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ON c-REALCOMPACT SPACES AND LOCALLY

BOUNDED NORMAL FUNCTIONS

KENNETH HARDY AND R. GRANT WOODS

Let X be a completely regular Hausdorff space. Char-
acterizations are obtained of the orealcompact spaces lying
between X and its Stone-Cech compactification βX, and of
those spaces lying between X and its minimal orealcompact
extension uX. These results are used to derive several neces-
sary and sufficient conditions for the equality E(υX) = υE(X)
to hold, where E(X) is the absolute of X and υX is the
Hewitt realcompactifioation of X.

A subset A of a topological space X is called regular closed provided
A = c\x intxA. The complement of a regular closed set is said to be
regular open. The symbol R{X) will denote the family of all regular
closed subsets of X. It is well known that R(X) is a complete Boolean
algebra under the algebraic operations which are set out explicitly in
[11, Theorem 1.1]. In particular, we will recall for our needs here
that A A B = clx intz(A Π B) defines the meet of A, B in R(X) and
if (Aa)a is a family of regular closed sets then elz\JaAa is regular closed;
it is the join of (Aα)α in R{X). A filterbase in R{X) is a subfamily
F S R(X) such that φ 0 F and A A B e F for all A, B e F. A filterbase
F is called a filter if A e F and B e R(X) with A s B implies BeF.
If X is dense in a space T then one may easily show that the map
A—+elτA is a Boolean algebra isomorphism of R(X) with R{T).

For a real-valued function / on X the upper limit of / at x e X
is defined as follows:

f*(x) = inf {sup {f(y) \yeU}\Ue N(x)} ,

where N(x) is the neighborhood system at x. The lower limit of /
at x is defined dually and is denoted by /*(»). Then /* and /* are
extended real-valued functions on X and are respectively upper semi-
continuous (use) and lower semicontinuous (lsc). A real-valued func-
tion is called normal use if (/*)* = / at each point of X. Dually, /
is normal lsc if (/*)* = / at each point of X.

Dilworth initiated the study of bounded normal use functions and
used them to obtain the Dedekind-MacNeille completion of the lattice
of bounded continuous functions on X. The following result from [1]
which is valid in the present setting will be used below without specific
reference.

THEOREM. An use function f on X is normal iff for each real
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number λ, {x \ f(x) > λ} is a union of regular closed sets.

A corollary of the Theorem is that the characteristic function of
a regular closed (open) set is normal use (lsc).

Some new properties of normal functions have been given in [7].
We will recall two of these results.

LEMMA. Two normal use (lsc) functions which agree on a dense
subset of X are equal everywhere on X.

LEMMA. If f is normal use on X and X is dense in T then f
has a unique (extended real-valued) normal use extension f to T given
by the expression

f(x) = inf {sup {f(y)\yeUf]X}\UeN(x)}, xeT.

If f is bounded on X then f is bounded on T.

Unless stated otherwise, the space X will always be completely
regular and Hausdorff. We refer the reader to [6] for general back-
ground, notation and terminology.

The authors would like to thank Professor John Mack for helpful
correspondence on the subject treated herein.

1* The c^realcompact extensions of a space* In [2, p. 576] a
space is called c-realcompact if for every point p e βX — X there exists
a normal lsc function / on βX with / > 0 on X and f(p) = 0. By
using the characterization of realcompact spaces in [4, p. 152] it is
clear that every realcompact space is c-realeompact. Also, one can
easily show that if (Ya)a is a family of c-realcompact spaces with
X £ Ya £ βX for each a, then Γ\a Ya is c-realcompact.

LEMMA 1.1. A space X is c-realcompact iff for every point pe
βX — X there exists a decreasing sequence (An)neN in R(βX) with p e
ΓL An while ΓL (AnΓ\X) = 0 .

Proof. Suppose that X is c-realcompact. Choose p e βX — X and
let / be a normal lsc function with / > 0 on X and f(p) = 0. Then
Bn = {x\f(x) < Ijn) is a union of regular closed sets. Hence, An =
cl/jx Bn is regular closed and An+1 § An for each n. Since A% £
{x\f(x) ^ 1/n} we have that ΓL (K Π X) = 0 while f(p) = 0 implies
that p e f l n Λ Conversely let peβX~X and let (An)neN be a
decreasing sequence of regular closed sets with the required properties.
Define fn(x) = 1 for x e βX — An and fn(x) = 0 for x e An. Then each
fn is normal lsc and hence / = Σ 2~nfn is normal lsc with f(p) = 0
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and / > 0 on X
A Hausdorff space is called almost realcompact [5] if for every

ultrafilter JF of open sets with Πoe ̂ clx0 — 0 there exists a sequence
(0Λ)Λ in ^ such that Π^clx0% = 0 . For each such J*7 the family
j ^ = {clx0\0e^~} is an ultrafilter in the Boolean algebra R(X) and
conversely, given an ultrafilter Stf in R(X), the family J^ — {V\ V —
i n t x F and i n t x A S V for some Ae Ssf] is an ultrafilter of open sets
in X. This information is enough to prove the following:

THEOREM 1.2. A space X is almost realcompact iff every ultra-
filter in R(X) with the countable intersection property converges.

The following result appears in [2, p. 577] but we have an alternate
proof.

THEOREM 1.3. Every completely regular Hausdorff almost real-
compact space is c-realcompact.

Proof. Let X be almost realcompact and choose p e βX — X.
Then there exists an ultrafilter jzf in R{X) with {p} — ΓLe^cl^ A.
Thus, ΓLe.*- A — 0 and by Theorem 1.2 there is a countable subfamily
(An)neN of j y (which can be chosen to be decreasing) with f\nAn= 0 .
Then, Bn — clβx Ane R(βX) and (Bn)%eN is decreasing with pef)nBn.
However, f\n (B» Π X) = Dn-A* ~ 0 and by Lemma 1.1 we are done.

An example of an almost realcompact space which is not realcom-
pact is given in [3, p. 350]. The space X constructed in the example
given on page 240 of [9] is c-realcompact but not almost realcompact.

By a c-realcompact extension of X we will mean any c-realcompact
space Y with I g Γ g βX. Our immediate aim is to identify all c-
realcompact extensions of X.

A real-valued function / is locally bounded at x provided / is
bounded on some neighbourhood of x. Let LN(X) denote the set of
all normal use functions which are locally bounded at each point of
X. For feLN(X), let / denote the unique (extended real-valued)
normal extension of / to βX. Write Wf — {x e βX\f is locally bounded
at x}. Now for each x in X there is an open neighbourhood U of x
on which / is bounded. If V is open in βX with U = V Pi X then
the definition of / shows that / is bounded on V. Hence, I g Wf S
βX and β Wf = βX. Further, Wf is open in βX so that Wf is locally
compact.

LEMMA 1.4. For each f e LN(X), Wf is c-realcompact.

Proof. Consider peβX - Wf. Case 1: If f(p) = oo then Bn =
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{x \f(x) > n) is a union of regular closed sets and so An — c\βxBn is
regular closed. Thus, (An)neN is a decreasing sequence of regular closed
sets with pe Γ\nAn. However, / is locally bounded at each point of
Wf and this implies that f\n{An Π Wf) = 0 . By Lemma 1.1 we have
that Wf is c-realcompact. Case 2: If /(#) < oo then / (being use)
is locally bounded above at p. Thus, / is not locally bounded below
at p which implies that p e clβx{x \f{x) < λ}, for all real λ. The set
On = {x \f(x) ^ n} is an intersection of regular open sets and has non-
void interior so that A ^ e l ^ i n t ^ O ^ is nonempty regular closed. Now
(An)neN is decreasing and peAn for each n. Finally, Γ\n(AnΓ) Wf)=0
as before and we apply Lemma 1.1 to obtain the result.

LEMMA 1.5. // Y is c-realcompact with I g YξΞ-βX then for
each point p e βX — Y there is f e LN(X) with Y £ Wf and p g Wf.

Proof. By Lemma 1.1 there exists a decreasing sequence (An)neN

in R(βX) with p e Π Λ while f\n(An n Y) = 0 . Define gn(x) = 1
for xe An and #,>(#) = 0 for x e βX — An. Then, gn is normal use on
βX and so is g = Σ 2~~w</w. There exists an order-preserving homeo-
morphism Λ: [0, 1] —• [0, oo] and it follows that hog = / is normal use.
Now / is locally bounded at each point in Y and hence f\X — fe
LN(X). However, f(p) — + oo so that p £ Wf.

We now have the following situation: For any family J^ of
locally bounded normal use functions on X, the space f]/e^-Wf is c-
realcompaet. Conversely, Lemma 1.5 shows that any c-realcompact
spaces Y with X g YξΞ? βX can be written in this form, where ^~ =
{/ G LN(X)\ YξΞ Wf}. This proves the following analogue of the de-
scription of the realcompact spaces between X and βX in [6, 8B].

THEOREM 1.6. The c-realcompact extensions of X are precisely
the spaces O/esrW/, for some indexing set ά^ £ LN(X).

The following corollary also appears in [2, p. 578].

COROLLARY 1.7. (a) There exists a minimal c-realcompact exten-
sion of X, namely uX — Γ\feLN(x)Wf. (b) uX is the largest subspace
of βX to which every function in LN(X) has a locally bounded normal
use extension.

The space uX will be called the c-realcompactification of X. Thus,
X is c-realcompact iff X = uX. The equality LN(X) - LN(uX) will
indicate that every function / in LN(X) can be uniquely extended
to a function fu in LN(uX).
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Recall that LN(X) is a lattice-ordered ring [8]. The order in
LN(X) is defined point wise. However LN{X) is not closed under
pointwise ring operations and we will therefore outline the definition
of sum for / and g in LN(X): Let /, g denote their normal exten-
sions to βX. There exists a dense Gδ set W £ βX on which / and
g are both continuous and real-valued [7]. If U = W Π Wf Π Wg then
(f \U + g\U) = u is continuous on U. Let h = ΰ\X. It follows that
ΰ is locally bounded on Wf ΓΊ Wg so that h e LN(X) defines the sum
of / and g uniquely. The other operations are defined analogously
and under these LN(X) becomes a ring. It is evident from these
definitions that the following result holds.

THEOREM 1.8. The mapping f —»fu is an isomorphism of the
lattice-ordered rings LN(X) and LN(uX).

The next theorem gives the analogue of 8.6 in [6].

THEOREM 1.9. Let i S Γ g β l . The following conditions are
equivalent.

(a) XQT^uX.
(b) Given a decreasing sequence (An)neN in R(X), then

Proof, (a) implies (b): Assume that there is a decreasing
sequence (An)neN in R(X) and a point pe f\nc\τAn — clτ f)nAn. Let
Bn = c\βx An so that An= Bnf] X and clτ An = Bn Π T. There is a
regular closed set B in βX with peintβxB and B Π clτf\nAn = 0 .
If Kn — Bn A B for each n then (Kn)n6N is a decreasing sequence
in R(βX) with pef\nKn while f\n{Kn Π X) = 0 . Thus, as in Lemma
1.1, we can find a nonnegative normal lsc function / on βX with
/ > 0 on X and /(p) = 0. Now X s coz / = {α; € βX\f(x) > 0}, which
is c-realcompact. Hence w i g coz / and p £ uX. This contradicts (a),
(b) implies (a): Suppose that pe T and p $ uX. Since uX is c-real-
compact we have a decreasing sequence (Bn)neN in R(βX) with pe
ΓL#W while C\n(Bnf]uX) = 0 . Then (B% Π X)neN is a decreasing
sequence in R{X) for which (b) is false.

A topological space X is called weak cb if each lsc function which
is locally bounded on X is bounded above by a continuous function
Mack and Johnson defined weak cb spaces and gave some of their
properties in [9]. In particular, if X is weak cb then for each fe
LN{X) there exists g e C(X) with f ^ g on X.

LEMMA 1.10. // X is weak cb and X £ Y £ uX then Y is weak cb.
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Proof. For any / e LN( Y) we have h = f | X is in LN(X). Thus
there exists g e C(X) with h ^ g and so, if gυ e C(υX) denotes the
continuous extension of g to υX we have f ^ gυ\Y.

It is known that X is weak cb implies oX is weak cb [9, p. 239]
but that the converse fails. However, we do have the following:

THEOREM 1.11. X is weak cb iff uX is weak cb.

Proof. The proof is a trivial consequence of the Lemma and the
fact that LN(X) = LN(uX).

The following result is stated without proof in [2, p. 578].

COROLLARY 1.12. If X is weak cb then uX = υX.

Proof. uX is c-realcompact and by Theorem 1.11 it is weak cb
which implies that it must be realcompact [2, p. 576].

THEOREM 1.13. The following conditions are equivalent:
(a) X is pseudocompact
(b) Every function in LN(X) is bounded
(c) uX - βX.

Proof, (a) implies (b): Each pseudocompact space is weak cb [9]
and hence by the corollary we have uX = υX. However, υX = βX
[6, 8A] which shows that LN(X) = LN(βX) and we are done, since
every locally bounded function on a compact space is bounded.
(b) implies (c): It is known [8] that every bounded normal use func-
tion has a bounded extension to βX which shows that uX = βX.
(c) implies (a): If uX = βXthen υX = βX and we may apply [6, 8A]
to conclude that X is pseudocompact.

COROLLARY 1.14. A space is compact iff it is both pseudocompact
and c-realcompact.

2. The equality E(υX) = υE(X). The following facts and nota-
tion appear in [11] and will be recalled for our future use. For every
space X, there is an extremally disconnected space E(X) which can
be mapped onto X by a perfect irreducible mapping. The space E(X)
is unique up to homeomorphism and is called the absolute of X. Let
S denote the Stone space of the Boolean algebra R(βX) and let
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λ: R{βX) —> B(S) be the canonical Boolean algebra isomorphism of
R{βX) with the Boolean algebra B(S) of open-and-closed subsets of
S. There exists a perfect irreducible mapping k: S-+ βX and we
have k[X(A)] = A for all A in R(βX). Finally, we may identify E(βX)
with S and E{X) with the dense subspace kr[X] of S.

It is well-known that the equality E(βX) = βE(X) holds for
every X. The search for necessary and sufficient conditions under
which the corresponding equality E(υX) = υE(X) holds may be con-
sidered to be one of the main motivations of the present paper. In
fact the equality does hold for a large class of spaces as we now
proceed to show.

A zero set Z in X is a subset of the form Z — /*~(0) for some
fe C(X). The symbol %{X) will denote collection of all zero sets in
X. The following result is easily established.

LEMMA 2.1. In an extremally disconnected space, every zero set
is the intersection of a decreasing sequence of open-and-closed sets and
conversely.

LEMMA 2.2. Given a decreasing sequence (Un)nQN of open-and-
closed subsets of E(βX) then E(υX) = υE(X) iff Γ\n(UnΓ\ E(X)) = 0
implies C[n{Un Π E(υX)) = 0 .

Proof. By the introductory remarks in this section, we may
identify E(υX) with k *~[υX] so that E{X) £ E(υX) £ E(βX). Also by
[6, 8.13], E(υX) is realcompact and hence υE(X) £ E(υX). Now 2£(X)
is C*-embedded in βE(X)(= E(βX)) and hence ZejT(#(X)) iff Z -
Z' n #(X) for some Z' 6 3T(E(βX)). Thus, Lemma 2.1 shows that
Ze ^{υE(X)) iff there is a decreasing sequence (Un)neN of open-and-
closed subsets of E{βX) with Z=Πn(Un D ̂ ( X ) ) . By [6, 8.8], ϋJ5(X)
can be characterized as that realcompact space Y, E(X) g Γ g βE(X)
such that Ze ^{ Y), Z nonvoid, implies Z Π E(X)Φ 0. Thus, vE{X) =
E(υX) iff given a decreasing sequence (Un)neN of open-and-closed sub-
sets of E(βX) we have ΓUEΓ. Π E(υX)) Φ 0 implies n»(ί7 Π E(X)) Φ
0 . The contrapositive of the latter statement gives the result.

We are now in a position to prove two main results which together
provide an answer to the problem stated in the introduction to this
section.

THEOREM 2.3. Given a decreasing sequence (An)neN in R{βX)
then E(υX) = υE(X) iff Πn(An Π X) = 0 implies Πn(An Π υX) = 0 .
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Proof. For every decreasing sequence (An)n6N in B(βX) there
exists a decreasing sequence (Un)neN of open-and-closed subsets of E(βX)
with Un — X(An) for each n, where X is the Boolean algebra isomor-
phism defined above. Then, by Lemma 2.2, E(υX) = υE{X) iff
C\n{X{An) Π Ar[^X]) ^ 0 implies Π P Φ U Π AΓ[X]) Φ 0 . Also, since
fe is onto we have E(υX) = UJE^X) iff &[Γ)JΨU] Π ΌXΦ 0 implies
Λ[n^λ(AJ] n X ^ 0 . Thus, the theorem will hold if k[ΠnX(An)] =
Γ l ^ To show this, notice that k[Γ\nX(An)] S Π &IM^n)] = Π A -
Conversely, take P G Π » 4 and consider ^K = {Fe R(βX)\pe int^F} U
(An)neN. It is clear that ^V is a filterbase in R{βX) and as such
may be embedded in an ultrafilter jzf in R(βX). Now j ^ is a point
in E(βX) and j ^ e λ ^ ) for every F e o^Γ By the definition of k
[11] we have k(jzf) = p, since s$? converges to p. Thus, f]nAnQ
k[Γ\nX(An)] and the proof is complete.

THEOREM 2.4. TΛe following statements are equivalent.
(a) E(υX) = uE{X).
(b) Given a decreasing sequence (An)neN in R(X) then

(c) uX = υX
(d) LN(X) = LN(υX).

Proof, (b) iff (c): This follows from Theorem 1.9. (c) iff (d):
Apply Theorem 1.8. It is easy to show that (b) implies the condition
in Theorem 2.3 and the method used in the first part of the proof
of Theorem 1.9 shows that the converse holds. Hence, (b) iff (a)
which completes the proof.

It may be mentioned that Theorems 2.3 and 2.4 give conditions
which are both necessary and sufficient for the equality LN(X) —
LN(υX) to hold. This answers more fully the question raised in [9,
p. 237] where only necessary conditions were given.

In the remainder of this section we will give an internal charac-
terization of those spaces for which any one of the conditions of Theo-
rem 2.4 is satisfied.

Recall that a family ^ of subsets of X has the countable inter-
section property (CIP) if (}%FnΦ 0 for each sequence (Fn)neN of sets
drawn from J^~.

Recall that an ultrafilter sf in R(X) converges to p e βX if
{p} = Γ L e ^ c l ^ i l .

LEMMA 2.5. The c-realcompactification uX has the following de-
scription: uX = {pe βX\each ultrafilter in R(X) converging to p has
CIP}.



ON c-REALCOMPACT SPACES AND LOCALLY BOUNDED NORMAL FUNCTIONS 655

Proof. Let p e βX be such that every ultrafilter in R(X) con-
verging to p has CIP and let T be c-realcompact with I g Γ S βX
If pg T then there is a decreasing sequence (An)neN in R(βX) with
peΓ\nAn and Γ)n(Anf) T) = 0. The family {Fe R(βX)\pemtβxF}[j
(An)neN is a filterbase in R(βX) which can be embedded in an ultra-
filter jzf in R(βX). Then, {UΠ X|£fe J^r} is an ultrafilter in #(X)
which converges to p but fails to have CIP, contrary to assumption.
Thus p is in every c-realcompact space containing X. Conversely,
given p e βX, suppose there is an ultrafilter j ^ in R(X) converging
to p and a sequence (An)nBN in Sxf with f\nAn — 0 . Let Bn —
cl[Πΐ=1mtχA*]. Then (BΛ)nβΛ is decreasing in R(βX) with f\n(BnnX) =
0 and p e Π -̂B^ The second part of the proof of Theorem 1.9 may
be used to conclude that p £ uX. Thus, the proof is complete.

Mandelker [10] defines a family J?~ of subsets of X to be stable
provided each / e C(X) is bounded on some member of

LEMMA 2.6. An ultrafilter Jϊf in R(X) is stable iff S*f converges
to a point of υX.

Proof. We modify the proof of Theorem 5.1 in [10]. Let J%? be
an ultrafilter in R(X) and set {p} = ΓLe^cl^ A. If peβX — υX
there exists feC(X) with f*(p) — °° where /* is the extension to
βX of /: X—>i2* and jβ* is the one-point compactification of R. The
set {x e βX\f*(x) e i£* — (—n, n)} is a neighbourhood of p for each n >
0 and hence meets every A in J ^ It follows that / is unbounded on
every member of Ssf so that Ssf is not stable. Conversely, suppose
p 6 υX and choose / e C(X). Now f*(p) is finite and hence there exists
B e R(βX) with p e int^ B and /* bounded on B. However, int^x B Π
int^x A Φ 0 , for all A in sxf and the maximality of %f implies that
B Π X is in J*f. Thus / is bounded o n β f l l and j y is stable.

THEOREM 2.7. For any space X, the following are equivalent:
(a) uX - υX
(b) every stable ultrafilter in R(X) has CIP.

Proof. Let uX = 6>X and suppose that j%? is a stable ultrafilter
in R(X). By Lemma 2.6 we have ΓLe^ dβx A = {p} where peυX.
Thus, p e uX and by Lemma ultrafilter Jxf has CIP. Conversely, if
p G υX and j ^ is any ultrafilter in R(X) converging to p then s$f
is stable by Lemma 2.6 and has CIP by assumption. Thus, Lemma
2.5 implies that p e uX and we are finished.
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