ir-
reducible over the field of fractions of A,.

(2) If p:I'>GL,(K) is an absolutely irreducible representa-
tion of I' with m =n and K is an algebraically closed field then
there is an 1€ I such that n, = m and such that there is a homo-
morphism o: A, — K such that o is conjugate to the composite

% GL.(A) S GL,(K).

Let R = Z[I']/J where J is the ideal generated by all s,,(x,, ---,
%,,) With (x, ---, 2,,) € Z[T']™ (cf. 4.1). The absolutely irreducible
representations of dimension <n of I are equivalent to those of
the PI Z-algebra R, and Corollary 4.6 implies that R is a finitely
generated Z-module. Hence the proposition follows from Proposition
4.7 applied to R.

REMARKS 5.4. 1. Proposition 6.3 expresses a strong “rigidity”
property of the absolutely irreducible representations of I" of dimen-
sion < n. For example Card (I) bounds the number of such repre-
sentations over any algebraically closed field, of any characteristic.
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2. As is evident from its proof, Proposition 5.8 admits an
analogue for any commutative noetherian ring A in place of Z. For
example when A is a prime field of characteristic p it asserts that
I" has only finitely many isomorphism classes of absolutely irreduci-
ble representations of dimension <# in characteristic p, and that
each of them is definable over a finite extension of A. Since these
classes of representations ecan, in general, be formed into an
algebraic variety V over A (cf. [12], IV, Th. 1.8), the preceeding
conclusion can be interpreted as saying that dim V = 0.

ProOPOSITION 5.5. The following conditions on a group I are
equivalent.

(@) I' has integral l-represemtation type over some commuta-
tive ring A # 0.

(b) The abelianization I'** of I' is a torsion group.

Obviously (b) = (a). Suppose, on the other hand, that some se
I’ has image in I'* of infinite order. Let F' be a residue class field
of A, X an indeterminate, and K an algebraic closure of F(X).
Since K* = GL(K) is a divisible group there is a linear character
X:I'— K* such that X(s) = X, an element not integral over A;
whence the proposition.

Subgroups of finite index 5.6. Let I' be a group and I’ a
subgroup of finite index 7. Let A be a commutative noetherian
ring, and let K be a field which is an A-algebra. If o: '->GL,(K)
is a representation and (/") is integral over A4, then so also is
o(I"), since each sel' has some positive power in I”. In view of
Proposition 5.2, this proves assertion (i) of Proposition 5.7 below.

Let p:I" - GL,(K) be a representation. We then have an
induced representation

o =Indi(o"): I' — GL,(K) .
For sel” we have

Xo(s) = 3, Xp(t7'st)
tel| "’
where Xj, is the extension of X,, to /I" vanishing on I" — [". In
particular X.(s) is a Z-linear combination of the values of X,. If
0'(I") is integral over A so also is o(I"). In fact I” contains a sub-
group I", which is normal and of finite index in I', so it suffices to
show that o(I')) is integral over A. If sel', then t™stel',cI” for
all tel’, so the decomposition K" = @,cr,t ® K" is stable under
o(s), and p(s) acts on ¢t K" like p’(¢7'st) acts on K*; whence the
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integrality of o(s). Conversely, if o(/") is integral over A then,
since o’ is a subrepresentation of p|I”, o’'(I") is likewise integral
over A. Using Proposition 5.2 again this yields assertion (ii) of
Proposition 5.7 which follows.

PROPOSITION 5.7. Let I' be a group, I'' a subgroup of finite
index r, n an integer =1, and A a commutative noetherian ring.

(1) If I'" has integral m-representation type over A then so
also does I.

(ii) If I' has integral mr-representation type over A then I
has integral n-representation type over A.

COROLLARY 5.8. [ has integral representation type over A if
and only if I'" has.

COROLLARY 5.9. Let I' be a finitely generated solvable group.
If I' has integral representation type over some commutative ring
A+ 0 then I' 1s finite.

Replacing A by one of its residue class fields, we may assume
that A is a field, hence noetherian. Proposition 5.5 implies that the
derived group I"" of I' has finite index in I', and Corollary 5.8 then
implies that /7 has integral representation type over A. By induc-
tion on the derived length, we conclude that I, hence also I, is
finite.

COROLLARY 5.10. Let I' be a group of integral representation
typve over some commutative ring A # 0. Then I’ satisfies condi-
tion:

(T Ab) For every subgroup I'y of finite index in I', the group

b is torsion.
If I' is finitely generated it even satisfies:

(F' Ab) For every subgroup I', of finite index in I', the group
Iy is fimite.

After replacing A by one of its residue class fields, condition
(T Ab) results from Corollary 5.8 and Proposition 5.5. If I' is finitely
generated then so also is each I, as above, whence (F' Ab).

PROPOSITION 5.11. Let I' =1, X I',, a direct product of two
groups, let m be an integer =1, and let A be a commutative ring.
Then I' has integral n-representation type over A if and only if
each I'; has.
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In fact the absolutely irreducible representations p of I" decom-
pose as 0 = p, ® o, with o, an absolutely irreducible representation
of I'(i =1,2). Then if s,eI'; we have X,(s, ;) = X,,(s)X,,(s;). The
proposition results immediately from this.

ExamMpLES 5.12. 1. Groups I” of integral l-representation type
are deseribed in Proposition 5.5 as those for which /™ is torsion.

2. A substantial class of groups of integral 2-representation
type is furnished by Serre’s Theorem 6.4 below. It contains all
finitely generated groups of integral 1l-representation type which
are not nontrivial amalgamated free products. A construction of
Shalen shows that free products are almost never of integral repre-
sentation type (Corollary 8.4 below).

3. Let I' be a group of integral n-representation type over a
field K. Then there are only finitely many classes of completely
reducible m-dimensional representations of I' over K (Proposition
5.3). However the same need not be true of all n-dimensional repre-
sentations of I" over K. If char(K)=p >0 this can be seen
already with I" an elementary p-group of type (p, »). Examples in
characteristic zero are given in §7 below (see 7.9).

4. Groups of integral representation type clearly include all
torsion groups. They are stable under passage to sub (or over)
groups of finite index (Proposition 5.7), under formation of filtered
inductive limits, of direct products (Proposition 5.11), and even of
arbitrary group extensions (Corollary 9.9).

5. Many arithmetic groups, for example SL,.Z) with n =3
(but not n = 2), are of integral representation type. Such examples
are discussed in §10 below.

6. Groups of integral 2-representation type: Serre’s theorem
and Shalen’s conjecture. Examples of groups of integral 2-repre-
sentation type are furnished by Theorem 6.4 below of Serre. We
use Serre’s methods also to prove a conjecture of P. Shalen (Corollary
6.7). ‘

The Property (FA) 6.1. A group [' is said (by Serre [15]) to
have property (FA) if, whenever I' acts (without inversion of edges)
on a tree X, then the tree X' of fixed points of I is not empty.
The group theoretic significance of this is expressed below in terms
of “amalgams”. We say, again following Serre, that I' is an
amalgam if I' is a free product with amalgamation I'yx,J", with
A+T(1=01).

THEOREM 6.2 (Serre, [15], Th. 1). A group I has property
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(FA) if and only if the following three conditions hold.

(@) I' has no imfinite cyclic quotient.

(b) ' is mot an amalgam.

(¢) I' is mot the umnion of any chain I''C---Cl,C--- of
proper subgroups.

REMARKS 6.3. 1. Consider the following conditions.

(a") I'** is a torsion group.

(¢") I is countable.

(¢") I is finitely generated.

It is clear that ((c) + (¢')) = (¢”) and that ((a’)+(c”’)) == (a). Koppel-
berg and Tits [10] give examples satisfying (a), (b), and (¢) but not
(eh.

2. It is shown in [3], Th. 3.9, that I" satisfies (a) and (b) if
and only if I" has the following property (F'A’): Whenever I' acts
(without inversion of edges) on a tree X, each element of I" fixes
some vertex of X. Therefore Serre’s proof of Proposition 2 in [15]
yields the following result.

THEOREM 6.4 (Serre [15]). Let I" be a group satisfying (a) and
(b) of 6.2 (i.e., of type (FA"). Let p:I' — GL(K) be a representa-
tion such that o) C GL(F') for some finitely generated extemsion
F of the prime field of K. (The latter is automatic if I' is finitely
generated.) Then for all se€l’ the eigenvalues of o(s) are integral
over Z. In particular a finitely generated group of type (FA) has
integral 2-representation type.

We shall need the following refinement of this result.

THEOREM 6.5. Let F be a field finitely generated over its prime
field, and let F be an algebraic closure of F. Let I' be a subgroup
of GL(F), and let I', denote the group generated by all unipotent
elements in ['; 1, is a mormal subgroup of I'. Assume that the
following conditions hold.

@") I'Il’, has mo infinite cyclic quotient.

(e) I is mot an amalgam.

Then one of the following cases occurs.

(1) There is an s€GL(F) and an integer m =1 such that
sI's™ comsists of triangular matMces(g g) with a =d™=1. If I'
1s either infinite or nonabelian we may choose s € GL(F).

(2) T acts irreducibly on F?, and there is an s GL,(F) such
that sI's™ C GLy(A), where A is a subring of F finitely generated
as a Z-module.
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Before proving the theorem we draw some consequences. Note
that the ring A in case (2) is either a ring of algebraic integers
(char (F') = 0) or a finite field (char (F') > 0).

COROLLARY 6.6. In the setting of 6.5 assume that char (F') =
» > 0. Assume further that either (i) I’ is finitely gemerated, or
that (ii) I’ acts irreducibly on F*. Then I' is a finite group.

In case (2) A is a finite field so the conclusion follows. Assume
therefore that we are in case (1). Then condition (ii) implies that
I', ={1}, so card (") < m* If (i) holds then also I" is finite since
a finitely generated group of triangular matrices as in (1) is clearly
finite in characteristic » > 0.

COROLLARY 6.7 (P. Shalen’s conjecture). Let I' be a finitely
generated subgroup of GL,C) with the following properties.
(i) There is a set X C of tramscendence degree =2 over C

such that the elements e(x) = @ %)(meX ) belong to I' and they, to-

gether with the commutator subgroup (I, I') generate a subgroup of
finite index in I'.

(ii) I’ contains a matriz which is mot wupper triangular.
Then I' is an amalgam.

Suppose, on the contrary, that I" were not an amalgam, i.e., we
have condition (b) of 6.5. Property (i) clearly implies condition (a')
of 6.5 as well. In applying Theorem 6.5 we take for F the field
generated by the matrix coefficients of a finite set of generators of
I'. It then follows that we are in case (1) or case (2) of 6.5. We
exclude case (1) by showing that I" acts irreducibly on C2. Indeed
if « # 0 belongs to X then e(x) leaves a unique line L of C? invari-
ant, and (ii) implies that L is not invariant, under all of I. Thus
we are in case (2). But then it follows from Corollary 2.7 that 2
has transcendence degree <1 over @, contradicting (i). This con-
tradiction proves the corollary.

The proof of Theorem 6.5 uses the following more or less well
known lemma.

LEMMA 6.8. Let F be o field finitely generated over its prime
field F(p = char (F')), let E be the algebraic closure of F, in F,
and let A be the integral closure of Z in F (or E).

(1) E is a finite extension of F,. If p>0 then A=FE. If
p =0 then A is the ring of algebraic integers of K.

(2) Let V denote the set of discrete (rank 1) valuations of F.



38 HYMAN BASS

For each veV let A, ={xe F|v(x) =0}, the valuation ring of v.
Then
A=NA,.
vEV
(3) Given an integer m = 1, there is an integer m=m(F, n)=
1 such that if w is a root of unity of degree <n over F then w,=1.

(1) follows from Lemma 3.7 and (3) is proved in [2], §9, Prop.
(A.3).

We prove (2) by induction on d, the transcendence degree of F'
over F,. The case d =0 is well known, so suppose that d = 1. Let
L be an intermediate extension of transcendence degree d — 1 over
F', and algebraically closed in F. Then F' is the function field of a
nonsingular projective algebraic curve x over L. If feF® and
v(f) = 0 for all valuations v of F over L then f is a rational func-
tion on X with no poles, hence a constant, i.e., f€l'. Next note
that, by the extension theorem for places, each discrete valuation
ring of L is contained in one of F. This remark, plus the induction
hypothesis applied to I" now establishes (2).

6.9. Proof of 6.5. Let V be the set of discrete valuations of F,
asin 6.8 (2). Let ve V, let A, be its valuation ring, and let X, be
the tree associated to v as in [14], Ch. II, §1. The kernel GL(F')
of v-det: GL(F)— Z acts without inversion on X,. Hypothesis (a”)
implies that I' c GL,(F). Each unipotent element of GL,(F) fixes
some vertex of X, (ef. [14], p. II-11). Hence I, is contained in
the subgroup I', of I" generated by the stabilizers in I" of vertices
of X,. The quotient group I/, is isomorphic to the fundamental
group of the quotient graph I'X, (cf. [14], Ch. I, §5). The latter
is a free group, so (a”) again implies that it is trivial, i.e., I'\X, is
simply connected, hence a tree. Since I” is not an amalgam (condi-
tion (b)) one now concludes, as in Serre’s proof of Theorem 6.3 (ef.
also [3], Prop. 3.7), that I" fixes some vertex of X,. By Proposition
2 of [14], p. II-11, this implies that I" is conjugate to a subgroup of
GL,A,), so the coefficients of the characteristic polynomials of ele-
ments of I' belong to A,. This being true for every ve V it now
follows from Lemma 6.8 (2) that these coefficients belong to A, the
integral closure of Z in F.

Suppose I' acts reducibly on F'2. Then there is an element se¢
GLF) such that every element tcsl's™ is upper triangular: ¢t =

<t16 ?2). The maps £+ ¢, are homomorphisms I" — F*, so (a’) im-
22

plies that the elements ¢,, are roots of unity. Being eigenvalues
of elements of GL,(F'), they have degree <2 over F. It follows
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therefore from 6.8 (3) that there is an m(=m(F, 2)) such that t=1
for all tesls™*. If I' is either infinite or nonabelian then the pro-

jection (t” t12>1——+ <t” 0) has nontrivial kernel, so I' contains a uni-
0 ¢y 0 ¢,

potent element u = 1. Since u leaves a unique line L of F'? invariant,
and L is defined over F, it follows that we can take s above in
GLF). For once sus™ is triangular so must s/'s™ be also. This
accounts for case (1).

Suppose finally that I' acts irreducibly on F: We have Tr(I")C
A. It follows therefore from Proposition 2.2 and Corollary 2.5 that
there is a finite extension L of the field of fractions E of A4, in
which A has integral closure B, such that sI's™* C GL,(B) for some
se€ GL,(F). This proves Theorem 6.5.

REMARK 6.10. If, in Theorem 6.5, we drop the assumption that
F is finitely generated over its prime field, the proof still shows
that the coefficients of the characteristic polynomials of elements of
I" belong to A = ,.r A,, Where V is the set of discrete (rank1l)
valuations of F. An example of such a case is I' = SL,(Z,) in
GL,(Q,). According to [3], Th. 5.2 any profinite group (like I)
satisfies conditions (a) and (b) of Theorem 6.3.

Problem 6.11. Characterize finitely generated grouns of integral
2-representation type in purely group theoretic terms.

In order that a finitely generated group I be of integral 2-re-
presentation type it is necessary that I' satisfy

(a) I'** is finite
(Proposition 5.5), and it suffices that I" satisfy (a) and

(b) I’ is not an amalgam
(Theorem 6.4). A solution to the above problem might therefore be
sought by attempting to characterize intrinsically the kinds of
amalgams that arise from actions of GL,(F) on trees X, as in the
proof of Theorem 6.5.

A finitely generated group of integral 2-representation type
which does not satisfy (b) can be obtained by taking a free product
I’ = I'xI", of finite groups I'; neither of which have nontrivial linear
representations of dimension 2 over any field, e.g., I, = ', = SL,(F)).
It follows from Proposition 8.3, below, that such a I" has faithful
linear representations in any characteristic.

7. Some calculations of 2-dimensional representations.

NorATION 7.1. [I', denotes a cyclic group of prime order p with
generator s, and N denotes a I',-module which is a finitely generated
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free abelian group and such that

(L) st =x=—=-2x=0, for xeN.

This implies that N is a torsion free module over the ring
R=Z[I})1+ s+ -+ + 8 HZ[I,]

of pth eyclotomic integers; say N is of rank m over R. We propose
to classify two dimensional complex representations of the semi-
direct product

I'=NXxT,

7.2. I'* is isomorphic to H,([',, N) X I’, which, in view of (1), is an
elementary p-group of order »p™*'. Hence I' has integral l-repre-
sentation type, (Proposition 5.5). Since N does not have integral
l-representation type (if N # 0) it follows from Proposition 5.7 that
I' does mot have integral p-representation type.

Diagonal representations 7.3. They are of the form
0,,.(t) = diag (X(t), X'(t))

where X, X': I’ — C* are linear characters. In view of 7.2 there are
only finitely many such. Clearly 0, and 0;,,; are isomorphic if and
only if {X, X'} = {X,, Xi}.

7.4. Let X:I'yj— C* be a linear character, thus making C into
a I',-module, which we denote C,. Let a: N— C, be a I',-homomor-
phism, ie., a(x + y) = a(x) + a(y) and a(tx) = X(t)a(x) for z, ye N
and tel',. Define py,:I" — GLyC) by

X(t) a(ﬂﬁ))

pl,&(x’ t) = < 0 1

for xe N and tel',. Since (x, t)(z’,t') = (z + ta’, t') in ' we see
that 04, is indeed a representation. If X =1 then (1) implies that
a =0. Whenever &« = 0 we just recover

51,1 = Ox0 9

where X is viewed on the left as a character of I'.

7.5. The case p = 2. Then (1) implies that sx = —x for xz e N.
For any linear character X: N — C* we can then define the “dihedral”
representation o, by

X(x) 0 >

o) = [y o) a0t o) = |
d(8) =y o) 804 @) = | 5y
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for xe N. In fact o, is the induced representation,
o, =Ind 5(X) .

It is easy to see that o, and o, are isomorphic if and only if X'=X
or X' =X

PROPOSITION 7.6. Let p: ' — GL(C) be a representation. Omne
and only one of the following cases occurs.

(1) There are linear characters X, X': " — C*, unique up to
order, such that o is isomorphic to d,,, (see T7.3).

(2) p=2and there is a linear character X: N — C* such that
X=Xt and such that o is isomorphic to o, (see 7.5). The set {X, X}
is uniquely determined by p.

(3) There is a nontrivial linear character X:I', — C*, a mon-
zero I' ~-homomorphism a: N— C,, and a linear character N: ['—C*
such that p is isomorphic to A @ 0.« (see 7.4). Two such representa-
tions NQ Oy« and N Q 0.0 are isomorphic if and only if N =N,
L=%, and &' = ua for some ucC-.

Suppose first that o(N) is diagonalizable. If o(NN) consists of
scalars then o(I") is abelian, hence finite by 7.2, and we are in case
(1). Otherwise the centralizer of o(NN) (assumed now in diagonal
form) is the diagonal group 7, so o(I") lies in the normalizer W =
T X {w) of T, where w = (2 6) Either o(I")c T, case (1) again,
or p =2 and p(s)¢ T. Conjugating by an element of T we can then
make o(s)=w. Since we must then have wo(x)w™'=p(x)™ it follows
that o =0, for some linear character X: N— C*. If X*=1 then
A(N) consists of scalars, the case treated above. Otherwise o(I") is
nonabelian, so cases (1) and (2) are exclusive and exhaust those for
which o(N) is diagonalizable.

Assume now that o(NN) is not diagonalizable. Being abelian, it
then leaves invariant a unique line L in C* Since N <] I’ the line
L is I'-invariant. Let A: " — C* be the character of I’s action on
C*/L; this is evidently intrinsic to o. Replacing p by V'® o we
reduce to the case » =1. Let now X:I'— C® be the character of
I'’s action on L. If X(s) =1 then o(s) =1 so p(I") = p(N) is abelian,
hence finite, which is impossible since o(XN) is not diagonalizable.
Let L' be the X(s) eigenspace of p(s). A basis adapted to the de-
composition C* = L @ L' then puts p in the form

X(t) a(t)>

p(t)=<0 1

for some map a: I — C such that a(tt’) = a(t) + X@)a(t') for ¢, t' eI.
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Let M = Ker (X), a subgroup of index p in I', by 7.2. We claim
that M = N. Otherwise I' = M-N, and N, = M N N has index p in
N. We have the commutator relations

(1 - S)NO = (F’ NO) = (MN; NO) = (M’ NO)C(My M) ’

so that M is finite. But o(M) = ((1) a(]lll )> is then a finite uni-

potent group, so @« =0 and p = 4,,, contrary to hypothesis. Now
since Ker (X) = N we can identify X with a character of I',=I"/N.
For tel',, we see that p(t) is diagonal (i.e., a(t) = 0) and so, for
(@ t) = (2, 1)-(0, t) in I', we have o(x, t) = (x(()t) W), te., 0=0.
as in T7.4. The basis chosen above is intrinsic to o up to multipli-

cation by scalars, and such a change has the effect of multiplying
a by a nonzero scalar. Whence the proposition.

7.7. Proposition 7.6 parametrizes the isomorphism classes of
representations p: I' — GL,(C). Case (1) occurs when p is completely
reducible, but not irreducible. There are then only finitely many
possibilities.

7.8. Case (2) gives the only irreducible actions. Choosing an
isomorphism N = Z™ the X’s in case (2) vary over elements of
Hom (Z™, C*) = (C*)" such that X*=# 1. If T=(C*)™ and T, = {x¢
T|a* =1} then the classes of p’s in case (2) are parametrized by
T — T, modulo the action x+>z™*. Thus, when p = 2 and m>0, I
18 mot of finite 2-representation type over C (cf. 7.2).

7.9. Case (3) corresponds to noncompletely reducible represen-
tations. View N as a module, say of rank m, over the ring R
of pth cyclotomic integers. Then, as I',-module, C®; N=(C®.R)"=
(@, C,)", where X varies over the nontrivial linear characters of
I',. It follows that Hom,, (N, C;)=Hom¢ ;(C@®; N, C,)=C™. Thus,
if we fix the (discrete) parameters N and X in case (8), the isomor-
phism classes of possible p’s are given by nonzero a€C™ modulo
the action of C?, i.e., by a projective space P %C). This yields a
nondiscrete parametrization as soon as m = 2. Note that this may
happen for p =3 when I’ has integral 2-representation type over
Q, because X, (I') is integral over Z in cases (1) and (3).

7.10. Let N,= (I, I') = (1 — s)N, the commutator subgroup of
I". Suppose that p = 2. Then for all p as above, po(NN,;) is an abelian
group of unipotent matrices. Let I denote the augmentation ideal
of Z[N,], and let J = I-Z[I']. Then for all representations p: Z[I'] —
My(K) we see that o(J)* =0. Moreover Z[I']/J* is a finitely gener-
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ated Z-module. This illustrates the kind of phenomenon described
in Corollary 4.6.

7.11. Let K be an algebraically closed field of characteristic
g>0. If g+ p then the arguments and conclusions above apply
with no substantial change to representations p: I' — GL,(K).

7.12. Suppose that ¢ = p %= 2. Then arguments like those above
can be used to show that every p: I' — GL,(K) is isomorphic to some

N 1 a(t)>
Pa’ <o 1

where a: " — K is an additive character, determined by p up to
multiplication by a nonzero scalar. With the notation of 7.9 we
have I'** = (Z|pZ)"*', so the isomorphism classes of nontrivial p’s
are parametrized by P™(K).

7.13. If ¢ =p =2 the same description applies to reducible
representations. However irreducible ones may exist, and are ex-
actly as in case (2) of 7.6.

7.14. It follows from the above that I' has integral 2-repre-
sentation type over Z if and only if p+2 or p =2 and m =0,
where m is as in 7.9. However the reducible representations
0: I’ — GL(K) are discretely parametrized if and only if either ¢ +
pand m<1or ¢q=p and m = 0.

8. Linear representations of free products: Shalen’s costruc-
tion. The following construction of P. Shalen [17] is used to show
that free products are not of integral representation type.

PROPOSITION 8.1. Let K be a field, n and integer =2, and I', I’
subgroups of GL,(K) satisfying:
(a) H=TINI" consists of diagonal matrices; and
(b) For sel’ — H (resp. s'el" — H) we have
8. 7= 0 (resp. sy, # 0). (u;; denotes the (i, 7) coefficient w € M, (K).)
Let T be an indeterminate and define

o: G = F*Hr’ _")GL'n(K[Ty T—ll)

by p(s) =tst™ for sel’ and p(s') =s" for s'el”’, where t = diag
(T, T% +--, T"). Amn element of G mot conjugate to an element of
U I is conjugate to one of the form

U = 8,81+ 8,8,
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with s;€l’ — H and s;el” — Ht. =1, --+, 7). The highest degree
term in the Laurent polynomial X,(u) has degree r(n — 1).

This is proved by Shalen in [17], Lemma 1.1 and the proof of
Proposition 1.3. In applying Proposition 8.1 we use the next lemma
to secure conditions (a) and (b).

LEMMA 8.2. Let K be a field, n and integer =2, and x = (x,;)
an n by n matric with indeterminate coefficients. If se€ M, (K) is
not a scalar matriz, and if w = xsx™' € M, (K(x)), then each coeffici-
ent w,; of u is transcendental over K.

Write u;; = u,;;(x), viewing « as a variable, which we may
specialize. If some wu,(x) is not transcendental over K then it
belongs to K, and hence is a constant ¢ as a function of x. Specializ-
ing x to permutation matrices we conclude that u,., () is likewise
the same constant ¢ for all permutations o of {1, ---, n}. We now
distinguish the cases i+ 75 and ¢ = j. If ¢+ j then, putting s in
(upper or lower) triangular form over an algebraic closure of K,
we see that ¢ = 0 so all conjugates of s are diagonal, and hence s
is a scalar. If 4= 4 then s =¢l + s where all conjugates of s’
have zero diagonal. Conjugating s’ by suitable elementary matrices
one concludes that s’ =0, i.e., s is a scalar.

ProrosITION 8.3. Let K be a field, n an integer =2, and I', I’
subgroups of GL,(K). Let H denote the group of scalar matrices
an I'N T and put G = Ixxl". Let L be a field extension of trans-
cendence degree =n*+ 1 over K. Then there is a faithful repre-
sentation 0: G — GL,(L) such that p|I" and p|I" are conjugate to
the inclusions, and such that X.(s) is transcendental over K for any
se @G not conjugate to an element of I" UI".

Choose = (%,;) € GL,(L) with coefficients algebraically independ-
ent over K, and let I',=«l'z™ and I'; = x["’z* in GL,(K,), where
K, = K(X). It follows from Lemma 8.2 that I', N I'; = H and that,
if sel, — H or if sel', — H, then all coefficients of s are trans-
cendental over K, in particular 0. Thus K, I, I'} satisfy the
hypotheses of Proposition 8.1. Choose T € L transcendental over K.
Then Proposition 8.1 furnishes a representation p with the properties
claimed.

COROLLARY 8.4. Let K be a field and n an integer =2. Let
I and I'' be groups which have nontrivial representations in
GL,(K). Then I'+I"" is not of integral n-representation type over K.
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Let p: ' ->GL,(K) and p":I"" - GL,(K) be nontrivial represen-
tations. If either of them is scalar we can replace one of its
diagonal entries by 1 to make it nonscalar. Now let H denote
the group of scalar matrices in o(I") N o'(I"); then H =+ po(I") and
H =+ po'(I'"). If L is a suitable transcendental extension of K then
Proposition 8.3 furnishes a faithful representation o(/")*,0'(I") —
GL,(L) whose character takes values transcendental over K; whence
the corollary.

Problem 8.5. Which amalgamated free products admit fatthful
linear representations? This problem is raised by Shalen in [17],
where he treats some very special cases of it.

9. Integral representation type and group extensions.

NoTATION 9.1. We fix an integrally closed domain A whose
field of fractions F' is a finite extension of its prime field. Thus A
is a ring of fractions of the integral closure of Z in F; it is a
Dedekind domain. For any group G we shall write 4,(G) to indicate
that G has integral n-representation type over A.

We fix a group G with a normal subgroup H. Let p: G-—~GL,(K)
be an absolutely irreducible representation with K an algebraically
closed field which is an A-algebra. We consider also the associated
adjoint representation

a= Adep = p® 0*: G —> Auty_.,,(M(K)) C GL,(K) .

Our aim is to give criteria for the integrality of o(G) over A.

LeMMA 9.2. If det (0o(G)) and a(G) are inmtegral over A them
o(G) is integral over A.

Let seG and let w, ---, w, be the eigenvalues of o(s). Since
a =pQ p* the eigenvalues of a(s) are all w,w;'. By assumption
the latter are integral over A. Fix an ¢, put w = w,, and write
w; = wv;, so that each v; is integral over A. Let d = det (o(s)).
Then d = w™v, where v = [[;v;, and d and d™* are integral over A4.
Therefore w is integral over A; whence the lemma.

PROPOSITION 9.3. Suppose that H is central in G. Then
(A(G) + Ax(G/H)) — A,(G) .

We must show that o(G) is integral over A if m < «. The
condition A4,(G) implies that det o(G) consists of roots of unity (cf.
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Proposition 5.5). Our conclusion follows therefore from Lemma 9.2
once we show that a(G) is integral over A. Since H is central p(H)
consists of scalars, so a is trivial on H. Therefore a@ comes from
a representation of G/H of dimension m?® < %’, so the integrality of
a(@) follows from A,(G/H).

REMARK 9.4. Clearly (A(H) + A(G/H)) =— A,(G), as the exact
sequence H® — G — (G/H)® —1 shows. Therefore one may sub-
stitute A,(H) for A,(G) in the hypothesis of 9.3.

LEMMA 9.5. Assume that o(H) is integral over A and acts
irreductbly on K™, and that (G/H)® is torsion (i.e., A,(G/H)). Then
o(@) is integral over A.

We may first replace G and H by their images in GL,(K). Let
D denote the group of scalar matrices d-I such that d and d™' are
integral over A. All of our assumptions are preserved if we enlarge
G, H to D-G, D-H; thus we may assume further that Dc H. Let
seG. Since (G/H)* is torsion and det (G) is abelian it follows that
some power of d = det (s) belongs to det (H), and so is integral over
A. Now d's"eG, = GN SL,(K) because d-Ie D G. According to
Corollary 2.9 G, is integral over A. Now the integrality of d~'s™
over A implies that of s, whence the lemma.

PROPOSITION 9.6. Assume A,G/H) and that o(H) is integral
over A. Then o(G) is integral over A.

Case 1. p|H 1is irreducible. Then the integrality of o(G)
follows from Lemma 9.5 using only A,(G/H), not the full force of™
A,(G/H).

Case 2. p| H is isotypic. Then K-o(H) is a simple K-algebra
and we can choose coordinates so that

Mo (K) = MK) ® M(K)
K-o(H) = M(K)®1.

Applying the Skolem-Noether theorem to M,(K) one concludes that
the normalizer of M,(K) in GL,(K) is GL,(K)® GL,(K). Note that
0(G) is contained in this normalizer of K-o(H). Let o, G-PGL,/(K)
be the homomorphism obtained by factoring out scalars in GL,(K)Q
GL/(K) and projecting on the second factor. Note that g, is trivial
on H. Form the cartesian square (fibre product),
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G L4 SL(K)

S

G— PGL,(K) .
Oq
Then 7 is surjective, Ker (x) is a finite central subgroup of G, and
7 maps Ker (0,) isomorphically to Ker (9,). Let Hc XKer (0,) be the
inverse image by 7 of HcKer (9,). Then H =z (H)N Ker (p,) is
a normal subgroup of G. In the exact commutative diagram,

1— H—G—G —1
1—H—G— G —1,

’

7' 1s surjective with finite central _kernel. By Proposition 9.§ and
Remark 9.4 therefore we ha\ze A,(G"). Since p, is trivial on H (and
q = m) we conclude that p,(G) is integral over A. Now define p,:

G — GL,(K) by the formula

o(7(s)) = 0,(8) Q 0,(s)

for seG. If we show that o,(G) is integral over A the integrality
of!0(G) over A will follow. Since p,(s) ® 1=p(z(s)) for se H(son(s)e
H) it follows that p,(H) is integral over A and p,| H is irreducible.
Therefore the desired integrality of p, follows from case 1.

General case. By Clifford’s theorem (see [9], §§49-51) o =
Indg (0,) where G, is the stabilizer in G of an isotypic component
of o| H, say of dimension m,, and o;: G, » GL,(K) is the corres-
ponding representation. Clearly o,(H) is integral over A. We have
m = myr where r =[G:G,]. If (G, is integral over A then so
also is o(G), by 5.6. Putting G; = G,/H, the integrality of 0,(G,)
over A will follow from case 2, once we verify the hypothesis
A,%GY). Since G; has index » in G’ = G/H it follows from Proposi-
tion 5.7 that A4,2(G')= A,XG)). Since mir =< m’ our hypothesis
A,«G’) therefore implies A,%G;). This completes the proof of Pro-
position 9.6.

LeMMA 9.7. Assume that H is virtually solvable (i.e., that H
has a solvable subgroup of finite index). Assume further that for
every subgroup G, of index deviding m in G, the group G is tor-
ston. Then there is a subgroup H, of finite index in H such that
o(H,) is conjugate to a diagonal group with roots of unity on the
diagonal. In particular if se H then the eigenvalues of o(s) are
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roots of unity.

Replacing G by o(G) we may assume that G GL,(K). Let H
denote the Zariski closure of H, H, its identity component, and H,=
HN H, The virtual solvability of H implies the solvability of H,.
The Lie-Kolchin theorem permits us to assume that H, is upper
triangular. Since G normalizes H it likewise normalizes H and H,,
so H, acts completely reducibly on K™. Therefore we can even
diagonalize H, It remains to show that the diagonal entries in H,
are roots of unity. Let V be an H, isotypic subspace of K™, on
which H, therefore acts by scalars, which we must show are roots
of unity. Let G, be the stabilizer in G of V and p,: G, — GL(V)
the corresponding representation. Then G, has finite index dividing
m in G since o = Ind§(0,) (by Clifford’s theorem). By hypothesis
G?' is torsion, so det (0,(H,)) is torsion. It follows that the scalars
0,(Hy) = H,| V have finite order, as claimed.

THEOREM 9.8. Let m be an integer =1 and assume A,(G/H)
as well as one or the other of the following conditions: (1) A,.(H);
or (ii) H 1is virtually solvable and A,(G, for every subgroup G, of
index <n im G. Then A, (G).

Assuming that m < n we must show that o(G) is integral over
A. This will follow from Proposition 9.6 once we show that o(H)
is integral over A, a condition that follows immediately from (i),
and which results from Lemma 9.7 if we assume (ii).

COROLLARY 9.9. Assume that G/H has integral representation
type over A and that either H does likewise, or else that H s
virtually solvable and GP* is torsion for all subgroups G, of finite
index in G. Then G has integral representation type over A.

10. Algebraic and arithmetic groups.

PROPOSITION 10.1. Let K be an algebraically closed field of
characteristic p = 0, and let I be a subgroup of GL,(K).

(a) Suppose that p > 0 and that I' has integral representation
type over the prime field of K. Then every finitely generated sub-
group of I' is finite.

(b) Suppose that I' satisfies condition:

(F Ab) If I') is a subgroup of finite index in I’ then I'?® is a

finite group.
This is the case for example if I’ is finitely generated and of inte-
gral representation type over some field (Corollary 5.10). Let G be
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the Zariski closure of I', G, its identity component, and U its uni-
potent radical. Then we have the commutator relations G,=(G,, G,)
and (hence) U = (G,, U), and the group G,/U is semi-simple.

Assertion (a) follows from Proposition 5.2. Put I', = I'NG, and
I'y =T, I'y). Condition (F Ab) implies that I', has finite index in
I', so I'y is Zariski dense in G,, whence G, = (G,, G,) (cf. [5], Ch. 1,
2.4). Now G, is a semidirect product U-H, with H reductive, so
Gy = (U/(G,, U)) x H**, whence U = (G,, U) and H = (H, H). Since
the derived group of a reductive group is semi-simple this proves

(b).

10.2. In view of Proposition 10.1, interesting linear groups of
integral representation type are to be found only in characteristic
zero. Let G be an affine algebraic group defined over a number
field F, let G = G(F), and let I' be a subgroup of G which is
Zariski dense in G. We seek conditions that ensure that:

(IRT) I has integral representation type over Q.

This depends only on the commensurability eclass of I' (Corollary
5.8) so, after passing to subgroups of finite index, we may assume
that G is connected. Let U denote the unipotent radical of G and
U=U(F). In order to have (IRT) we must (by 10.1) assume that
G = (G, &), and hence that

U =(G,U) and G/U is semi-simple.

In certain cases these conditions suffice to imply condition (F Ab) of
10.1 (b) for I', in which case it follows from Corollary 9.9 that
(IRT) holds if and only if its analogue holds for I'/T'NU in G/U.
Thus we are led to consider the case when G is semi-simple. Let
H = R;,,G be the algebraic group over Q obtained by restriction of
scalars to @, so that H(Q) = G(F) =G, and let p: H > GL, be an
algebraic representation. Then o(G) is integral over Q. Borel and
Tits [6] have shown, in many cases (for example if the F-simple
factors of G are all of F-rank =1), that every linear representation
of G arises from an algebraic representation of the simply connected
covering group of H. In such cases therefore G has integral repre-
sentation type over Q. The same then follows for I' clearly when-
ever I' is “intimately embedded” in G, in the following sense: Given
a representation p: I' — GL,(K), there is an extension K’ of K and
a unique representation p': G — GL,(K') which agrees with p on a
subgroup of finite index in I'. This condition is known to hold in
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many cases when [ is an arithmetic or S-arithmetic subgroup of
G (cf. [4], §16 and [16], 2.7). It is a consequence of the strong
approximation theorem plus a qualitative form of the congruence
subgroup theorem, whenever these are valid for F, S, and G (loc.
cit.).

ExampPLE 10.3. Let I' = SL,(Z) with n =38. I is intimately
embedded in SL,(Q), and I' has integral representation type over
Z. Let I'" be the semi-direct product of I" with the I'-module Z".
Then it is easily shown that I satisfies condition (F Ab) of 10.1 (b),
so it follows from Corollary 9.9 that I likewise has integral repre-
sentation type over Z.

Question 10.4. Let I' be a finitely generated group of integral
representation type over @, and with a faithful linear representation
over Q. I know of no such groups which cannot be intimately
embedded in the Q-rational points of some algebraic group over Q.
Is this perhaps always the case? If I' is even of integral repre-
sentation type over Z must it then be an arithmetic group?

Question 10.5. Let I' be a finitely generated group of integral
representation type over Z whose linear representations separate
points of I'. Does I' then have a faithful linear representation
over Q? "
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