ON THE RADICAL OF A GROUP ALGEBRA

W. E. DESKINS

A Dbasic result in the study of group algebras and characters states
that the group algebra (<) of a finite group < over the field § of
characteristic p #+ 0 has a nonzero radical R if and only if p is a divisor
of o(%), the order of ©°. This suggests that R is related in some
manner to the Sylow p-groups of % and that it may be possible to
define R in terms of these subgroups. In [6] Jennings showed that if
o(Z) = p° then N is of dimension p* — 1 and has as a basis the set of
elements P, — 1. As a generalization of this define R’ to be the inter-
section of all the left ideals of A(Z") generated by the radicals of the
group algebras of the Sylow p-groups of . Then R’ is a nilpotent
ideal of A(Z") (cf. [2]), and Lombardo-Radici has shown [8] that N’ =
R provided & has a unique Sylow p-group or o(%’) = pg where ¢ is
also a prime. Also, in [9] he demonstrated that if < is the simple
group of order 60 and if p = 2 or 3 then N’ is a proper subideal of 9.
In this paper it will be shown that W' =R if one of the following
conditions is satisfied :

(A) < is homomorphic with a Sylow p-group of .

(B) % is a super-solvable group.

(C) % is a solvable group with (6(%¥), %) = p.

In the last section of the paper an application to a related problem
is made. If < contains an invariant p-group then 2(Z’) is bound to
its radical R (i.e., if @ in A(Z") is an element such that aR = Ra = 0,
then a is in NR). This raises the question: If (%) is bound to its
radical R, does & contain an invariant p-group ? This is equivalent to
the question: Does < contain an invariant p-group if < possesses no
irreducible representation of highest kind ? (An irreducible representa-
tion of highest kind is one whose dimension is divisible by the highest
power of p which divides o(%").) It is shown that if &« is a group
such that " = R and if the Sylow p-groups of < are cyclic, then the
above question is answered affirmatively. Also an example is given
where the answer is negative.

1. Type A. Let & be a group of order of order ¢ = Ap®, (%, p)
= 1, with a normal subgroup &7 of order ~. And let ¥ be an alge-
braically closed field of characteristic p. (The requirement that § be
algebraically closed is only a convenience since the dimension of R’ is
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unaffected by any extension of the ground field.)

THEOREM 1. The radical R of the group algebra A(<E’) of the group
<& over the field § equals N, the intersection of all the left ideals of
N() generated by the radicals of the group algebras of the Sylow p-
groups of <.

Let < be a Sylow p-group of ¥ : then /27 is isomorphic with
Z and & is an extension of & by & Now (), the group algebra
of & over ¥, has the radical 9t which is of dimension p*— 1 over ¥
and has as a basis the differences P, — 1, all P, e P. Form M, the left
ideal of A(Z") generated by . The ideal M is of dimension A(p® — 1)
over ¥, and we propose to show that R, the radical of (%), is con-
tained in M.

Now A(5#), the group algebra of &7 over &, is expressible as
B,P---PB, where B, is a simple ideal of A(S#). Let B be one of
these, and let &*’ be the subgroup of .Z” consisting of elements P, such
that PBP; = B, with o(#')=r =9° 0 < ¢ < a. The elements H of
7 are represented by H in B and the H form a group H homomorphic
with &4 Furthermore the elements of B can be expressed linearly in

terms of the elements of 577

If Pe .&”’, then P corresponds to an automorphism of B since
PBP-' =B, and since B is central simple this automorphism is an inner
automorphism of B. Thus P corresponds to a sum of elements of S7
and so leaves the conjugate classes of 57 invariant since these classes
commute with the individual elements of 5# Basically, therefore, we
are dealing with an extension & of 57 by a p-group ' in which each
element of .Z”’ induces an automorphism A of 57 which leaves the
conjugate classes invariant. Since the order of 57 is prime to p it is
well-known [11, p. 123] that A is an inner automorphism of 52 Now
a result due to M. Hall [4, Theorem 6.1] implies that < is a direct
product of &7’ and 5% and this leads to the conclusion that the elements
of .77’ commute elementwise with B. If Q = Sir,ecp' P8, then the
radical Q' of Q equals B times the radical of (<)), and therefore L
is contained in M,

If ¢ = p*» ¢ is the index of .Z°’ in &7 then there are ¢ distinct ideals
B, in the decomposition of A(S#") which form a set of transitivity T
for 7] with B, =8. That is, PB,P;*e T if B,e T and P, e & and
furthermore, if B, B, e T, then there is a P, e & such that B, =
Ps5,P;*. Then the algebra T = 3 P35, all P,e &7 and B, e T, is an
ideal of A(%), and we assert that its radical is contained in M. To
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see this consider the coset expansion of &’ relative to &', & = 3. S, 9"’
= 3\ . Z’'S,. Then clearly the algebra ¥’ = 3! ;S,Q’S, is a nilpotent ideal
of ¥, while the transitivity of T implies that ¥ — ¥’ is a simple algebra.
Thus ¥’ is the radical of ¥ and obviously is contained in .

As the choice of B was arbitrary in the decomposition of 2A(SF),
clearly the process above leads to the conclusion that R is contained in
M. Since the choice of &7 was arbitrary this enables us to conclude
that " 2 RN. However N’ is known to be nilpotent (cf [2]), hence R’
= R,

2. Type B. A group % is defined to be super-solvable if it
possesses a sequence of subgroups Y =2 D <, D .-+ D%, =1 such
that & is normal in & and %;/<;,, is cyclic. If in addition each &,/Z;,,
is contained in the center of %/ <., then ¥ is called a nilpotent
group. A basic result concerning nilpotent groups states that a nilpotent
group is a direct product of its Sylow groups. And a principal theorem
on super-solvable groups states that a super-solvable group is an exten-
sion of a nilpotent group by a nilpotent group. (For these results see
Kurosch [7, pp. 216 and 228])

THEOREM 2. The radical R of the group algebra (<) of a super-
solvable group < over the field ¥ equals N'.

By the theorems quoted above & contains a normal nilpotent sub-
group <, such that <’/ 2, is nilpotent while <, has a normal Sylow p-
group &;. Evidently &” is normal in & since <, is a direct product
of its Sylow groups. Then the radical of (.2?) generates a nilpotent
ideal N, of A(Z") and A(Z") — R, is isomorphic with the group algebra
Wz |F) of |7, Now the group </ is a group of Type A which
was discussed in the preceding section. So if & is a left ideal of A(<)
generated by the radical of the group algebra of &7 a Sylow p-group
of &, then (<) — I is a completely reducible left A(< )-module since
Pl is a Sylow p-group of ¥°/<4. Hence N = N.

3. Type C. Let & be a solvable group whose order is divisible
by p to the first power only. Then Z possesses a sequence of sub-
groups &, =< D% D -+- D 2, =1 such that <., is normal in 7, and
%] <41 is a group of order ¢ where ¢ is a prime.

THEOREM 3. The radical N of the group algebra (<L) of the group
< over the field ¥ equals N'.

The proof will be by induction on n, the length of the series defined
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above. If n =1 the theorem is trivally true; so assume the result to
be true for groups of length less than n. Now consider %, which is
of length n —1. If /%, is of order p, then the order of & is prime
to p and the result follows by Theorem 1. So we shall restrict our
attention to the case where < /<; is of order ¢, (p, q¢) = 1.

Now by a theorem due to P. Hall [5] & contains a group 57 of
order t, where pt =g, the order of &. If &7 is a Sylow p-group & of
form , the left ideal of (<) generated by the radical of (<?). Then
WZ)— =920 is a left &7-module representable by A(57) and is a
completely reducible A(<%,)-module. For R,, the radical of (%), is such
that RA(Z) is contained in § and so KA =0. So let Q, be an
irreducible left & -submodule of Q. Then L may be written Q =
Q, 4+ Q, where Q, is a left A(Z,)-module and O, N Y, = 0. Therefore
a projection T' of Q onto Q, exists such that 7' annihilates the elements
of Q, and is the identity operator on L, and such that 7 commutes
with (the representations of) the elements of (%;). Now form the
projection TV = ¢t~* 3, H,TH;*, summed over the ¢ elements of 5. Then
T commutes with all the elements of ¥ and hence the submodule
Q= T'Q of Q is a left A(<)-module. Furthermore QO = Q, + Q) where
2, N2 =0. Thus L is a completely reducible left (< )-module and
so & contains the radical of 2((<”). This proves Theorem 3.

4, A related problem. An algebra having the property that only
elements of the radical can be both left and right annihilators of the
radical has been termed a bound algebra by M. Hall [3].

THEOREM 4. If the group <& contains an tnvariant p-subgroup 7,
then the group algebra W(<Z) of & over a field of characteristic p is «
bound algebra.

If &7 is of order p* = « and of index y, then the radical of A(<?)
generates a nilpotent ideal & of A(<”) of dimension y(x — 1). Now the
element P, + --- 4+ P,, where P, is in &7, annihilates & and is also in
the center of A(<’). Hence it generates an ideal J of order y which
is contained in & and §J = JX = 0. Since A(%") is a Frobenius algebra,
a result due to Nakayama [10] states that the set of all right anni-
hilators of & in A(<2”) forms an ideal of dimension y. Hence ¥ contains
all of the right annihilators of . Since I = R, I contains the right
annihilators of RN, and so A(<") is bound to R.

This raises the question: If (<) is bound to its radical R =+ 0,

does « contain an invariant p-subgroup ? A partial answer is provided
by

THEOREM 5. If the Sylow p-groups of < are cyclic and if the
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radical R of (<) equals N’ then < contains an itnvariant p-subgroup
of W(Z) is bound to R.

Let &7 and .7 be two Sylow p-groups of < and let & and &, be
the two left ideals of (<) generated by the radicals of (<) and
A(F) respectively. Denote by () and 7(3,) the right ideals of (<)
consisting of all elements which annihilate &, and $,, respectively, on
the right. Then since i = N\ J; and since »(R) = N it follows readily
that »(J) and 7($,) are contained in R = R’. In particular, the sum
S of the elements of &7 is contained in &,. Now the only elements of
<, which involve 1, the identity of 7, also involve other elements of
T, so that the belonging of S to &, implies that /N <2 is a group
containing more than one element. Then, since the &7 are all eyclic,
it follows readily that the p-subgroup “? N .2 is normal in <.

Now (%) is bound to R if and only if & possesses no representa-
tion of highest kind (see [1]). If « is S;, the symmetric group of
order 120 and if p = 2, then the table of ordinary characters readily
demonstrates that < has no representation of highest kind. Yet S; has
no invariant 2-subgroup. It may be noteworthy that this example is
related to the one given by Lombardo-Radici [9] to show that R is not
always equal to N
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