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THE PRODUCT OF F-SPACES WITH P-SPACES

NEIL HINDMAN

A condition on a basically disconnected space X is known
which is necessary and sufficient for the product space X X Y
to be basically disconnected for every P-space Y. This same
condition, when applied to an i^-space X, guarantees that XxY
is an i^-space whenever Y is a P-space and is necessary for
this result. The principal result of this paper establishes that
this condition is not sufficient when applied to i^-spaces. A
condition which is sufficient but not necessary is also derived.

1* Introduction* The notation and general point of view are
those of the Gillman and Jerison textbook [5]. In particular, all
hypothesized spaces are completely regular Hausdorff. The reader
should recall from [4] the following characterizations. A space X is:
a P-space if and only if each cozero set is closed; a basically discon-
nected space if and only if each cozero set has open closure; a [/"-space
if and only if disjoint cozero sets can be separated by an open-and-
closed set; an î -space if and only if disjoint cozero sets can be
completely separated; and an F'-space if and only if disjoint cozero
sets have disjoint closures. It is clear from these characterizations
that the conditions named grow progressively weaker.

In [3] Gillman asked for a necessary and sufficient condition that
a product of two spaces be an F-space and, parenthetically, for a
necessary and sufficient condition that a product of two spaces be a
basically disconnected space. Curtis had shown [2] that if X x Y is
an .F'-space then either l o r 7 must be a P-space. It is easily seen
that if X x Y has any of the properties listed above so must both X
and Y for X and Y nonempty. Observing also that the product of a
space X with a discrete space Y has any of the above mentioned
properties which X has, one can rephrase the question in the form:
For which spaces X with property A does the product 1 x 7 have
property A for every P-space F?

This question was answered for the properties F' and basically
disconnected in [1]. The condition was that the space be countably
locally weakly Lindelbf (appreviated CLWL). That is, for every
countable collection {/\}~=1 of open covers of X and each point x of X
there must be a neighborhood 7 of a; and, for each n, a countable
subfamily An of Γn such that V ϋ cl (J Δn.

Since F-spaces are F'-spaces the condition that X be CLWL is
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clearly necessary for X x Y to be an F-space for each P-space Y. The
obvious question, since basically disconnected spaces are F-spaees, is
whether that condition is also sufficient [1, 4.7]. It is shown in §3
the answer is no That is, there are a CLWL .F-space X and a P-space
Y such that I x Γ i s not an F-space.

In § 2 sufficient conditions for the product of two spaces to be an
F-space are derived. The same conditions suffice when "F-space" is
replaced by "Σ7-space" throughout.

2* Conditions guaranteeing that a product space is an F-space*
We shall have need of the following lemma from [1, 3.2].

LEMMA 2.1. Let feC*(XxY), where X is CLWL and Y is a
P-space. If (x0, y0) e X x Ythen there is a neighborhood U xV of (x0, y0)
such that f(x, y) = f(x, y0) whenever (x9 y) e U x V.

It is shown in [6] that this in fact characterizes CLWL spaces
in the sense that if X is not CLWL then there is some P-space Y such
that the conclusion of Lemma 2.1 fails. (The proof is a slight modifi-
cation of the "necessity" proof in [1, 3.3].)

DEFINITION 2.2. A point x of X is a basically disconnected point
of X if whenever U is a cozero set of X and x € cl U then in fact x e
int cl U.

It is clear that X is basically disconnected if and only if every
point of X is a basically disconnected point. The proof of the following
lemma can be taken verbatim from [1, 3.4].

LEMMA 2.3. If X is CLWL and x is a basically disconnected
point of X and Y is a P-space then (x, y) is a basically disconnected
point of X xY for every y in Y.

The reader should recall that a space X is weakly Lindelof if each
open cover of X has a countable subfamily whose union is dense in X.

THEOREM 2.4. If X is a CLWL F-space (respectively U-space)
and there is a weakly Lindelof subspace D of X such that every point
of X\D is a basically disconnected point and if Y is a P-space then
X xY is an F-space (respectively U-space).

Proof. Let fe C*(X x Y). By Theorem 3.3 of [1] 1 x 7 is an
F'-space so cl pos / Π cl neg / = 0 (Here pos / = {(x, y): f(x9 y) > 0}
and neg / = {(x, y): f(x, y) < 0}.) To show that X x Y is an F-space
it suffices to show that pos / and neg / can be completely separated.



THE PRODUCT OF F-SPACES WITH P-SPACES 475

Define an equivalence relation on Y by agreeing that y1 ~ y2 if and
only if the following three conditions hold for every x in D: (1) f(x,
2/i) =/(&, 2/2); (2) (x, yd e cl pos / if and only if (x, y2) e cl pos / ; and
(3) (x, yλ) e cl neg / if and only if (x, y2) e cl neg / . I t is clear that ~
is an equivalence relation. Let Γ be the set of ~ equivalence classes.

We claim that each element V of Γ is open. To see this let VeΓ
and y0 e V. For each x in D there is a neighborhood Ux x F β of (x9 yQ)
such that f(x', y') = f(x', y0) whenever (x\ y') e Ux x Vx, by Lemma
2.1. Further, since X and Y" are completely regular, Ux and Vx may
be chosen to be cozero sets in X and Y. Now {Lζ: # e D} is an open
cover of D so there exists a countable subset {α(w)}~=1 of D such that
£> S c l U » = i K o Let Fo = n~=i"F*c») Since Γ is a P-space Fo is a
neighborhood of ^0. We claim that Fo C F, and hence that F is open
as desired. To see this, let y1 e Fo. We will show that yt ~ τ/0. To
see that condition (1) holds suppose instead that f(x, yQ) Φ f(x, yx)
for some x in D. Without loss of generality we may assume that
f(x, Vo) < f(x, Ui) so that there exist neighborhoods Ur x F ' of (a?, ?/0)
and U" x F " of (x, yx) such that /(α?', y') < f(x", y") whenever (χ'f yf)
e Uf x F ' and (»", / ' ) e U" x F " . Now ί7r Π TJ" is a neighborhood

of x, a point of D, so there is some n and some x such that x e
Ux[n) n ί / ' Π U". Now (^, 2/J G Ux{n) x F s ( w ) and (x, y0) e Uxίn) x F β ( Λ ) so
/(», 2/1) = /(», 2/o). But (E, 7/0) 6 ^ x 7 ' and (x, Vι) e U" x F " so
/ ( ^ , 2/o) < / ( ^ , 2/i)» ^ contradiction.

To see that condition (2) holds suppose instead that there is
some x in D such that either (x9 yλ) e cl pos / and (x, y0) $ cl pos / or
(x, yλ) ί cl pos / and (x, y0) e cl pos / . Suppose that the former case
holds. Then there is a neighborhood U' x Vf of (x, y0), where U' and
V are cozero sets, such that (U' x F') Π pos / = 0 . For each n in
JV let Un = Z7β(Λ, Π ί7r. Then Z7Λ is a cozero set in X so U*=i^n is a
cozero set of X. Also, since 7 is a P-space, Γ[n=ιVx{n) = Fo is a
cozero set. Therefore, U«=i ^ x V* ̂ s ^ e cozero set of some continuous
function on X xY, say [Jn=1Un x Fo = coz gr. Further, if (x\ yf) e
\J^Un x VQ then /(»', 7/') = f(%\ y0), since (α?f, y') e Ux{n) x Fβ ( 1 l ) for
some n, and /(x r, yQ) ^ 0 since (a?', y0) e U' x F ' Thus /(»', 2/') ^ 0
and so coz g and pos / are disjoint cozero sets. Consequently cl coz g Π
cl pos / — 0 and so there is a neighborhood U" x V" of (a?, yλ) which
misses coz g. But U" Π ί7' is a neighborhood of a?, an element of Z),
so that there is some n and some x such that a? e i7x(Λ) Π Z7' Π Z7" =
Un Π C7". Now (», yx) eUnxVQ so (x, ^ ) e coz g while (ap, y,) e U" x F "
so (x, yj £ coz g, a contradiction. By interchanging y1 and /̂0 in the
above argument one sees that it is also impossible to have (a;, y0) in
cl pos / while (x, yλ) ί cl pos / .

One also sees in an identical fashion that condition (3) holds. Thus
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Vι ~ Vo as desired.
Now choose yv in V for every V in Γ and define fv in C*(X) by

the rule fv(x) — f{x9 yr). Now X is an F-space so, for each V in Γ,
there exists gv in C*(X) such that gF = 0 on neg fVy gv = 1 on pos / F

and 0 ^ #F ^ 1. Define g in C*(X x Y) by the rule g(x, y) = #F(#)
where F is that element of Γ in which # lies. (The function g is
continuous since each V in Γ is open.) Let K and h2 be the charac-
teristic functions of cl pos / and (X x Y)\c\ neg / respectively. Define a
function k on X x Yby k = (g V hL) A h2. Then k — 1 on cl pos / and
k — 0 on cl neg / so to complete the proof it remains only to show
that k is continuous.

Let (x, y) e X x Y. If x $ D then x is a basically disconnected
point of X and so, by Lemma 2.3, (x, y) is a basically disconnected
point of I x 7, Consequently each of g, hlt and h2 are continuous at
(x, y), and so k is continuous at (x, y). If xe D and (a?, y) $ cl pos / U
cl neg / then there is a neighborhood of (x, y) on which k agrees with
the continuous function g so that k is continuous at (x, y). If xeD
and (x, y) e cl pos / then (#, yv) e cl pos / where V is the member of
Γ in which 3/ lies. Therefore, g(x, y) — gv(x) — 1. Let ε > 0 be given.
Then there is a neighborhood U of x on which gv > 1 — ε. Let J7' x
F' be a neighborhood of (a?, y) which misses cl neg f. Then (Uf) Ur) x
(FΠ F') is a neighborhood of (x, y) on which & > 1 — ε and hence k
is continuous at (x9 y). Similarly if x e D and (x, y) e cl neg / and ε >
0 one can find a neighborhood of (x, y) on which k < ε. Thus k is
continuous and hence I x Γ ί s an i^-space.

To prove the parenthetical theorem it is only necessary to note
that if X is a [/"-space one can choose the functions gv in the above
argument to assume only the values 0 and 1. (The characteristic
function of an open-and-closed set is continuous.) Consequently the
function k assumes only the values 0 and 1 and the set A = {(x, y)\
k(x, y) = 0} is an open-and-closed set containing neg / and missing
pos / . Thus J x 7 ί s a [/-space.

Corollary 2.5 is the strongest result we have been able to obtain.
It is shown in Example 3.2 that the conditions given on X are still
not necessary in order for its product with every P-space to be an
jP-space.

COROLLARY 2.5. If X is α CLWL F-spαce (respectively U-spαce),
and there are a subset D of X and a partition Δ of X into open-and-closed
sets such that every point of X\D is a basically disconnected point
and Uf]D is weakly Lindelof for each U in Δ, and if Y is a P-space,
then X xY is an F-space (respectively U-space).



THE PRODUCT OF .F-SPACES WITH P-SPACES 477

Proof. Let / e C*(X x Y) and for each Urn Δ let kΌ eC*(Ux Y)
such that kπ = 1 on pos / Π (U x Y) and kΌ — 0 on neg / Π (?7 x Γ)
Define & in C*(X x Y) by the rule k(x, y) = kv(x, y) where xeU. The
parenthetical statement is similarly proved.

Corollary 2.6 appears in [6] and Corollary 2.7 appears in [8]

COROLLARY 2.6. If X is a weakly Lindelof F-space (respectively
U-space) and Y is a P-space then X x Y is an F-space (respectively
U-space).

COROLLARY 2.7. If X is a compact F-space and Y is a P-space
then X x Y is an F-space.

3* EXAMPLES* The first example establishes that the condition
that a [/"-space be CLWL is not sufficient to guarantee that its product
with each P-space is an j

EXAMPLES 3.1. A CLWL [/-space X and a P-space Y such that
I x Γ i s not an F-space.

Let ω2 + 1 have the order topology and let D = {σ e ω2 + 1: σ is
not the supremum of countably many predecessors} with the relative
topology from ω2 + 1. (The space D differs from the space of [5, 9L]
only by the inclusion of the endpoint, ω2.) Since we have deleted all
non P-points of ω2 + 1 we have that D is a P-space Following the
hints in [5, 9L] one easily sees that elements of C*(D\{α>2}) are constant
on a tail.

Let p be a free ultrafilter on N, the set of natural numbers.
Let E — N U (ω3 + 1) where every point of E is isolated except ω3.
Let basic neighborhoods of ω3 be of the form ZU]7, ω3] where Zep
and 7 < ω3. (We shall use the interval notation to indicate subsets
of ω2 + 1 and ω3 + 1. Thus the interval [0, 7[ in E is {σ e ωz + 1: 0 ^
σ < 7} and does not include points of N.)

Let X = (E x D)\((N U {<*>3}) x {ω2}) and let X have the relative
topology. The reader will observe that the space X bears a strong
resemblance to the space constructed in [4, 8.14]. Both E and D are
Hausdorff spaces with bases of open-and-closed sets so X is a completely
regular Hausdorff space. It is easily verified that E is CLWL, that
the product of a CLWL space with a P-space is CLWL and that open
subspaces of CLWL spaces are CLWL. Consequently, since D is a
P-space, one has that X is CLWL.
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Note that E satisfies the hypotheses of Theorem 2.4 and so E x
D is a [/"-space. Consequently, to show that X is a [/-space it suffices
to show that X is C*-embedded in E x D. To this end let / e C*(X).
For each n in N there exists 7n < o)2 such that / is constant on {n} x
(]%>, &>2[Π D). (We have observed that continuous functions on D\{ω2}
are constant on a tail.) Define the extension /* of / to have this
constant value at (n, ω2). Similarly there is some 70 < co2 such that
/ is constant on {ω3} x (]70, o)2[ Π D) and we may define /* to have this
constant value at (ω3, ω2). The extension /* of / is clearly continuous
at every point of E x D except possibly (ω3, <u>).

For each σ in D\{ω2} there is an aσ < ωs such that / is constant
on ]aσ, ω3] x {7} (since ω3 is a P-point of E\N). Let 7 — sup {7%: ti e
N U {0}} and let a = sup {ασ: σ e D\{ω2}}.

Let ε > 0 be given and let ne N such that |/(m, 7 + 1) — /(α>3,
7 + 1)I < ε whenever meN and m > n. Then on (]#, ω3] (J {m: meN
and m > w}) x ]τ, ω2] /* differs from /*((ϋ3, α>2) by less than ε. Con-
sequently /* is continuous as desired.

Now, let Y — o)2 + 1, where every point is isolated except α>2,
whose basic neighborhoods are as in the interval topology. Since ω2

is not the supremum of countably many predecessors we have that Y
is a P-space.

We claim that 1 x 7 is not an F-space. To see this define /
in C*(X x Γ) by the rule f((n,τ),y) = 1/n if neN, 7 is even and
τ > Ί, f((n, τ), 7) = — 1/n if neN, 7 is odd and τ > 7 and / = 0
elsewhere. (An ordinal is even if it is a limit ordinal or the sum of
a limit ordinal and an even finite ordinal.)

For each 7 < o)2 f is clearly continuous on the open subset X x
{7} of 1 x 7 . Also, for each τ < ω2 f is identically 0 on the open
subset (E x ([0, τ[ Π D)) x ]τ, ωjof 1 x 7 Finally, for each d<ω3,f
is identically 0 on the open subset ({<?} x D) x F of X x Y. Thus /
is continuous on all of X x F.

Now let [7 and F be open sets with cl pos / g Ϊ7 and cl neg / £ U.
We claim that cl U Π cl F ^ 0 and consequently that pos / and neg /
are not completely separated. Let 7 be even, with 7 < ω2. For each
τeD such that τ > 7 one has ((ω3, τ), 7) eel pos / so there is some
Ύ]τ < ω3 such that (]ηT, ω3] x {τ}) x {7} £ [7. Let μr = sup {̂ Γ: τ e ]7,
O)2[ΠJD}. Then (]/^r, ω3[x {ω2}) x {7} £ cl U. Similarly, for each odd
7 < ω2 there is some μr < ω3 such that (]μr, <oz[x {ω2}) x {7} £ clF.
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Let μ = sup {μr: 7 < ω2}. Then μ < ωz and ((μ + 1, ω2), ω2) eclUΠclV
as desired.

The following example shows that the sufficient condition obtained
in Corollary 2.5 is not necessary.

EXAMPLE 3.2. A ?7-space which does not satisfy the hypotheses
of Corollary 2.5 but whose product with each P-space is a ZJ-space.

Let p be a free ultrafilter on N. Let B = N U (co2 + 1) with
every point of B isolated except ω2 whose basic neighborhoods are of
the form Z U {#: 7 < σ ^ ω2} where Zep and a < ω2. (This is the space
T of [7].) Note that B is a CLWL ίf-space with only one non basically
disconnected point. Consequently by Theorem 2.4, its product with
any P-space is a Z7-space.

Let C — ω2 + 1 with every point of C isolated except ω2 and with
basic neighborhoods of ω2 as in the interval topology. Then C is a
P-space. Let X — B x C Then X is a Z7-space. If Y is any P-space
then I x Γ i s homeomorphic to ΰ x ( C x 7 ) and C x Y is a P-space
so J x 7 is a Z7-space, by Theorem 2.4.

Suppose X satisfies the hypotheses of Corollary 2.5 and let D and
A be as given there. There is some member U of A such that (ω2,
ω2) e U. Note also that D 2 {ω2} x C since (ω2, 7) is a non basically
disconnected point of X whenever 7 e C. Since U is open there is
some δ in C such that δ < ω2 and {ω2} x {7 e C: δ < 7} £ C7Π D. Let
j«eC such that μ < ω2 and {7 e C: δ < 7 < μ) is uncountable. Let
Γ = {B x {7}: 7 ^ /£} U {B x {76 C: 7 > μ}}. Let 77 = {FΠ (£7fΊ 7)):
FGT"7}. Then Π is an open over of Uf)D, no countable subfamily
of which has dense union in Uf)D. This is a contradiction since
U Π 7) is weakly Lindelδf.

The author wishes to express his gratitude to the referee for his
constructive and thoughtful criticism.
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