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DIVISORIAL COMPLETE INTERSECTIONS

JAMES HORNELL

A complete intersection in a commutative ring R with
identity is a regular element f of R such that g€ Rand g/f€ IR
(the integral closure of R in its total quotient ring) imply
that g/fe R. It assumed that R is nonimbedded and that IR
is a noetherian R-module, and it is proven that the set of
complete intersections in R is the set of regular elements of
R not contained in any of a certain finite set of prime ideals
of R, the nonnormal divisorial prime ideals of R together
with the prime ideals which occur as an imbedded prime ideal
of a proper principal ideal of R. This finite set of prime
ideals contains the associated prime ideals of the conductor of
IR in R, but it is shown that this is not always an equality.

In §§1-5 are developed properties of zero divisors relative to
normalization and extensions of well known properties of integral
domains in order to obtain the description of the set of complete
intersections in a ring with zero divisors. The associated prime ideals
of a proper principal ideal are then described, the set of complete
intersections is shown to be closed, and some examples are given.
Ring will mean throughout a non-null commutative ring containing
an identity.

1. Valuations on a commutative ring. Let R be a commuta-
tive ring with identity, and let G be an ordered abelian group written
additively. A waluation of R into G is a function v: R— G U {}
for which v(@g) = v(@) + v(8), v(@ + B) = min {v(a), v(B)}, v(0) = =, and
if v(@) = « then a is a zero divisor in R for all @, g€ R (where
o 4+ @ = o0, 0 + oo = oo, co >qa for all a € G). With proof as usual,
v(1) = 0, v(—a) = v(a), and if »(@) < v(B) then v(@ + B) = v(«).

Let M be a multiplicative subset of R, let 4: R— MR be the
canonical homomorphism, and let w be a valuation of M~R. Then
wr is a valuation of R. Conversely, let » be a valuation of B with
v(M)c G, and define w(ya/ygR) = v(a) — v(B) for all ac R, ge M.
Then w is a valuation of M~R. This defines a bijective correspondence
between the valuations of MR and the valuations v of R for which
v(M)C G. Let QR denote the total quotient ring of R, and let IR
denote the integral closure of R in QR. Thus there is a natural
bijective correspondence between the valuations of R, those of QR,
and those of IR.

A valuation v of R is finite on R if v(@) = 0 for all @eR. If v
is finite on R, then the extension of » to IR is finite on IR. If v is
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finite on R, define the center of v in R to be the prime ideal
{a e R|v(a) > 0}.

Let v be a valuation of R. Let N = {a¢c R|v(@) = =}, a prime
ideal of R containing only zero divisors. Let ¢: R— R/N and «+: R/N
— Q(R/N) be the canonical homomomorphisms, and let K, denote
Q(R/N). v extends uniquely to a valuation of K,, v¢a/rg@—v(ax +N)—
v(8 + N), also denoted by v (where vyr¢ is the valuation » of R).
The valuation ring of », R, with maximal ideal m, is defined to be
the valuation ring of » in K,. Let N, = {&¢e QR|v(®) = oo}.

2. Zero prime ideals. Let R be a commutative ring with identity.
A zero prime ideal of R is a prime ideal of R which contains only
zero divisors of K. The zero prime ideals of R, of QR, and of IR are
in a bijective correspondence. If N is a zero prime ideal of R, let
QN = (QR)N, and let IN = QNN IR. A maximal zero prime ideal
of R is a maximal element in the set of all zero prime ideals of R.
Every zero divisor of R is contained in a zero prime ideal of R. R
is monimbedded if every zero prime ideal of R is minimal. A minimal
prime ideal is a zero prime ideal ([1]). If R is nonimbedded then
I(R;) = Ry(IR) for every prime ideal P of R ([1], Cor. 2).

PRrOPOSITION 1. Let N be a zero prime ideal of R. If the injec-
tion j: QR/QN — Q(R/N) (: (/B + QN) — (@ 4+ N)/(B + N)) s surjec-
tive, then N is a maximal zero prime ideal of R.

PROPOSITION 2. Let R have only a finite number of maximal zero
prime ideals, and let N be one. The injection j: QR/QN — Q(R/N)
18 surjective, and j induces an isomorphism IR[IN ~ I(R/N).

Proof. Let a + Ne R/N be regular. Let N, = N, N,, ---, N, be
the maximal zero prime ideals of R, where a¢ N,U --- U N, and
aeN,.,N+++ NN, Let BeNN---NN,and B¢ N,;, U ++- UN,. a+p
is regular in R, @ + gea + N, and j is surjective. j(IR/IN) C I(R/N).
If (@ + N)/(B+ N)eI(R/N), then the representative @ can be chosen
to be regular in R, and for some me N, a;e R

a n a n—1 .
(E)(l—f-m)-}—(g) Quy+ 2o+ 0 =0.
Thus a(1 + m)/B€ IR and j: IR/IN — I(R/N) is surjective.

PROPOSITION 3. Let R be a nonitmbedded ring with a finite num-
ber, m, of zero prime ideals. Then IR =~ R, P --- @ R, where each
ring R; has a unique zero prime ideal and R; is the integral closure
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of RIA; for A, = (R, + -+ + R, + Ry, + -+ + R)NR.

Proof. Let N, .-+, N, be the zero prime ideals of R. Let
o, Ny N; and a;¢ N, for ¢ =1,.--,n, with a,a; =0 for 7+ 7.
a=a + -+ + a, is a regular element of R. Let B, = a;/a. Now
Bi=p; so B;elR, B8, =0 for i~ 7, and B; + --- + 8, = 1. Let
R, = (IR)B3;. If R, had more than one zero prime ideal, R would
have at least # + 1 zero prime ideals. R, + «-- + B, + Rypy + +++ +
R,CIN;,s0 A,CcN,, QR=QR, P ---PQR,. A, =RN(QR, + ---+
QR,_, + QR,,, + -+ + QR,) a contracted ideal, thus I4; = (QR-4) N
IR=R + --++ R, + R, + +--- + R,, and A;Z N, for 1 = j. Now,
by a proof entirely similar to the proof of Proposition 2, the injection
Q(R/A)— QR/QR - A, is surjective and induces an isomorphism I(R/A;) ~
IR/TA, ~ R,.

Let N be the nil radical of R, let QN be the nil radical of QR,
and note that QNtc IR.

PROPOSITION 4. Let R be a noetherian, nonimbedded ring. Then
the injection 1: QRIQN — Q(R/N) (1: (@/B + QI) — (@ + N)/(B + N)) s
surjective, and v iduces an isomorphism IR/IF =~ I(R/MN).

The Proof is similar to the proof of Proposition 2.

3. Prime divisors. Let v be a discrete rank one valuation of
R, finite on R. Let P be the center of v in R, and let N = N, N R.
v is of the first kind on R if N is a minimal prime ideal of R and
B/N is of height one in R/N. Such a discrete rank one valuation,
finite on R of the first kind will be called a prime divisor of R.

ProPOSITION 5. Let R be nonimbedded wmoetherian ring such that
IR/QN is a moetherian R module. If ac QR and if v(a) = 0 for every
prime divisor v of R, them a e IR.

Proof. I(R/N) ~ IR/QN (Prop. 4) is a noetherian R module. Let
N, +--, N, be the zero prime ideals of R. I{R/7) =~ @._, I(R/W)/I(N,/N)
and Q{R/) = @'-, QR/N)/Q(N,;/N). Hence by Proposition 2 with the
fact that the Proposition in question is valid for noetherian entire
rings, « + N;e I{R/N;}, and a + NeQ(R/N) is contained in I(R/N).
By Proposition 4 the injection is surjective, and ac IR + QN = IR.

Let R be a noetherian ring, let @ e R be regular, and let 3 be
an isolated prime ideal of (@) = Re. Let N be a minimal prime ideal
contained in PB. Then P/N is an isolated prime ideal of (¢ + N), and
PB/N is of height one in R/N ([4] vol. I, Th. 29, p. 238). The valua-
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tions of R centered at B consist of a finite number of prime divisors
of R. A prime ideal P of R is of height ome if for each zero prime
ideal Nc B, B/N is of height one in R/N.

PROPOSITION 6 (THE PRINCIPAL IDEAL THEOREM). Let « be a regular
element of a moetherian ring R. The isolated prime ideals of (@) are
of hetght one. Conversely, if B is a prime ideal of height one of R,
there is a regular element a of R such that P is an isolated prime
ideal of ().

A divisorial prime ideal of R is the center of some prime divisor
of R. If % is an ideal of R and if P is a divisorial prime ideal which
is also an associated prime ideal of U, call P a divisorial prime ideal
of A. A prime ideal P of R is normal if R, is normal. (A ring R
is normal if R = IR.)

ProPOSITION 7. Let R be a nonimbedded noetherian ring. If B
is a normal prime ideal of R, then P contains a unique zero prime
ideal of R.

Proof. Let N, ---, N, be the distinct zero prime ideals of R,.
Ry, =R &--- PR, (Prop. 3), R, is local, and therefore t = 1.

Note that a normal divisorial prime ideal of R is of height one
in R.

4. Factorial rings. Let R be a commutative ring with identity.
A regular element « of R is irreducible if @ = gy implies either g
or v is a unit of BR. R is factorial if every regular element of R
is a product of irreducible elements of R and if (@) is a prime ideal
of R for every irreducible element « of R.

PRroPOSITION 8. If R is factorial thern R is normal.
The Proof is as usual.

PROPOSITION 9. Let R= R, P R,, R s factorial if and only if
R, and R, are factorial.

The Proof is an application of the definition.

PROPOSITION 10. Let R have a unique zero prime ideal N. R is
Sfactorial if and only if R[N is factorial and N = QN.

PROPOSITION 11. Let R be a moetherian ring. R is factorial if
and only if every prime ideal of height one of R is principal.
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The Proof is the same as for integral domains, using the principal
ideal theorem (Prop. 6).

5. TFiniteness conditions on IR as an R module. For an over-
ring S of R let €(R, S) be R: R, the conductor of R in S, where R
is the integral closure of R in S. Let N be the nil radical of R.

ProrosITION 12. Let R be a finitely generated ring over a field.
IR is a moetherian R module if and only if N = QNR.

Proof. (=): Let de@(R, IR) be regular, let aeN, and let g R
be regular. «a/B = d(a/dB)e R. (=): Let N,, +-+, N, be the minimal
prime ideals of R. I(R/N;) is a noetherian R, or R/N,;, module ([4]
vol. L., Th. 9, p. 267). I(R/MN) = @i, I(R/N)/I(N;/N) (Prop. 3), I(R/N)/
I(N;/®%) ~ I(R/N;) (Prop. 2), and I(R/%%) is a noetherian R module.
v IR/IN — I(R/N) is injective, so IR is a noetherian R module.

PROPOSITION 13. Let R be a noetherian ring which has a unique
zero prime ideal . If IR is a moetherian R module then R is either
reduced or artinian.

Proof. First assume R = IR. Suppose n € R is nilpotent and
nonzero. Let aec R be regular. For some integer m and some
Be R, Bnja™) = njam+'. Thus » = apn,1l — ap is nilpotent, « is a
unit of R, and R is artinian. For the general case, IR is either
reduced or artinian. If IR is reduced, so is R. If IR is artinian
then IR = QR, by hypothesis €(R, IR) contains a regular element,
and thus R = IR is artinian.

PROPOSITION 14. Let R be a finitely generated ring over a field,
and let R have a wunique zero prime tdeal. IR 1is a moetherian R
module if and only if R is either reduced or artinian.

EXAMPLE. R = k[, Y]w,,/(@@ — 9%, y(@* — 9°)) is imbedded at
(x, ¥), is normal, and is neither reduced nor artinian. R is factorial,
but R/ = k[z, y]/(2* — %°) is not factorial.

6. Imbedded prime ideals of proper principal ideals. Let R
be a noetherian ring. A proper principal ideal is a principal ideal of
R generated by a regular nonunit of R. An imbedded prime ideal
of an ideal ¥ is an associated prime ideal of ¥ which is not isolated.

THEOREM 1. Let <7 be the set of all prime ideals of R which
occur as an embedded prime ideal of a proper principal ideal. Let
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@ be a regular nonunit of R. The following are equivalent
(@) P is an tmbedded prime ideal of (&).
(b) Pezand acP.

Proof. See [4] vol. II, Appendix 6 for the definitions of grade
and prime sequence. Suppose that Pe = and aeP. There is a
regular nonunit B of R such that P is an imbedded prime ideal of
(8). Hence grade (Ry) = 1. If P were not an imbedded prime ideal
of (@), Ry/R,-a would contain a regular nonunit, and grade (R,)
would be greater than one.

7. Complete intersections in a ring. Let R be a commutative
ring with identity. A regular element f of R is a complete intersec-
tion in R if and only if IR- f N R = Rf. Equivalently if g R and
g/f € IR then g/f € R. For a noetherian ring R, let %% denote the
set of associated prime ideals of an ideal ¥ excluding the prime ideal
R (so that &R = @).

THEOREM 2. Let R be a nonimbedded ring such that IR is a noetherian
R module. (Then R is moetherian. Let & = (1,7 (d) where the
intersection is over all regular elements d of €(R, IR).

@ € =9o2UYCR,IR). Thus & is a finite set. (The com-
plement of & in & consists of the prime ideals in € of height one,
and & contains the nonnormal divisorial prime ideals of R.)

(b) Let f be a regular element of R. The following are equivalent.

1. f is a complete intersection in R.

2. f is contained in mo element of & .

3. The divisorial prime ideals of (f) are normal, thus isolated,
and (f) is unmized.

The Proof follows. Let € denote C(R, IR). IR, = Ry-IR ([1]).

LEMMA 1. Let de @ be regular, and let fe R be regular. If f
is contatned in no element of 7 (d), f i1s a complete intersection in R.

Proof. Let g R with g/f e IR. Then d(g/f) =c< R, soce(d): (f)
= (d), and g/f = c¢/de R.

LEmMMA 2. If f, is a complete intersection in R, then f is con-
tained in no element of €.

Proof. Let ceC: (f). Thenc¢f(IR)C R, so ceC, and C: (f) = €.
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LEmMmA 3. If de @€ is regular, then .o7€ C . o7 (d).

Proof. Let P be a prime ideal of R, e .o (d). If P is a zero
prime ideal, then P¢.orC. Let fe R, be regular with Ryd: R,f =
R,d. deR,€ = C(R,, Ry IR) = C(R,, IR,). f is a complete intersec-
tion in R, (Lemma 1), by Lemma 2 R, ¢ .-vC(R,, IR,), and P ¢ .o/ C.

LEMMA 4. Let f be a complete intersection in R, and let g be
a regular element of R with f contained in no divisorial prime ideal
of (9). Then f 1s contained in no element of .7 (g).

Proof. Let ce(9): (f). For some he R, c¢f = gh, and v(f) < v(h)
for every prime divisor v of R. Then /f € IR (Prop. 5), h/f € R, and

ce(g).

LEMMA 5. If P is a nondivisorial associated prime tdeal of a
principal tdeal generated by a regular element, then Pe & .

Proof. Let P be a prime ideal containing a regular element with
PBe &, and let g be a regular element of B. By Lemma 1 there is
a complete intersection f in R,Y contained in no divisorial prime ideal
of R,g. Apply Lemma 4.

LEMMA 6. Let B be a divisorial prime ideal of RB. If B contains
a complete intersection of R, then P contains a unique zero prime
ideal (and thus B ts of height one in R).

Proof. Let fe% be a complete intersection in R, let N be a
minimal prime ideal of R contained in ¥ with B/N of height one in
R/N, and let v, ---, v, be the distinct prime divisors of R centered
at B with v;(N) = {oc}. If there is a zero prime ideal distinct from
N contained in %, it follows that there is a minimal prime ideal
distinct from N contained in 3. Let N, = N, N,, ---, N, be the dis-
tict minimal prime ideals of R which are contained in 5. Let ge
N,N-+-+N N, and g¢ N,. Let m; = v;(9) >0 and let n; = v;(f) for
1=1,--+,s. By raising g to a power m; = mn,; for 1 =1, ---, s can
be assumed. Assume m,/n, = m;/n; for 1 =2, .-+, s, and let m = m,,
and n = n,. A factor may be introduced into g without destroying
the above so that for all prime divisors w of B with N, N R #
N, -+, N, w(g) = mw(f). Now for all prime divisors w of R, w(f™) <
w(g™), so g"/f™e IR (Prop. 5), and ¢g"/f™ e R. »,(g"/f™ = 0. However,
if w is a prime divisor of R with N, N R = N,, then w(9"/f™) = oo,
so g"/f™e N,C P which is a contradiction.
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LEMMA 7. Let de € be regular. If a divisorial prime ideal B
is not an associated prime ideal of (d), thenm P is normal.

Proof. de@(R,, IR;), so in R, there is a complete intersection
feRPB. B is of height one R (Lemma 6), and € ¢ B.

Proof of a. € C ¥ by Lemma 3, and the non-divisorial prime
ideals in & are in ¥ by Lemma 5. A divisorial prime ideal in &
is nonnormal by Prop. 7, and by Lemma 7 it is in &. Thus = U
YCcCc®. U xy€o% for an isolated prime ideal of a principal
ideal is of height one, and the height one prime ideals in & are in
€. The last assertion is Lemma 7.

Proof of b. (1=2): By Lemmas 6 and 2 there is a regular
element d of € which is contained in no divisorial associated prime
ideal of (f). Apply Lemma 4. (2= 3): If 9 is a divisorial associated
prime ideal of (f) PB is normal (Lemma 7). (f) is unmixed (Lemma
5) B=1:(/):€=(f). If ge R and g/f e€IR, then g€ (f), and
g/f € R.

PROPOSITION 15. Let R be a commutative nonnull ring with
identity, and let f and g be complete intersections in R. Then fg is
a complete intersection in R, and if flge R it is a complete intersec-
tion tn R. Let fe R be such that f™ is a complete intersection in R
for some integer n = 1. Then f is a complete intersection in R.

Proof. Let he R. If h/gf € IR then h/g € IR, h/g € R, and h/gf € R.
If g/f e Rand hf/ge IR, then hf/ge R. If h/f € IR, then hf"/f*c IR
and h/f € R.

Let R be a nonimbedded noetherian ring, and let D be the divisor
group of R, the free abelian group generated by the prime divisors
of R (§3). If fis a regular element of QR, let (f) = >, v(f) - v where
the sum is over all prime divisors v of B. Let P= {(f)|f€QR, f
regular}, the subgroup of D of principal divisors, and let I be the
subgroup of P generated by {(f)|f is a complete intersection in R}.
I=Pif and only if R = IR, and thus I =D if and only if R is
factorial (Prop. 11). PJ/I is torsion free (Prop. 15).

Let We D be a complete intersection, that is, let A = 0 and A e 1.
Then (Prop. 15) there is a complete intersection f in R with % = (f).
If heR,(h)el if and only if h is a complete intersection in E.

8. Examples. 1. Let R be a reduced finitely generated ring over
a field, of height one. The complete intersections in R are those
regular elements of B which do not vanish at the nonnormal (singular)
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primes of R. E.g., for the plane curve y* — a°, P/I = Z, the integers,
and for y* — o — 2%, PII = Zp Z.

2. Let R be the coordinate ring of a reduced complete intersec-
tion in affine space. Then & contains only prime ideals of height
one of R. For R is Cohen-Macaulay, and in particular every proper
principal ideal is unmixed. E.g., the surfaces y* — 2% 4* — @° — 22°
in affine 3-space.

3. Let R = k[t tu, tu?, w'] C k[t, w] the polynomial ring. IR =
k[t t*u, t*w?, tu?, u']. The two affine localizations FK[1, w, »°, '] and
k[t t°, ¢, 1] of R are integrally closed. Hence & = {(t!, t°u, tu?, u*)}.

4. Let R = k[t°, t'u?, t*u®, tu®, u®)] C k[t, u] .
IR = K[, t'u, t'u?, t2u®, t*u*, tu°, uf] ,
and
€ = (', tud, tu®, u) = P

a prime ideal. ¢, (t*w’)*/t°c IR, ¢ R, so (t°) is imbedded at M =
@, B), and & = {P, M}. Thus € may be strictly less than & .

5. Let R = k[x, v, ?]/(2z, zy). (x, ¥, 2) is the only nonnormal prime
ideal of R, and it is divisorial.

6. Let R be a reduced, finitely generated ring over a field k.
Then there exist f,, «--, f, € R such that (f, ---, f,) is of codimension
s in R, is unmixed and self radical. Induct on s. For s = 1, choose
f. such that the locus of f, is k-transversal to Spec R, and such that
fi is contained in no element of ¥°. The step from s — 1 to s is the
same as for s = 1 on the ring R/(f, -+, f,—). By affine localization,
it follows that a projective reduced algebraic variety possesses a com-
plete intersection of any codimension (which is locally a complete
intersection of codimension s given globally by s forms contained in
the homogeneous coordinate ring of the variety).

7. Let R be a nonimbedded ring such that IR is a noetherian
R module, let e %, and suppose that the order function w of R,
([2], vol. II, p. 249) is a valuation. Let m = R,P. Let fem, with
f contained in no other element of #(R,). Let q be a primary com-
ponent of (f) associated to m. For some integer n = 0, m"**Y ' Cq.
Thus if ge R, if g/fcIR, and if w(g) = n + w(f), then g/f e R.
Let f’em be contained in no other prime in (R, with #’ such
that w(g) = n’ + w(f’) and g/f’ € IR, imply g/f’ € Ry. Let g€ By with



226 JAMES HORNELL

w(g) = n + w(f’) and g/f'eIR,. There is an integer ~>=0 such
that w(gf?) = n’ + w(f’). Then gf?/f’ e Ry, and g/f’ € Ry. Let a(P)
be the subset of nonnegative integers % such that for any fem con-
tained in no other prime in & (Ry), g € Ry, g/f € IR, and w(g) = n +w(f)
imply g¢g/f e Ry. Thus a(P) contains all but finitely many of the
nonnegative integers. Let f be an element of m contained in no other
prime in % (R,). If » =0 is such that ge R, g/f € IR, and w(g) =
n + w(f) imply g/f € Ry, and if n + w(f) € a(P), then = a(P).

8. Let R be noetherian and have a wunique nonzerc zero prime
ideal. Then the complete intersections in R are the units of R. Let
n %= 0 be nilpotent, and let f be a complete intersection in R. Then
n = ¢fn for some ce R, (1 — ¢f)n = 0, so 1 — ¢f is nilpotent and f is
unit.

9. Projective algebraic varieties and ov-equivalence. Let V be
a projective algebraic variety defined over a field %, such that Ik[V]
is a noetherian 4[ V] module where k[ V] is the homogeneous coordinate
ring of V relative to a fixed projective embedding. € = C(k[V], Ik[V])
is a homogeneous ideal of k[V], and an affine localization of € is the
conductor of the affine localization of k[V] in its integral closure.
Affine localization also preserves primary decomposition. Thus the
prime ideals in & = < (k[V]) are homogeneous, & can be defined
locally, and & is a biregular invariant over k if the irrelevant ideal
I of k[V] is ignored. Let D be the group of divisors of V over k.
e D is a complete intersection on V if and only if locally U is a
complete intersection and U = (F') for some homogeneous element F
of k[V]. Call Fek[V] a complete intersection on V if F is homo-
geneous and if (F') is a complete intersection on V, which is true if
and only if F'is contained in no prime in % other than Jif e & .
The discussion of Example 7, §8 holds for & where degree is the order
funetion w. Define a(V) similarly to a(J). By a Segré transforma-
tion a projective variety V’ can be found which is biregularly equiva-
lent to V and for which a(V’) contains the positive integers.

Let Fek[V] be regular, homogeneous, non-constant and contained
in no prime of & other than possibly & Let S = k[V ~ V(F)] ~
Uz and let 0 = S7'K[V ~ V(F)]. o is a biregular invariant of V
over k. Let U, BeD. Define A — B if and only if B = A + (f) for
some fe€o. Define A ~ B, A is v-equivalent to B, if and only if A —B
and B — ¥ which is equivalent to B = A + (f) for some unit f of o.
(A unit of o is a quotient of two complete intersections on V in k[V]
of equal degree.) The complete system of e Dis |A| = {BeD|B =0,
A —B}. {feo|W + (f) = 0} is a function medule. &7, = {(F)|Fek[V]
homogeneous of degree mj}.
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PROPOSITION 16. For all m sufficiently large there is a complete
intersection on V in k[V] of degree m and <2, is a complete system.
If k is infinite and algebraically closed in k(V), then &£, 1s a com-
plete system if and only of mea(V).

Proof. If k is infinite then there is a linear form L e k[V] con-
tained in no prime in & other than possibly &. If k is finite, let »
be a prime, and let &, for 7 = 1,2, --- be an extension field of k£ such
that &k, C k;, and [k;,.: k;] = p. For some k;, there is a linear form
L defined over k; contained in no prime in & other than &. The
k;/k norm of L is a complete intersection on V in k[V] of degree p?
for some ~. Using two distinct primes, it follows that there is a
complete intersection of degree m for all m sufficiently large.

Let m e a(V), and let F e k[V] be a complete intersection of degree
m. £, C|(F)|. Let Ae|(F)|. There are H, G € k[V] homogeneous
of equal degree, (G) a complete intersection on V with % = (H/G) +
(F). So FH/Gek[V], and &5, = [(F)].

Now suppose k is infinite and algebraically closed in %(V). Sup-
pose &4, is a complete system, and let (F') € &¥, where F is a com-
plete intersection on V in k[V]. Then <&, = [(F')|. Let G be regular
homogeneous element of k[V] contained in no prime of & other than
. Let Hek[V] homogeneous with (H) = (G) and deg H = deg G + m.
Then (F) — (H) — (G), there is an Eck[V] with (E) = (H) — (G),
H/GE is algebraic over k, and H/Gek[V]. Thus mea(V).
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