CERTAIN REPRESENTATIONS OF INFINITE GROUP ALGEBRAS

I. SINHA

For any group G, let ρ be an irreducible representation of the group algebra $\Im G$ over a field \Im . Then by Schur's lemma, the center \varDelta of its commuting ring, is a field containing \Im . If ρ is finite-dimensional over \varDelta , then it is called finite and if it is finite-dimensional over \Im itself, then it is called strongly finite. In this paper, certain conditions are given for finiteness of ρ . Also it is shown that for some types of groups, finiteness of ρ is related to the existence of abelian subgroups of finite index in certain quotient of the group. Conditions under which finiteness and strongly finiteness are equivalent, are given. Finally, consequences of ρ being faithful on G, or being faithful on $\Im G$, are studied.

Study of finiteness of irreducible representations was initiated by Kaplansky in [3], and later carried to a great extent by Passman, Issacs, and others: {see [5] and relevent references therein}. Finiteness and strong finiteness were studied in [6]. Using a slight modification of the technique of [4] to suit our nonsemisimple case, we get Theorem 1 which includes the results of [4] and gives us Theorem 2 whose corollaries contains the result of [3].

We further recall the well-known result that for a finite group G, if the kernel of an irreducible representation ρ contains the commutator subgroup G', then the representation is 1-dimensional over Δ . As corollary to our Theorem 3, we prove that in general, if G' is contained in the kernel of ρ , then ρ is finite whether G is finite or not.

2. Finiteness of representation. In this section we study conditions under which a given irreducible representation is finite, and also the conditions under which all irreducible representations are finite. We need the following:

DEFINITIONS. 1. Let ρ be a representation of $\mathcal{F}G$. Then $G_{\rho} = \{g \in G \mid \rho(g) = 1\}$, and Kern ρ = kernel $\rho = \{x \in \mathcal{F}G \mid \rho(x) = 0\}$. Thus ρ is G-faithful if $G_{\rho} = 1$, while ρ is $\mathcal{F}G$ -faithful if Kern $\rho = 0$.

2. Let $\mathfrak{B} \leq \operatorname{Aut} G$. For $S \leq G$, we shall write $\mathfrak{A}_{\mathfrak{s}}(S)$ for the left-ideal $\{\sum x_i(\mathscr{S}_i^{\beta_i} - 1) \mid x_i \in \mathfrak{F}G, \mathscr{S}_i \in S, \beta_i \in \mathfrak{B}\}$. (For a general study of such ideals we may refer to [6] and [8].) We write $\mathfrak{A}(S)$, if $\mathfrak{B} = \{\operatorname{identity}\}$.

I. SINHA

3. We also define the \mathfrak{B} -kernel of ρ in $H \leq G$ to be

$$\{h \in H \mid \rho(h^{\beta}) = 1, \forall \beta \in \mathfrak{B}\},\$$

and set $K_n^{\mathfrak{s}}(H) = \bigcap \{\mathfrak{B}\text{-kernels of } \rho \text{ in } H\}$, where the intersection runs through all irreducible representations ρ of G for which $\dim_{\mathcal{A}} \rho > n^2$, where \varDelta is the center of the commuting ring of ρ . If no such ρ exists, then we put $K_n^{\mathfrak{s}}(H) = G$.

4. Let S_{2n} be the symmetric group of degree 2n. Then for an algebra A, the sums

$$\sigma_n = \sum_{\sigma \in S_{2n}} (\operatorname{sgn} \sigma) x_{\sigma(1)} \cdot x_{\sigma(2)} \cdots x_{\sigma(2n)}, \, x_{
ho} \in A$$
 ,

are called the Standard Monomial Sums (of parity n).

5. Define $\sum_{n} (G)$ to be the \mathfrak{F} -space spanned by all the σ_{n} in $\mathfrak{F}G$. {We shall frequently write \sum_{n} wherever the group in question is clear from context.}

This \sum_{n} plays a significant role in determining the degrees of irreducible representations.

Specifically we have:

PROPOSITION 1. Let ρ be an irreducible representation of $\mathcal{F}G$. Then $\dim_{\mathcal{A}} \rho \leq n^2$ if and only if $\sum_n \subseteq \operatorname{Kern} \rho$.

Proof. If dim_d $\rho \leq n^2$ then $\Im G/\operatorname{Kern} \rho$ is a primitive algebra of matrices of dim *n* over \varDelta . By Theorem 1 of [1], for any $\sigma_n \in \Im G$, $\rho(\sigma_n) = 0$, whence $\sigma_n \in \operatorname{Kern} \rho$ so that $\sum_n \subseteq \operatorname{Kern} \rho$.

Conversely, suppose $\sum_{n} \subseteq \text{Kern } \rho$. Then $\Im G/\text{Kern } \rho$ is a primitive algebra satisfying $\sigma_{n} = 0$ for every σ_{n} in $\Im G/\text{Kern } \rho$. Then by Theorem 1 of [2], p. 226, $\Im G/\text{Kern } \rho$ is a central simple algebra of dim $\leq n^{2}$. Hence dim₄ $\rho \leq n^{2}$.

Using this result we obtain:

THEOREM 1. Let $S \leq H \leq G$. Then $S \subseteq K_n^{\mathfrak{s}}(H)$ if and only if $\mathfrak{A}_{\mathfrak{s}}(S) \cdot \sum_n \subseteq \operatorname{Rad} \mathfrak{F}G$.

Proof. We observe that $\mathfrak{A}_{\mathfrak{B}}(S) = \{\sum x_i(s_i^{\beta_i} - 1) \mid x_i \in \mathfrak{G}G, s_i \in S, \beta_i \in \mathfrak{B}\}.$ Thus, to show that $\mathfrak{A}_{\mathfrak{B}}(S) \cdot \sum_n \subseteq \operatorname{Rad} \mathfrak{F}G$, it suffices to show that $(s^{\beta} - 1) \cdot \sum_n \subseteq \operatorname{Rad} \mathfrak{F}G$, for $\forall \beta \in \mathfrak{B}, \forall s \in S$. Now let $h \in K_{\pi}^{\mathfrak{B}}(H)$ and ρ be an irreducible representation of G. If $\dim_d \rho > n^2$, then $\rho(h^{\beta}) = 1$ or $\rho(h^{\beta} - 1) = 0$, $\forall \beta \in \mathfrak{B}$, by the very difinition of $K_{\pi}^{\mathfrak{B}}(H)$. On the other hand, if $\dim_d \rho \leq n^2$, then by Proposition 1, $\rho(\sum_n) = 0$.

262

Thus, in both cases, $\rho[(h^{\beta}-1)\cdot\sum_{n}]=0$. Since ρ is arbitrary, so $(h^{\beta}-1)\cdot\sum_{n}\subseteq \operatorname{Rad} \Im G$. Hence $S\subseteq K_{n}^{\mathfrak{B}}(H)$ implies $\mathfrak{A}_{\mathfrak{B}}(S)\cdot\sum_{n}\subseteq \operatorname{Rad} \Im G$.

Conversely, suppose $\mathfrak{A}_{\mathfrak{F}}(S) \cdot \sum_{n} \subseteq \operatorname{Rad} \mathfrak{F}G$. Then, in particular,

$$(s^{\beta}-1)\cdot \sum_{n} \subseteq \operatorname{Rad} \mathfrak{F}G, \forall \beta \in \mathfrak{B}, s \in S$$
.

We define the left-idealisor [7], of \sum_n into Rad $\mathcal{F}G$, by $L_{\text{Rad}}(\sum_n)_{\mathcal{F}G} = L(\sum_n) = \{x \in \mathcal{F}G \mid x \cdot \sum_n \subseteq \text{Rad} \mathcal{F}G\}$. This is clearly a left-ideal. Also $[L(\sum_n) \cdot g] \cdot \sum_n = L(\sum_n)[g \cdot \sum_n \cdot g^{-1}] \cdot g = [L(\sum_n) \cdot \sum_n] \cdot g \subset \text{Rad} \mathcal{F}G \cdot g = \text{Rad} \mathcal{F}G$, for $\forall g \in G$. Hence $L(\sum_n)$ is a two-sided ideal of $\mathcal{F}G$.

Now let ρ be an irreducible representation of G, afforded by the $\Im G$ -module \mathfrak{M} . Since $L(\sum_n)$ is a two-sided ideal, so Ann $L(\sum_n) = \{m \in \mathfrak{M} \mid L(\sum_n)m = 0\}$ is an $\Im G$ -submodule of \mathfrak{M} . Thus either Ann $L(\sum_n) = 0$ or \mathfrak{M} . Now assume that $\dim_{\mathcal{J}} \rho > n^2$. Again, by Proposition 1, $\rho(\sum_n) \neq 0$ so that $\sum_n \mathfrak{M} \neq 0$, whence $\sum_n \not\subseteq \operatorname{Rad} \Im G$. But $L(\sum_n) \cdot [\sum_n \mathfrak{M}] = [L(\sum_n) \cdot \sum_n] \cdot \mathfrak{M} = 0$, since $L(\sum_n) \cdot \sum_n \subseteq \operatorname{Rad} \Im G$. Thus Ann $L(\sum_n) = \mathfrak{M}$. Then, as by hypothesis $s^\beta - 1 \in L(\sum_n)$, so $(s^\beta - 1) \cdot \mathfrak{M} = 0$; or $\rho(s^\beta - 1) = 0$. As ρ was arbitrary with $\dim_{\mathcal{J}} \rho > n^2$; so $s \in K_n^{\mathfrak{H}}(H)$.

Letting $\mathfrak{F} = \text{complex-field}$, we have Rad $\mathfrak{F}G = 0$. Taking $\mathfrak{B} = \{1\}$ in this case, we obtain the result of Passman [4]:

COROLLARY. $g \in K_n(G)$ if and only if $(g-1) \cdot \sum_n = 0$. We also deduce:

THEOREM 2. Let $S \leq G$ and $\mathfrak{B} \leq \operatorname{Aug} G$ such that $S^* = G$. Then $\mathfrak{A}_{\mathfrak{F}}(S) \cdot \sum_n \subseteq \operatorname{Rad} \mathfrak{F}G$ if and only if $\dim_{\mathcal{A}} \rho \leq n^2$ for every irreducible representation ρ of G. {Of course, \varDelta depends on ρ .}

Proof. By Theorem 1, $\mathfrak{A}_{\mathfrak{B}}(S) \cdot \sum_{n} \subseteq \operatorname{Rad} \mathfrak{F}G$ if and only if $S \subseteq K_{\mathfrak{n}}^{\mathfrak{B}}(G)$: $\{G = H\}$.

The latter condition is equivalent to the statement that for every irreducible representation ρ with $\dim_{\mathcal{A}} \rho > n^2$, we have $\rho(s^{\beta}) = 1$, $\forall \beta \in \mathfrak{B}, s \in S$. Since $S^{\mathfrak{B}} = G$, so we deduce that $\rho = 1$.

COROLLARY 1. If $\sum_n \subseteq \text{Rad} \Im G$ for some n, then every irreducible representation of $\Im G$ is finite.

COROLLARY 2. [3]. If in $\Im G$, $\sum_n = 0$ for some *n*, then every irreducible representation of *G* is finite.

Next recall that if $|G| < \infty$ then $G' \subseteq G_{\rho}$ for any irreducible

representation ρ , if and only if ρ is of dim. 1. A generalization of sort, is obtained in the corollary to:

THEOREM 3. Let ρ be an irreducible representation of $\Im G$.

(a) If either (i) $\sum_{n}(G/G_{\rho}) = 0$ for some n, or (ii) $\exists A \leq G \ni \cdot$. $G_{\rho} \leq A$, $|G:A| < \infty$ and A/G_{ρ} is abelian, then ρ is finite.

(b) (Conversely) If ρ is finite and FG satisfies either of the following conditions:

(i) G/G_{ρ} is periodic and $\mathfrak{F}(G/G_{\rho})$ is nonmodular;

(ii) G/G_{ρ} is periodic with a finite p-Sylow subgroup for Char. $\mathfrak{F} = p \neq 0$;

(iii) G/G_{ρ} satisfies minimum-condition on subgroups; then $\exists A \leq G \ni \cdot G_{\rho} \leq A$, $|G:A| < \infty$ and A/G_{ρ} is abelian.

Proof. (a) Suppose (i) holds. In the notation of [6], $G_{\rho} = \mathfrak{A}^{-1}(\operatorname{Kern} \rho)$ where for any ideal I of $\mathfrak{F}G$, $\mathfrak{A}^{-1}(I) = \{g \in G \mid g - 1 \in I\}$, and hence $\mathfrak{A}(G_{\rho})$ is a sub-ideal in Kern ρ . Since $\mathfrak{A}(G_{\rho})$ is the kernel of the linear extension of the cannonical map $G \to G/G_{\rho}$, so $\mathfrak{F}G/\mathfrak{A}(G_{\rho}) \cong \mathfrak{F}(G/G_{\rho})$. Therefore, $\sum_{n} (G/G_{\rho}) = 0$ implies that the standard monomialsum, in $\mathfrak{F}G/\mathfrak{A}(G_{\rho})$, all vanish. Now $\mathfrak{F}G/\operatorname{Kern} \rho \cong \mathfrak{F}G/\mathfrak{A}(G_{\rho})/\operatorname{Kern} \rho/\mathfrak{A}(G_{\rho})$; therefore, the same holds for $\mathfrak{F}G/\operatorname{Kern} \rho$. In particular, $\sum_{n} (G) \subseteq \operatorname{Kern} \rho$. Then, by Proposition 1, ρ is finite. Next let (ii) hold. Then $|G/G_{\rho}: A/G_{\rho}| = n < \infty$, and A/G_{ρ} is abelian. Therefore, by the result of Kaplansky mentioned before, or by Theorems. 5.1, 8.1 of [5], all the irreducible representations of G/G_{ρ} are finite.

Now if ρ is afforded by the $\Im G$ -module \mathfrak{M} , then putting $\overline{\rho}(\overline{g}) \cdot m = \rho(g) \cdot m$, for $\overline{g} \in G/G_{\rho}$, and observing that $G_{\rho} = \{g \in G \mid \rho(g) = 1\}$, we get a representation $\overline{\rho}$ of G/G_{ρ} , such that $\overline{\rho}$ is irreducible and the commuting ring of $\overline{\rho}$ in Hon_{\mathfrak{F}}(\mathfrak{M} , \mathfrak{M}), is the same as that of ρ .

Thus the finiteness of $\bar{\rho}$ implies the finiteness of ρ .

(b) $G/G_{\rho} \cong S \subseteq GL(n, \Delta)$ and any such S satisfying either of the conditions (i), (ii) or (iii), is abelian by finite: {see [9], Corollaries 9.4, 9.7, 9.8, and 9.23}. We then get our A, by taking the complete inverse-image of the abelian part of G/G_{ρ} .

Since the group-algebra of an abelian group always satisfies $\sum_{n} = 0$, so we obtain:

COROLLARY. If $G' \subseteq G_{\rho}$, then ρ is finite.

3. Strong finiteness of representations. In this section we give a result which shows the equivalence of finiteness and strong-finiteness in certain conditions.

264

THEOREM 4. Under either of the following conditions, an irreducible representation ρ of G is finite if and only if it is strongly finite:

(i) G is finitely generated;

(ii) ρ is absolutely irreducible;

(iii) $\exists H \leq G \ni |G:H| < \infty$ and ρ_H has a strongly finite constituent.

Proof. (i) This is the content of Lemma 7 of [6].

(ii) Let the absolutely irreducible finite representation ρ , be afforded by the $\mathcal{F}G$ -module \mathfrak{M} . Since $\Delta \subseteq \operatorname{Hom}_{\mathfrak{F}}(\mathfrak{M}, \mathfrak{M})$, $\mathfrak{F} \subseteq \Delta$, so we can make $\Delta \bigotimes_{\mathfrak{F}} \mathfrak{M}$ into a ΔG -module by letting $g \cdot (d \otimes m) = d \otimes \rho(g)m$.

Define $\psi: \varDelta \bigotimes_{\mathfrak{F}} \mathfrak{M} \to \mathfrak{M}$ by $\psi(d \otimes m) = dm$. Since ρ and d commute, so

$$\psi(g \cdot (d \otimes m)) = \psi(d \otimes
ho(g)m) = d(
ho(g)m) =
ho(g)(dm)$$
 .

Thus ψ is a ΔG -homomorphism. Since \mathfrak{M} is absolutely irreducible, so $\Delta \bigotimes_{\mathfrak{F}} \mathfrak{M}$ is irreducible. So ψ is an isomorphism. Then $\dim_{\mathfrak{I}} (\Delta \bigotimes_{\mathfrak{F}} \mathfrak{M}) = \dim_{\mathfrak{I}} \mathfrak{M} < \infty$. Thus ρ is also finite-dimensional over \mathfrak{F} .

(iii) By Clifford's theorem, $\rho_{H} = \bigoplus \sum_{i=1}^{[G:H]} \rho_{i}$, where ρ_{i} are all conjugate irreducible-representations of H. Hence, if one of them is finite-dimensional over \mathfrak{F} , then so are all; and hence ρ .

4. Faithful representation. Finally, let ρ be a representation (not necessarily irreducible) of the group algebra $\Im G$. For any leftideal I we shall write ρ^{I} for the representation afforded by the module $I \cdot \mathfrak{M}$, where ρ is afforded by \mathfrak{M} . We shall let $\mathfrak{A} = \mathfrak{A}(G)$ denote the augmentation-ideal of $\Im G$ and $J = [\Im G, \Im G]$. Let Char $\Im = p \neq 0$.

We then investigate the consequences of ρ being faithful as a representation of G and as a representation of $\Im G$ respectively. Recalling that if $H \leq G$, then $\mathfrak{A}(H)$ is the left-ideal in $\Im G$ generated by $\{h-1 \mid h \in H\}$: [6], we have the following:

THEOREM 5. (a) If ρ is faithful on G, then $A = \mathfrak{A}^{-1}(\operatorname{Kern} \rho^{\mathfrak{A}})$ is an elementary abelian normal p-subgroup which is central if $\mathfrak{A} \subseteq \operatorname{Kern} \rho^{\mathfrak{A}}$.

(b) If ρ is faithful on $\Im G$, then

(i) A = 1 unless |G| = 2, p = 2 in which case A = G;

(ii) $B = \mathfrak{A}^{-1}(\operatorname{Kern} \rho^{J}) = 1$ unless p = 2 and B = G is abelian, or p = 2, G is nonabelian and B is central.

Proof. (a) Since Kern $\rho^{\alpha} \leq \Im G$ so $A \leq G$.

I. SINHA

Let \mathfrak{M} afford ρ so that $\mathfrak{A} \cdot \mathfrak{M}$ affords $\rho^{\mathfrak{A}}$. Hence $g \in A$ if and only if $(g-1) \cdot \sum_{x \in G} \lambda_x (x-1)m = 0$ for each $m \in \mathfrak{M}$. Since $p \neq 0$, so $(g^p - 1)m = (g^{\lambda_x \in \mathfrak{F}})^p m = (g-1)[(g-1)^{p-1}m] = 0$ as $(g-1)^{p-1}m \in \mathfrak{A} \cdot \mathfrak{M}$. Thus $g^p m = m$ and faithfulness implies that $g^p = 1$. Further, if $h \in A$ then (h-1)m and (g-1)m are both in $\mathfrak{A} \cdot \mathfrak{M}$. Then,

$$(g-1)(h-1)m = 0 = (h-1)(g-1)m$$

or

$$g^{\scriptscriptstyle -1}h^{\scriptscriptstyle -1}gh\;m=m$$
 .

Again faithfulness gives that gh = hg; i.e., A is abelian.

If $\mathfrak{A} \subseteq \operatorname{Kern} \rho^{\mathfrak{a}}$, then $g \in G$, $h \in A$ implies

$$(gh-1)m = [(g-1)(h-1) + (g-1) + (h-1)]m$$

= $(g-1)m + (h-1)m = (hg-1)m$.

Thus gh m = hg m and faithfulness gives that $A \subseteq Z(G)$.

(b) (i) Now let ρ be $\mathcal{F}G$ -faithful. Then the Kern $\rho^{\mathfrak{A}} =$ Ann \mathfrak{A} in $\mathcal{F}G$. It is well-known that this annihilator is 0 unless $|G| < \infty$ and Ann $\mathfrak{A} = \mathcal{F} \cdot (\sum_{g \in G} g)$. Now if $g_i \in A$, then $g_i - 1 = a \in \operatorname{Kern} \rho^{\mathfrak{A}}$ so that $g_i - 1 = k \cdot \sum g$, $k \in \mathcal{F}$. Linear independence of the group elements, gives us that $g_i = 1$, and k = 0, or |G| = 2, $g_1 = 1$, i = 2, k = 1, and +1 = -1 in \mathcal{F} .

(ii) Again by faithfulness Kern $\rho^J = \text{Ann } J$. So $g \in B$ implies that (g-1)(hk-kh) = 0, $\forall h, k \in G$, i.e., ghk - gkh - hk + kh = 0. If Char, $\mathfrak{F} \neq 2$, then we must either have ghk = gkh in which case hk = kh, or ghk = hk in which case g = 1.

In case Char $\mathfrak{F} = 2$ and g is noncentral then choose $k \in G$ such that $gk \neq kg$. Put $h = g^{-1}$. Then the above identity gives,

$$k - gkg^{-1} - g^{-1}k + kg^{-1} = 0$$
.

Since $gkg^{-1} \neq k$, so either $k = g^{-1}k$ or $k = kg^{-1}$, both leading to g = 1, a contradiction. Thus in this case $g \in Z(G)$.

References

1. S. A. Amitsur and J. Levitzki, *Minimal identities for algebras*, Proc. Amer. Math. Soc., **1** (1950), 449-463.

2. N. Jacobson, Structure of Rings, Amer. Math. Soc. Coll. Publ., 28 1964, Rhode Island, Providence.

3. I. Kaplansky, Groups with representations of bounded degree, Canad. Math. J., 1 (1949), 575-580.

4. D. S. Passman, Character kernels in discrete groups, Proc. Amer. Math. Soc., 17 (1966), 487-492.

5. ____, Infinite Group Rings, Marcel-Dekker Inc., N. Y., 1971.

266

6. I. Sinha, On the augmentation maps of the subgroups of a group, Math. Zeitsch., **94** (196)6, 193-206.

7. I. Sinha and J. Srivastava, *Ideals in commutative domains*, Math. Mag., 44 (3), (1971), 124-127.

8. J. Srivastava, Ph. D. Thesis, I. I. T., Kanpur, India.

9. B. A. F. Wehrfritz, Infinite Linear Groups, Queen Mary College Math. Notes, 1969.

Received April 18, 1973 and in revised form October 16, 1973.

MICHIGAN STATE UNIVERSITY