MODULES WHOSE ANNIHILATORS ARE
DIRECT SUMMANDS

CHARLES W. CURTIS

Introduction. Let B be a ring with an identity element, and let M
be a right B-module. The set of all elements b in B such that Mb = (0)
is called the annihilator of M, and will be denoted by (0: M). It is a
natural question to ask under what circumstances the ideal (0: M) is a
direct summand of B. If B is a semi-simple ring with minimum con-
dition, for example, then every ideal is a direct summand, and there is
no problem. We shall be concerned with a ring B, not assumed to be
semi-simple, which is a crossed product 4(G, H, p) of a finite group G
and a division ring 4, with factor set p. In particular, B may be the
group algebra of a finite group with coefficients in a field. The purpose
of this note is to obtain necessary and sufficient conditions on the
structure of the module M in order that its annihilator (0: M) be a
direct summand of B.

Our interest in the problem stems chiefly from the fact that the
the modules whose annihilators are direct summands turn out to be
precisely the modules for which the pairing defined in §2 of [1] is
regular in the sense of [1, p. 281]. The main results of [1], givenin §5
and §6, are based upon the assumption that the pairing is regular,
and establish a connection between the structure of the module M rela-
tive to the set of B-endomorphisms of M and the structure of a certain
ideal in B, called the nucleus of M, which is the uniquely determined
complementary ideal to (0 : M) when (0: M) is a direct summand.

2. Familiarity with crossed products and their connection with pro-
jective representations of finite groups is assumed (see [1, §2]). In
this section we recall some of the properties of a crossed product, and
introduce, in a more general, and at the same time, much simpler fashion,
the pairing defined in a special case by formula (7) of [1]. Let G =
{1,s,¢t, ---} be a finite group, 4 a division ring and B = 4(G, H, p) a
crossed product of G and 4 with correspondence s — s = s? from G to
the group of automorphisms of 4, and factor set {p,,}. There exist
elements {b, b, ---} in B in one-to-one correspondence with the elements
of G, such that every element of B can be expressed uniquely in the
form 35,5, with coefficients & in 4. The multiplication in B is de-
termined by the equations

( 1 ) bsbﬁ = bsuos,t ’ sbs = bsEs_, §ed.
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The fact that B is an associative ring implies that the factor set {p,.}
satisfies the equations

(2) Os,tult,u = pst,up;sz,t ,

for all s, ¢, v in G. We shall assume that the factor set p is normalized
so that p,, = p,, =1 for all ¢ in G; then b, is the identity element in B.

The additive group of B is a right vector space over 4 which we
shall denote by B, if we define scalar multiplication by £e 4 by means
of the right multiplication &,: x — «£. Similarly the additive group of
B can be regarded as a left vector space B® over 4. The elements
b, b, ++- form bases for both of these spaces. Because both spaces are
finite dimensional, B satisfies both chain conditions for left and right
ideals.

The mapping 1: 3,06, — & is a linear function on both vector
spaces B™ and B® whose kernel contains no left or right ideal different
from zero. Therefore the mapping 4 : A(a, b) = A(ab) is a non-degenerate
bilinear form on B® x B — 4. Using the bilinear form 4 it is easy
to verify (cf. [1, p. 279]) that B is a quasi-Frobenius ring, that is, B
satisfies the minimum condition, and every right ideal in B is the right
annihilator of its left annihilator, and similarly for left ideals.

A right B-module! M is a fortiori a right vector space over 4 since
4CB. For each s in G, the mapping T, : « — zb, is a semi-linear trans-
formation belonging to the automorphism § in this vector space. The
correspondence s — T, defines a projective representation of G. Each
transformation 7', has an inverse T';* which is a semilinear transforma-
tion with automorphism s*. Let M’ be any left vector space over 4
which is paired with M to 4 by a non-degenerate bilinear form f. Let
us assume also that the semi-linear transformations T, all possess trans-
poses T'F with respect to the form f, such that

(3) F(¢, aT) = f(T5g, o),

for all we M, ¢e M'. If we define (3b,5,)¢ = >\ T#(,), then M’ be-
comes a left B-module (see [1, p. 274]). When these conditions are
satisfied, we shall call the system (M’, M, f) a pair of dual B-modules.

LEMMA 1. Let (M', M,f) be a pair of dual B-modules. Then the
Sfunction

(4) (¢, @) = 2f(P, 2T)b5

18 a non-degenerate B-bilinear function on M’ x M — B (cf. [1, Proposi-
tion 1]).

1 We shall assume that the identity element of B acts as the identity operator on all
modules we shall consider.
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Proof. For any we G we have

bu't (T3¢, @) = 200 F (T ig, aT)bs!
= S;;f(slj’ wTsTu)bazlbsﬂl = Tf(¢y (U)

by (1) and (3). Similarly, for all u,
¢, 2T )by = (¢, @) .

Since the function r, is obviously bilinear as far as 4 is concerned, these
calculations establish that for all be B,

br (¢, ) = v(b¢, x) and t,(¢, ab) = (¢, x)b .

The non-degeneracy of z, follows at once from the non-degeneracy of f.

To each right B-module M corresponds a two-sided ideal B, in B,
defined as follows. Find a left B-module M’ which is paired with M to
4 by a non-degenerate bilinear form f such that (M’, M, f) is a pair of
dual B-modules (for example, the space M’ of all linear functions on M
can be used). Then by Lemma 1, the set B, consisting of all finite
sums >, t.(¢;, x,), L.e M, x,e M, is a two-sided ideal in B. We shall
call B, the nucleus of M. We leave it to to the reader to verify that,
as our notation indicates, B, is independent of the choice of M’ and f.

We now define a right B-module M to be a regular module if By
contains an element ¢ such that ¢b = be = b for all be B,. We remark
that the statement that M is a regular module is equivalent to the
statement, in the terminology of [1], that (M’', M, z;) is a regular pair-
ing (see [1, p. 281]).

3. This section contains some lemmas on regular modules. We re-
mark first that if M, and M, are isomorphic B-modules, then B, = By,
and hence regularity is preserved under isomorphism.

LemMMA 2. The nucleus By and the annthilator (0: M) of a regular

module M are two-sided ideals in B generated by central idempotents, and
B=(0:M)® By

Proof. Let (M', M, f) be a pair of dual B-modules, where M is the
given regular module. By Theorem 1, p. 282, of [1], we have B, =
(By),, and consequently B= B, + (0: M). Let ¢ = S t(¢;, «;) be the
identity element in B,. Then ae B,N(0: M) implies a = ¢a =
Sit¢;, z,0) = 0, and the sum is direct. We have ¢ =1 —¢ce(0: M),
and because By and (0: M) are ideals whose intersection is zero, ¢ and
¢’ are orthogonal central idempotents which generate B, and (0: M)

2 We téi{e this opportunity to correct an error in [1]. The assertion made in example
(¢) in §11, p. 291, of [1] that 0:(0: M) B for a certain regular module M is false and
the assertion (c) should be deleted from [1].
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respectively.

LEMMA 3. Let M be a right B-module such that M = M, P M,, where
M, and M, are submodules. Let M’ be the space of all linear functions
on M, paired with M to 4 by the function f defined by f(¢, x) = {(x),
yeM',xe M. Then (M', M, f) is a pair of dual B-modules, Let M and
M be the subspaces of M’ which annihilate M, and M, respectively.
Then M' = M@ My ; the restrictions fi and f, of f to M4 x M, and
M x M, respectively, are mnon-degenerate; and (Mi, M, f), and
(M, M, f,) are pairs of dual B-modules.

Proof. The semi-linear transformations T all possess transposes T']
relative to the form f, such that formula (3) holds, and consequently
(M’, M, f) is a pair of dual B-modules. The sets M and M; are sub-
spaces of M’ such that M NM;+ = (0). If ¢eM’, then ¢|M, = ¢, isa
linear function on M, which can be extended to a linear function ¢, in
M’ by setting ¢,|M, = 0. Similarly we define ¢,. Then ¢ = ¢, + ¢,
and we have proved that M' = M+ @ Mi. The restrictions f; and f,
defined in the statement of the lemma are clearly non-degenerate. Finally,
since M, and M, are B-submodules, it follows from (3) that T*(Mi{)S M+,
4 =1, 2, and hence T,|M, has the transpose T |M;,, ¢ =1, 2, and the
proof is complete.

LeEMMA 4. Let M = M,@® M,, where M, and M, are B-submodules of
M. Then By = By, + By,

Proof. Let M’ be the space of all linear functions on M, and define
S, fi, f. as in Lemma 8. Let 7, 7,, 7, be the corresponding functions
defined by (4). For xe M, ¢eM;i, we have r,(¢, x) = r,¢,x) and
By, & By. Similarly By, & By. Now let e M, and write z = &, + ,,
z;eM;; and let e M, ¢y = ¢, + ¢, $e My, e M. Then since M,
and M, are submodules we have

(¢, x) = D[ + ¢y, (@ + 2,)b,)b5 "
= 3 S, 20O + 2L, 2.0:)057
= Tf1(¢17 :171) + sz(S/’zy xz) ’
and the lemma is proved.

LEMMA 5. Let M = M, P M, where M, and M, are regular B-modules.
Then M is a regular B-module.

Proof. By Lemma 4, By = By, + By,. By Lemma 2, we have By, = ¢,B
where ¢, is a central idempotent, ¢ = 1,2. Then ¢ = ¢, + ¢,—¢¢,€ By,
and be = ¢b = b for all be B,, proving our assertion.

LEMMA 6. Let e be an idempotent in B. Then (Be, eB, A)is a pair
of dual B-modules.

Proof. We recall from § 2 that 4 is a non-degenerate bilinear form
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on B® x B™ — 4. The restriction of 4 to B¢ x ¢B is also non-degen-
erate (see [1], p. 279). It remains to verify that for all ¢, d in B,

(5) Ae, dby) = A(bye, d) .

For this it is sufficient to prove that if @ = 3, &,b, = 3. b,£%, then A(ab,) =
Ab,a)* for all se G. We have Aab,) = &,-1p,-1,, while

Z(bsa’)} = pg,s_lég‘as_: pgs'lps—'}l,sés'lps_l.s
by formula (2) of [1], and by (2) above we have

pl,spg—,s_l - IOS,lPS_l‘S ’
and the formula (5) is proved.

4, Now we shall formulate and prove our main result. Because B
satisfies the minimum condition, B=B, @ --- @ B,, where the B, are
uniquely determined indecomposable two-sided ideals, called the block
ideals® of B. If we write 1 =¢, + .- 4 ¢,, ¢, € B,, then the ¢, are mutually
orthogonal idempotents belonging to the center of B, and ¢; is the identity
element in the block ideal to which it belongs. For any right B-module
M, Me, is a submodule of M, and M is the direct sum of the modules
Me,. These submodules are called the block components of M ; the block
component Me, can also be described as the set of elements of M which
are left fixed by ¢;. The block components of (B, +), where (B, +) is
viewed as a right B-module in the obvious way, are the Dblock ideals
Be;. Each block component Be; of B can be expressed as a direct sum
of the indecomposable right ideals ¢,B, ¢ = ¢,, which belong to the block.
It is known that two indecomposable right ideals ¢B and ¢B belonging
to distinct blocks have no isomorphic composition factors. The direct
sum of a full set of non-isomorphic indecomposable right ideals ¢,B be-
longing to the ith block component Be, of B, or any right B-module iso-
morphic to this module, is called a reduced block component of B.

Our theorem is stated as follows.

THEOREM. Let M be a right B-module with annihilator (0: M). The
following statements are equivalent.

(A) (0: M) is a direct summand of B ;

(B) every non-zero block component Me, of M contains the ith reduced
block component of B as a direct summand ;

(C) M is a regular module.

Proof. The implication (C) — (A) is the content of Lemma 2. We
prove next that (A) — (B). Let B’ be a two sided ideal in B such that

3 For t};e concepts of block ideals and block components see [3], and the ‘references
given there.
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B=B ®0:M). By the uniqueness of the decomposition of B into
block ideals, B’ is a direct sum of certain of the block ideals Be;,. Let
Me, be a non-zero block component of M ; then Bs;, =& B, and Mg, is a
faithful Be, module. Let ¢B be an indecomposable right ideal belonging
to the ¢th block. By Proposition 4 of [1], ¢B contains a unique minimal
right ideal N = (0). There exists an element &€ M such that zN =+ (0).
It follows that w — au is a B-isomorphism of ¢B onto the submodule
P = xeB of Me,. We shall prove that there exists a submodule @ of
Me; such that Me;, = QP P. Let M’ be the set of all linear functions
on Me;, paired with Me, to 4 by the non-degenerate bilinear form f, so
that (M', Me,, f) is a pair of dual B-modules. Let P' be the submodule
of M’ consisting of all elements ¢ e M’ such that f(¢, P) = (0). Then

(M'|P*, P, f) is a pair of dual B-modules, where f is the induced map-
ping on M’/P+ x P. On the other hand, by Lemma 6, (Be, eB, 4) is a
pair of dual B-modules. Using the fact that eB is a finite dimensional
space, it is easily verified that Be and M'/P* are isomorphic left B-
modules. By Theorem 1 of [2], Be is an (M,)-module, and consequently
there exists a B-submodule @ of M’ such that M' = Pt P . Let
Q= {zlreMe, f(Q,x)=(0)}). Then @ is a submodule such that
PNQ = (0). Moreover
M=(PNQ)Y- =P+ + @)Y =P+Q,

since P is finite dimensional and @ = (@')*.

The proof that Me, contains the reduced block component of Be, as
a direct summand is now proved by induction. Let Me, = RS, where
R is isomorphic to a direct sum of a finite number of non-isomorphic
indecomposable right ideals belonging to the <th block, and let ¢B be an
indecomposable right ideal in Bs;, not isomorphic to any of the direct
summands of R. Let N be the unique minimal subideal of eB. If
RN = (0), then by the previous argument R contains a direct summand
isomorphic to e¢B, which contradicts the Krull-Schmidt theorem. Thus
RN = (0), and SN = (0), so that S contains a direct summand isomorphic
to eB. This completes the proof of the induction step, and the implica-
tion (A) — (B) is established.

Finally we prove that (B)— (C). By Lemma 5, it is sufficient to
prove that each block component Me, of M is a regular module, and
for this it is sufficient to show that ¢, e By, whenever Me, + (0). Let us
consider a non-zero component Me,. Let ¢B, ---,e¢,B be a full set of
non-isomorphic indecomposable right ideals belonging to the ** block.
For each j, 1 < j < s, there exists a B-direct summand P; of Me; such
that P; = ¢;B. By Lemma 4, Bpj = BejB S By:;. We prove that ¢; e BejB.
By Lemma 6, (Be,, ¢,B, A) is a pair of dual B-modules. We assert that

(6) e; = ta(ey, ¢) .
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In fact, z.(ej;, €)) = > A(ey, €;b,)b;’, and if ¢, = >\ &,b,, then
A(Gjr ejbs) = x(ejbs) - £:s_llos“l.s

while from b,-1b, = bp,-1, we have b;' = ps_—ll,sbs—l. From these remarks
(6) follows.

We have shown that ¢;e By.;. Since ¢, is a sum of idempotents e
such that eB is isomorphic to one of the ideals ¢;B, 1 < j < s, we have
€, € By.;, and Mg, is a regular module. This completes the proof of the
theorem.
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