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ON SUBRINGS OF RINGS WITH INVOLUTION
Piex-HWEE LEE

We give a systematic account on the relationship between a
ring R with involution and its subrings S and K, which are
generated by all its symmetric elements or skew elements
respectively.

I. Introduction. Let R be a ring with involution * and § the
subring generated by the set S of all symmetric elements in R. The
relationship between R and S has been studied by various authors. In
[3] Dieudonné showed that if R is a division ring of characteristic not 2,
then either S = R or § C Z(R), the center of R. Later Herstein [4]
extended this result by proving § =R for any simple ring R with
dimzR >4 and char.R# 2. The restriction on characteristic was re-
moved by Montgomery [12]. Recently, Lanski [9] proved that if R is
prime or semi-prime, so is S. In §2 of this paper, we show that S can
inherit a number of ring-theoretic properties such as primitivity, semi-
simplicity, absence of nonzero nil ideals etc.. In doing so, a notion
called symmetric subring, which is a generalization of § and its *-
homomorphic images, is introduced so that a group of theorems of the
same type, including Lanski’s results, can be proved via a more or less
unified argument. We show also that numerous radicals of S are merely
the contractions from those of R. As a consequence, we see that R
modulo its prime radical behaves much like § in many Tespects.

In §3 we establish a corresponding theory for K, the subring
generated by all skew elements. The only result hitherto known con-
cerning K was as follows [4], [12]: If R is simple and dim,R > 4, then
K = R. As a matter of fact, the subring K? is more closely related to R
than K is. We apply the_technique developed in §2 to study the
relationship between R and K 2, and then derive some parallel theorems
for K.

II. Symmetric subrings. Our work depends heavily on the
notion of Lie ideals. By a Lie ideal U of R we mean an additive
subgroup which is invariant under all inner derivations of R. That is,
[u,x]=ux —xu €U for all u €U and x ER. The following lemma
concerning Lie ideals will be referred to frequently in the sequel, and it is
a combination of some results in [5].

LEMMA 1. Let R be a semi-prime ring and U a subring and Lie ideal
of R. Then U contains the ideal of R which is generated by (U, U]. If
U is commutative, then u®€ Z for all u € U.
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Rings with involution abound with examples of Lie ideals. One can
easily show that any subring, generated by symmetric elements and
containing T ={x + x*|x € R} the set of all traces, must be a Lie
ideal. In particular, both § and T are Lie ideals.

Another essential property of S follows from the next lemma. We
denote by N the set of all norms, i.e. N ={xx*|x €R}.

LEmMMA 2. Let U be an additive subgroup of R such that TCUC S
and xUx*C Uforallx € R. IfN C U, thenxUx* C Uforallx € R.

Proof. We prove by induction that xu,- - u.x* € U for all x ER
and u,,---,u, € U. The case n =1 is clear. Assume the assertion
holds for n —1; then

XUUs - U X = u] [ s Uy X ¥+ (U YUy - u, oug(xuy e ux*)
—uxx*u,c o u, €U

because U is a Lie ideal.

DEFINITION. A subring U of R is called a symmetric subring if:
1. U is generated by a set of symmetric elements.

2. TUNCU

3. xUx*CU forall x ER.

In light of Lemma 2, we know that S is a symmetric subring. From
now on, U will always denote a symmetric subring of R. We call an
ideal I of R a *-ideal if I* =L

Lemma 3. If R is semi-prime and I is a *-ideal of R such that
INU=0, then I =0.

Proof. Foranya€lI a*=a(a+a*)—aa*=0. Then I is nil of
index 2 and hence I =0.

Recall that a ring R is called a *-simple ring if R># 0 and R has no
*-ideal other than 0 and R. It is well-known that R is *-simple if and
only if either R is simple or R = A @ A * for some simple ring A [8, p.
14]. LetZ*=ZNS. Thenif R is *-simple, we have Z*=0o0r Z*isa
field.

THEOREM 4. If R is *-simple, then either U =R or U is a field
contained in Z*.

Proof. 1f U is not commutative, by Lemma 1 it contains a nonzero
*-ideal of R so U = R. Assume that [U, U] =0; then UCS. In this



ON SUBRINGS OF RINGS WITH INVOLUTION 133

case, we need only to prove UCZ, for if u € U and u#0 then
ul=ulu(u)*e U

If R=A@A* for some simple ring A, then T=U =S. Thus
[U, U] =0 implies [A, A] =0 and so R is commutative. If R is simple,
then U, being a commutative subring and Lie ideal of R, must be central
unless 2R =0 and dim,R =4 [5, Theorem 1.5]. So let us examine all
possible 4-dimensional cases.

If R is a division ring, then x'Ux = x"'(xUx*)x = Ux*x C U for
all x € R withx# 0. Hence U C Z by the Brauer-Cartan-Hua theorem
[7, Theorem 7.13.1, Cor.].

There remains the case R = F, where F is a field with char.F =
2. Weclaim that * must be of symplectic type. Assume the contrary,

[a b]*___ [ a oz”_‘c']

c d ab d

for some a € F with @ = o, where —denotes the "induced automor-
phism on F. Thus

Ugs={[a‘})— f]ld=a,6=c}.

For any a € F, we have

[o a+d}=[a+d o][g 1]ET2QU

0 o0 0 O 0
so a = a. Next, if [ a b]e U then
ab ¢
b 0] _[a b][0 O 0 O0l[a b
[a+c b]_[ab cH1 O]+[1 0] [ab c]EU
_ .l a b
and hence a = c¢. But if [ ]E U, then
ab a
a 0]_[1 O0jfa b][1 O
[0 0]‘[0 0] {ab aHO O]EU
. 0 b S
yields a =0. So U=T = ab 0 b € F; which is ridiculous be-
. . a bl]*_[d b
cause T is not a subring. Consequently, [c d] = [c a] and

Uc_:s={[“ b][a,b,cEF}.
cC a
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For any [? b}, [a,l b:}EU, we have [g b] [a’ z,]EU and

al lc' a allc
hence bc’= b’c by comparing the diagonal entries of the product. If
there exists [ccl, Z,]E U with b’ # 0, then

Ug{[a‘z Z]la,beF},

where @ = ¢’'b’"'. However,
0 0]_[0 0)[a’ B'1[0 O
o o)=11 ol &][i olev

forces b’ = 0, a contradiction. Hence U C {[g g]la, cE F}. On the

a 0
c a

o ol=[6 olle allo o]ev

implies ¢ =0. Therefore, U C Z.

other hand, if [ ]E U,

Following [11], we say R is *-prime if the product of any two
nonzero *-ideals is still not zero. It is easy to see that R is *-prime if and
only if aRb = a*Rb =0 implies a =0 or b =0. As a consequence, any
nonzero element in Z* is regular in a *-prime ring R.

We remind the reader of of a well-known fact that a nonzero Lie
ideal of a semi-prime ring always contains elements with nonzero square.

THEOREM 5. If R is *-prime, so is U.

Proof. If [U,U]#0, then U contains a nonzero *-ideal I of
R. For any two *-ideals A,B of U with AB =0, we have IAIB C
AB =0, so either JAI=0 or B =0, ending up with A =0 or B=
0. Assume that U#0 while [U,U]=0. By Lemma 1, there exists
u, € U such that uj € Z but uj# 0. So consider the ring Q of fractions
ala witha€R anda €EZNU, a#0. Q isalso *-prime with respect
to the involution given by (a/a)* = a*/a, and U'={u/a € Q|u € U}is
a symmetric subring of Q. As a matter of fact, Q is *-simple. Forif J
is any nonzero *-ideal of Q, J N U’ # 0 and hence (v/B) # 0 for some
v/BEJNU' Since v’E Z, v/B is invertible and so J = Q. By the
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previous theorem, U’'C Z*(Q) and hence U is an integral domain
contained in Z*(R).

Let Cx(V)={x € R|xv = vx for all v € V} be the centralizer of a
set Vin R.

LEmMMA 6. Let I#0 be an ideal (or *-ideal) of a prime (resp.
*-prime) ring R. Then Cr(I)C Z.

Proof. For a €I, b € Cr(I) and x € R, we have abx = bax = axb,
or equivalently, a(bx —xb)=0. That is, I[Cx(I),R]=0. Hence
[Ce(I),R]=0 and so Cr(I)C Z

CoROLLARY. Let R be a prime (or *-prime) ring and I a nonzero
ideal (resp. *-ideal) of R such that [I, 1] =0. Then R is commutative.

THEOREM 7. If R is semi-prime, then Z(U)C Z(R).

Proof. Assume first that R is *-prime. If [U, U] =0, then Z(U)=
U C Z(R) by Theorem 5. If [U, U]#0, then U contains a nonzero
*.ideal I of R, so Z(U)C Cr(I)C Z(R) in view of Lemma 6. In either
case, [Z(U),R]=0. Now assume that R is semi-prime; then R is a
subdirect sum of *-prime rings =,(R). Since m,(U) is a symmetric
subring of 7, (R), we know [#,(Z(U)), m.(R)]C[Z (7. (U)), m.(R)] =0
for all . Hence, [Z(U),R]=0.

The same reduction to *-prime rings together with Theorem 5 gives
an alternate proof for Lanski’s theorem:

THEOREM 8. If R is semi-prime, so is U.

With this established, we are able to consider the relationship
between the prime radicals B(R) and B(U).

THEOREM 9. L(U)= U NP(R).

Proof. Since U/[U NP(R)] = [U + BV(R)}/B(R) which is a sym-
metric subring of the semi-prime ring R/PB(R), so U/[U NP(R)] is
semi-prime by Theorem 8 and hence B(U)C U NL(R). On the other
hand, if a € U N P(R), then a € U and any m-system in R containing a
must contain 0. [7, Theorem 8.2.3]. Certainly, any m-system in U
containing a contains 0. That is, a € B(U).

It is well-known that a ring without nonzero nil ideals is a subdirect
sum of rings with the following property [6, p. 53]:

There exists a nonnilpotent element a such that a™" € I for all nonzero
ideal I.
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One can impose this condition only on the *-ideals and show that it is
a hereditary property. Then, making use of subdirect sum decomposi-
tion, we can prove that U inherits the freedom from nonzero nil
ideals. Instead of doing this way, we prefer to present a direct proof by
considering the nil radical N(U) of U.

THEOREM 10. If R has no nil ideal other than 0, neither does U.

Proof. Let I be the ideal of R which is generated by [U, U]. Since
R possesses no nonzero nil ideal, neither does I, considered as a
ring. Hence M(U)NI=0. For any a € NR(U) and u € U, we have
[a, u] eNU)NT=0. Thus R(U)C Z(U). Since U is semi-prime by
Theorem 8, N(U)=0.

As an immediate consequence, we have
THEOREM 11. RN(U)= U N N(R).

Proceed as above with “locally nilpotent™ in place of “nil”’ and with
Levitzki radical  in place of R, we get

THEOREM 12. If R has no nonzero locally nilpotent ideal, neither
does U.

THEOREM 13. (U)= U N L(R).

In [2] the notion of *-primitive ring was introduced as a ring
admitting a *-faithful irreducible module M (i.e. Mr = Mr* =0 implies
r =0). One can easily verify that a ring is *-primitive if and only if it is
either primitive or a subdirect sum of a primitive ring and its opposite
with the exchange involution.

We know that a nonzero ideal of a primitive ring is itself
primitive. The proof is applicable to the following more general fact.

LEMMA 14. Let R be a primitive (or *-primitive) ring. Suppose
that I is a nonzero ideal (resp. *-ideal) of R, and A is a subring (resp.
*-subring, i.e. A*= A) containing I. Then A is also primitive (resp.
*-primitive).

THEOREM 15. If R is primitive or *-primitive, so is U.
Proof. 1f [U,U]#0, U contains a nonzero *-ideal of R, so it is

primitive or *-primitive by Lemma 14. Assume that U is
commutative. Then U C Z* and every element in R is quadratic over
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Z*. Hence R satisfies a polynomial identity. According to Ka-
plansky’s theorem [6, Theorem 6.3.1], R is *-simple and hence U is a
field by Theorem 4.

Using the fact that a semi-simple ring is a subdirect sum of
*-primitive rings, we get immediately

THEOREM 16. If R is semi-simple, so is U.

In fact, the semi-simplicity of S was first proved by Herstein. His
elegant proof was the inspiration of our next theorem which relates the
Jacobson radicals of R and U.

THEOREM 17. J(U)= U N J(R).
Proof. For a € J(U) and x € R, we have
axecax*=ax +ax*+ axax*=a(x + x*+ xax*) € J(U)U C J(V).

Thus aR is quasi-regular and hence a € U N J(R). Conversely, if
a€UNZR), acb=0 for some bER, then b=bo(ach)*=
(beb*)ca* € U. That is, U N J(R) is a quasi-regular ideal of U, so
U NJ(R)C (V).

With Theorem 17 in hand, we are ready to study some non-semi-
simple rings. Following [7], we say R is semi-primary, primary, or
completely primary according as R/J(R) is an artinian, simple artinian,
or division ring respectively. Since U/J(U) is isomorphic to a symmet-
ric subring of R/J(R), by Theorem 4 we have

THEOREM 18. If R is primary or completely primary, so is U.

As to semi-primary rings, we need some information about the
descending chain condition. In a paper [10] which is to appear, Lanski
proved that if R is artinian and } € R, then so is S. For our purpose, we
prove

LEMMA 19. If R is semi-prime artinian, so is U.

Proof. By the Wedderburn-Artin theorem, we may write R =
R@ - - @ R, where each R, is *-simple. Denote by e; the identity of
R; then e, € Z™ and so ¢;Ue; is a symmetric subring of R; for each i. By

Theorem 4, each e,Ue; is artinian, so is U = e,Ue, P - - - P e,Ue,.

THEOREM 20. If R is semi-primary, so is U.
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We remark that the assertion corresponding to Lemma 19 for
ascending chain condition is not true even if R is a commutative integral
domain. A counter example can be found in [13].

Let R stand for any of the four radicals B, £, N and J. We have
shown R(U)=UNR(R). If RU)=U, then UCR(R), so 0 is a
symmetric subring of the semi-prime ring R/R(R), and hence R(R)= R
by Lemma 3. That is, if U is locally nilpotent, nil or quasi-regular, so is
R.

On the other hand, R(U)=0 need not imply R(R)=0. For
example, let R = F+ A be the algebra obtained by adjunction of an
identity to a trivial algebra A over a field F with char. F#2. Define
(e+a)*=a—a for « €F and a € A. Then S=F is a field, while
R(R)= A is a nilpotent ideal. In case A has infinite dimension, this
example shows also that R is not artinian although § is.

However, we still have some results on R(R). For if R(U) =0,
then the *-ideal R(R) has trivial intersection with U, hence is nil of index
2. Thus we have aRa = 0 for any a € R(R) and consequently R(R) =
B(R). Besides, U is isomorphic to a symmetric subring of
R/B(R). Realizing this fact, one might not be surprised to see that
R/%B(R), instead of R itself, satisfies the same properties as U does.

LemMA 21. Let R be a semi-prime ring and e the identity of
U. Then e is also the identity of R.

Proof. By Theorem 7, e€ Z(U)C Z(R). Since e€S, I=
{x—ex|x€R} is a *-ideal of R. If a—ea €U, then a—ea =
e(a—ea)=0. Thus INU =0andso I =0. In other words, e is the
identity of R.

The case when R is semi-prime and S is simple was thoroughly
studied by Lanski[9]. An example was given there that R is an integral
domain but not simple while S is. In the presence of an identity, we
have

THEOREM 22. Let R be a semi-prime ring. If U is a *-simple ring
with identity, so is R.

Proof. Let I be any nonzero *-ideal of R. Then I N U#0, and
the *-simplicity of U implies U CI By Lemna 21, U contains the
identity of R, so I = R.

Even if U is a field, R can be semi-prime but not simple. The
simplest example is the direct sum of two copies of a field with the
exchange involution. This example illustrates why we deal with only
*-primeness and *-primitivity in what follows.
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THEOREM 23. (1) If U is semi-prime, B(R) is nil of index 2. (2) If
U is *-prime, so is R/B(R).

Proof. We have proved (1) in the discussion before Lemma 21. As
to (2), we may assume without loss of generality that R is semi-
prime. Let I and J be *-ideals of R such that IJ=0. Then
INUYJINU)=0,s0 INU=0o0rJN U =0, ending up with I =0 or
J=0.

Suppose that R is a *-prime ring and I a nonzero *-ideal of R. If I
possesses a *-faithful irreducible module M, write M = ml for some
m €M and m#0, and define a map from M X R into M by sending
(ma,r) to m(ar). One can easily check that such a map is well defined
and that M becomes a *-faithful irreducible R-module. This is the
content of

LEmMMA 24. Let R be a *-prime ring and I a nonzero ideal of R. If
I is *-primitive, so is R.

THEOREM 25. (1) If U is semi-simple, then J(R)=B(R) is nil of
index 2. (2) If U is *-primitive, so is R/B(R).

Proof. We have seen the proof of (1) earlier. As to (2), we assume
that R is semi-prime. By Theorem 23, R is *-prime. If [U, U]#0,
then U contains a nonzero *-ideal I of R. Lemma 14 shows that I is
itself *-primitive and hence R is also *-primitive by the previous
lemma.- If U is commutative, it is *-simple with identity. It follows
from Theorem 22 that R is *-primitive.

THEOREM 26. If U is semi-primary, so is R.

Proof. It suffices to show that if R is semi-prime and U is artinian,
then R is also artinian. In this case, we have U = U, - - - @ U,, where
each U; is *-simple artinian. Let e, be the identity of U;; then
e €Z(U)CZ(R). Since 1=¢,+---+e, R=RP---BR, with
R, = ¢R. Each R; is then semi-prime and contains U, as a symmetric
subring. By Theorem 22 R, is *-simple, so either U, =R, or U, is a
field. If U, is a field, then R; satisfies a polynomial identity and hence is
a finite dimensional algebra over a field contained in Z(R;). In either
case, R; is always artinian. Hence R must be also artinian.

III. Subrings generated by skew elements. In contrast
to S, K is not necessarily a Lie ideal of R. For instance, in F, with
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char. F#2 and transpose as *, K = {[ ab Z]

[0 I]EK,

-1 0
0 —1]_[0 1][1 0]_[1 O][O 1]
-1 01 -1 0J{0 O 0 oj[-1 0
falls outsidle of K. However, both K? and _K_S, where K=
{x —x*|x € R}, are always Lie ideals.

a,be F}. Although

DEFINITION.  By.a skew subgroup V of R we mean a subgroup of R
such that K,C VC K and xVx*C V for all x ER.

Henceforth we shall use V to stand for a skew subgroup of R
without further explanation.

LEMMA 27. V2 is a Lie ideal of R.
Proof. For vy, v,€E V and x € R, we have
[viv2, x] = vVo(V2x + x*0,) = (Vix * + x0)V, E V2
If w, -+, w, € V2 and x €R, then
[wie - w x]=wiwy - w, x]+[wy, x]wse - W,
Hence, this lemma can be proved by induction.

LEMMA 28. Let R be a semi-prime ring and n a natural number. If
v¥ =0 for all v EV, then V =0.

Proof. Ifv’=0forallv € V, thenforany x €R (vx + x*v)*=0s0
(vx)’=0. By Levitzki’s lemma [5, Lemma 1.1}, v=0 for all
vEe V. Assume that n>1. For any v € V and x €ER, we have
(v "x —x*v”7)" =0 and hence (v¥ 'x)™*'=0. Applying Levitzki’s
lemma again and using the induction hypothesis, we conclude that V = 0.

One might have noticed that the study of a symmetric subring U in
R is based on the fact: If R is semi-prime, either U C Z* or U contains a

nonzero ideal of R.  For a skew subgroup V, we have a parallel result for
\ %

2n-1

LEMMA 29. If R is *-prime and [V? V?*|=0, then V’C Z and
[V, V]=0. Further, R satisfies the standard identity S[x,, X2, X3, X} in 4
variables.
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Proof. Consider first the situation when R is *-simple. If R =
A @ A* for some simple ring A, then K,= V=K, and so [V? V?]=0
implies [A? A?]l=0. Since A’= A, R is also commutative, and the
conclusions follow trivially. Assume that R is simple. Then V’C Z
unless possibly 2R =0 and dim,R =4. If R is a division ring, we have
xVix ' =xVx*(x )FVxT'C Vo oso xVxT'CV? for all x €ER,
x#0. Hence V*C Z by the Brauer-Cartan-Hua theorem. Suppose
that R =F, for some field F with char F=2. If ZNT#0, say,
a=a+a*€Z for some aZ S, then I=a'a+(aa)*€TCV and
hence NC V. By Lemma 2, V is a symmetric subring. Since V =
1-VC V3 [V,V]=0so VCZ by Theorem 4. If ZNT =0, then

. a b]*_[a a"’C}
Z C S and * must be of transpose type, namely [c d} [ab d
a

for some o« €F. In this case, VCS = H:ab f]la, b,c EF}. Since

0 1 0 1 a b . 0 1 a b’
[a O}ET, L{ 0] [ab c] commutes with [a 0] [ab’ c’] for

any [ac;) f], [;b’ IC),] € V. Comparing the (1, 1)-entries of the pro-
ducts, we get ca’=ac’. An argument like that in Theorem 4 shows
V=T= {‘:aob g:llb EF}. Hence V?=Z. Thus we have V’CZ
always. By Lemma 28, there exists v € V such that v># 0 provided
V#0. Then v is invertible. Further, v'=0v7'(—-0v)(v)*E YV, so
Vv 'C Z and V C Zv. Consequently [V, V]=0.

Now assume that R is *-prime and V#0. By Lemmas 1 and 28,
Z*#0, so we may consider the quotient ring Q=
{ala’la ER,a €EZ*,a#0}. Q can be equipped with * by defining
(a/a®)*=a*/a®>. Then Q is *-prime and V' ={v/a’€E Q|v E V}is a
skew subgroup of Q. If there is a nonzero *-ideal I of Q such that
INV'#0, then 1CS(Q) and hence [LI]=0. By the corollary to
Lemma 6, Q is commutative and we are done. Suppose that J N V' # 0
for any nonzero *-ideal J of Q. Since J N V' contains an element a
such that a*€ Z and a®# 0 by Lemmas 1 and 28, and a® is invertible, we
have J = Q. In other words, Q is *-simple and so V?C Z(Q) and
[V',V']=0. Hence V’CZ(R) and [V, V]=0.

Since K,CV, we have [K,,K;]=0 and hence R satisfies
S x4, X2, X3, xs] by Amitsur’s Theorem [1].

___ We are now in a position to prove a series of theorems concerning
V2. Since the proofs are parallel to those for U, we shall omit them
unless some modification is needed.

THeEOREM 30. If R is *-simple and V# 0, then either V2= R or V?
is a field contained in Z*.
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Proof. By Lemmas 1, 27 and 29, we have either V=R or
V2C Z*. So it suffices to show that V2 contains with invertible elements
their inverses. First a”'V =a lV(cf‘)"a C VV? if g € V2. Similarly,
Va'C V'V and hence a'VZa'CV? if a€V. Thus a’'=
a'aa*€ V2 if a € V! and is invertible.

THEOREM 31. If R is prime or *-prime, so is a2

THEOREM 32. If R is semi-prime, then Z(V?) C Z(R).
THEOREM 33. If R is semi-prime, so is V.

Tueorem 34. B(V?) =V NP(R).

THEOREM 35. If R has no nil ideal other than 0, neither does V2
TueoREM 36. N(V) = V2N N(R).

THEOREM 37. If R has no nonzero locally nilpotent ideals, neither
does V?.

THEOREM 38. 2(V?)= VN L(R).

THEOREM 39. If R is primitive or *-primitive, so is V? provided
V#0.

THEOREM 40. If R is semi-simple, so is V.
TueorEM 41. J(V?)= V2N (R).

Proof. 1t suffices to show that if a € Viand acb=0=b °a_then
b€ V2. The argument used in Theorem 30 shows that (1+ b)V(1+
b)C V2. (The formal use of the symbol 1 is all right.) Then b=
-(+b)(a+a®>)(1+b)E VA

THEOREM 42. If R is semi-primary, primary, or completely primary,
so is V? provided V# J(R).

__ In the example given in [13}, 2R =0 and 1 ER, so K?=S. Hence
K? need not be noetherian even if R is a commutative noetherian
domain. However, K?, K2, as well as S, inherits Goldie conditions when R
is semi-prime. The proof of the next theorem is based on Lanski’s
argument [10] but is a little simpler.

THEOREM 43. If R is a semi-prime Goldie ring, so is V2
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Proof. Since the a.c.c. on right annihilators is inherited by sub-
rings, it suffices to show that V? has 1° infinite direct sum of nonzero
right ideals. Let {p,} be a set of right ideals of V2 _such that 2.p,
is direct. Denote by I the ideal of R generated by [ V2, V?]. Then EapaI
is a direct sum_of right ideals of R, so p. /=0 and hence p.C
V2N Ann.I C Z(V?) for almost all @. Being a commutative semi-prime
subring of a Goldie ring, Z(V?)is itself a Goldie ring and hence p, = 0 for
almost all a.

Let R = F,, where F is a field with char.F =2 and * is given by

transpose. In this case, T=K,= {[a 2]

b
potent ideal {[a a}
a a

kills the hope for T or K, to inherit those nice properties we have
discussed so far. Fortunately, the behavior of K is not that bad.

a,be F} possesses the nil-

ac F} even though R is simple. This example

THEOREM 44. If R is *-simple, either K = R or K is a commutative
*-simple ring provided K # 0.

Proof. If char.R =2, then K =S and hence the assertion follows
from Theorem 4. Assume that char.R#2. If [K% K?#0, then K
also contains_the nonzero *-ideal of R generated by [K? K?], so
K =R. If K’ is commutative, then K>*C Z* by Theorem 30. Suppose
that ZZ S, then a*# a for some a €Z, so B=a —a*#0. Thus,
SB'C K and hence S C KB. Therefore, R=S+ K CK. Next, as-
sume that ZC S. Then R must be simple. By Lemma 29, R satisfies
an identity of degree 4 and hence dim R =4 by Kaplansky’s
Theorem. If R is a division ring, choose a € K, a # 0, then Ka ' C K*C
Z So KCZaCK, thatis, K= Za. Hence K =Z(a) is a field. If
R =F, for some field F, the commutativity of K forces * to be of

* -1
transpose type, say, [? b] = [ a 9 C] for some o €F. Then

d ob d
K={[_‘;b 2] a,b EF}. If — o is not a square in F, K is a field;

while if —o==n? for some w€F, K=L@L, where L, =

-1 -
{[a 7T a] aEF} and L2={[ a i a] aEF} are two
ma a — a a

fields which are isomorphic via the map induced by *

THEOREM 45. If R is *-prime, so is K.

Proof. 1f K* is not commutative, then K also contains the ideal
generated by [K? K?]. An argument exactly like that in Theorem 5
proves the *-primeness of K. Now we assume that K? is a nonzero
commutative ring. The quotient ring Q ={a/a|a ER,a € Z"*,a # 0}
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is either a *-simple ring or a commutative *-prime ring relative to the
involution (a/a)* = a*/a. In the former case, K(Q) is a commutative
*-simple ring by the previous theorem. So in either case K(R) is
contained in a commutative *-prime ring and hence is *-prime.

LEMMA 46. If R is semi-prime, then Cy(V?) = Z(V).

Proof. Assume first that R is *-prime. If V?is not commutative,
then it contains a nonzero *-ideal I of R, so Cy( V) C Ce(I)C Z(R) by
Lemma 6 and hence Cy(V2) = Z(V). If [V? V2] =0, then V’C Z(R)
and [V, V]=0 by Lemma 29 and hence Cy(V?)=V=Z(V). The
semi-prime case can be built up easily via subdirect sum.

The next lemma is crucial in the study of K.

LEMMA 47. Let R be a semi-prime ring and I a *-ideal of K. If
INK =0, then I =0.

Proof. fINK =0,then ICS. Foranya€I and k €K, ak =
(ak)* = —ka. Hence I C CK(Kz) Z(K) by Lemma 46. Thus IK C
INK =0,s0 IK =0, and in particular Iz=0 Foranya €I and x €ER,
we have a(x —x*)=0, that is, ax = ax* and hence axa = a(xa)* =
a’x*=0. Since R is semi-prime, it follows that I =0.

LEmMA 48. If R is semi-prime, and k € K with kKk =0, then
k =0.

Proof. For any x €R, k(x —x*)k =0 so kxk =kx*k. Then
kxkxk = k(xkx*)k =0 and hence kR is nil of index 3. So, k =0 by
Levitzki’s lemma.

THEOREM 49. If R is semi-prime, so is K.

Proof. Let I be a *-ideal of K such that I’=0. Foranya € INK,
we have aKa CI’=0s0 a =0 by Lemma 48. Lemma 47 shows I =0,
so K has no nonzero nilpotent *-ideal and hence is semi-prime.

THEOREM 50. If R has no nil ideal other than 0, neither does K.

Proof. Let I be the ideal of R which is generated by
[K,K?. Then R(I)=0 and ICK. If a € RK)NK and bEK?,
then a’b—ba’€INN(K)=0. Thus a EZ(KZ) and by Lemma 46
a’e Z(_{() But K is semi-prime and a is nilpotent, so a?>=0 for all
a €ENK)NK. In view of Lemma 28, N(K) N K = 0 because N(K) is
itself a semi-prime ring. Hence, it follows from Lemma 47 that (K) =
0.
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A similar argument proves the following

THEOREM 51. If R has no nonzero locally nilpotent ideal, neither
does K.

The proof of the next theorem is exactly like that of Theorem 39.

THEOREM 52. If R is *-primitive, so is K provided K# 0.

THEOREM 53. If R is semi-simple, so is K.

Proof. Let a € J(K)N K. For any x € R, we have
axo(—ax*)=a(x — x*— xax*) € J(K)K C J(K).

Hence aR is quasi-regular, so a =0. By Lemma 47, J(K)=0.

THEOREM 54. If R is semi-prime artinian, so is K.
Proof. Immediate from Theorem 44.

Unlike S, the semi-prime assumption on R is not sufficient to get the
converse theorems for K or K2. For example, let F be a field with
char.F# 2, o an automorphism on F with o*>=1, and A a commutative
semi-prime algebra over F. Put R=F@A and define (a,a)*=
(e’ a). Then K = F and K*= F° are fields provided o # 1, while R is
not even *-prime. Further, if A possesses an identity and dimzA =,
then R is neither artinian nor Goldie.

On the other hand, the *-primeness is sufficient for our
purpose. To begin with, we prove a lemma which is analogous to
Lemma 3.

LEMMA 55. Let R be a *-prime ring and I a nonzero *-ideal of R
such that INK;=0. If K,#0, then I =0. '

Proof. If INK;=0, then (I N K,*=0. Since I is itself a semi-
prime ring, and I N K, is a skew subgroup of I, so I N K, =0 by Lemma
28. Hence ICS. For any a €I and x € R, we have ax = (ax)*=
x*a. Soif a,b €I and x € R, then abx = ax*b = xab = abx*. That
is, I’K,=0. Since R is *-prime and K, #0, it follows I =0.

__ Lemma 56. Let R be a *-prime ring and e the identity of K or
V2 If e#0, then it is the identity of R.
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Proof. Since the only nonzero central symmetric idempotent in a
*-prime ring is the identity, it suffices to show that e € Z(R). If e is the
identity of V? then ex —xe € V2 for all x €R because V? is a Lie
ideal. If e works for K, then ex —xe = e(x —x*)+ (ex* — xe) E K for
all x € R. Hence e(ex —xe)=ex —xe = (ex —xe)e and this implies
that e € Z(R).
On the basis of Lemma 55, we can prove the converse theorems by
using an argument parallel to that for U.

THEOREM 57. If R is *-prime, and K or V? is a *-simple ring with
identity, so is R.

THEOREM 58. IfRis *-prime, and K or V2 is *-primitive, so is R.

THEOREM 59. Let R be a *-prime ring and * not the identity
map. If K or V* is semi-simple, so is R.

Proof. Since J(V?)= V2N S(R), so J(R)NK2=0if V7 is se_mi-
snmple By Lemma 55, R must be also semi-simple. In case K is
semi-simple, so is K K? by Theorem 41, and hence R is also semi-simple.

THEOREM 60. If R is *-prime, and K or V? has no nil ideal other
than 0, then neither does R.

THEOREM 61. If R is *-prime, and K or V2 has no nonzero locally
nilpotent ideal, then neither does R.

We close this paper with two theorems on chain conditions.

THEOREM 62. Let R be a *-prime ring. If * is not the identity map
and either K or V? is artinian, then so is R.

Proof. By Theorems 31 and 45, both K and V2 are *-prime. Say,
if K is artinian, then it is *-simple with identity, so R is also *-simple by
Theorem 57 and hence K = R or K is commutative by Theorem 44. In
the later case, R satisfies a polynomial identity, and is finite dimensional
over a field contained in Z. Hence, R is artinian. The situation when
V? is artinian is the same.

For a ER, let rr(a) ={x € R|ax = 0} be the right annihilator of a
in R. Denote by Z(R) the right singular ideal of R, that is, Z(R)=
{a € R|rr(a)N p#0 for any nonzero right ideal p of R}.

THEOREM 63. Let R be a *-prime ring.  If V2 is a Goldie ring, so is
R.
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Proof. If R is commutative, then Q ={a/a|a E R,a € S,a# 0} is
a commutative *-simple ring, and hence R is a Goldie ring. Assume
that R is not commutative, while [V? V?*]=0. Then V?*C Z* and
Q={ala|la ER,a € Z*,#0}is a *-simple ring. Since [V, V]=0, it
follows that Q satisfies a polynomial identity, and hence is artinian. So,
R is a Goldie ring. Lastly, assume that [V? V?]#0 and let I be the
ideal of R generated by {V?, V?]. Suppose {p,} is a set of right ideals of
R which forms a direct sum. Then p,J Cp, NIC V? and p,I =0 for
almost all «. Consequently p, =0 for almost all a. Consider
JRYNL If a€ 3(R)NI, then for any nonzero right ideal p of I,
pl#0, so rr(a)Npl#0 and hence r(a)Np#0. In other words,
B(RYNIC 3(I)=0 because I is itself a semi-prime Goldie ring. So
J(R)=0.
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