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DYNAMICAL SYSTEMS OF CHARACTERISTIC 0

RoNALD A. KNIGHT

The purpose of this paper is to characterize planar dy-
namical systems satisfying certain stability criterion. These
flows are called dynamical systems of characteristic 0. Basi-
cally the set S of critical points of such a flow is shown
to be in one of three categories: S=; S consists of at most
two Poincaré centers; or S = R2.

1. Introduction. In §2 we give the basic concepts used through-
out the paper. In §3 we give examples of flows of characteristic 0*
and 0~ that are not of characteristic 0. We also give examples of
flows of characteristic 0 which are not of characteristic 0+, 0=, or 0%
Further, by Examples 2 and 3 we show that the set S of critical
points in Theorem 4.8 may actually consist of one or two local Poincaré
centers. In §4 we give necessary and sufficient conditions for a flow
(R?, m) to have characteristic 0.

2. Definitions, notations, and basic theorems. We shall denote
the real numbers, nonnegative real numbers, nonpositive real numbers,
and Euclidean plane by R, R*, R~, and R?, respectively. We shall
use R** to designate the one point compactification of R:.

A pair (X, ) consisting of a topological space X and a continuous
mapping 7: X X R— X from the product space X X R into X is called
a dynamical system or (continuous) flow whenever the following con-
ditions are satisfied.

1. Identity axiom: m(x, 0) = 2 for each ze X.

2. Homomorphism axiom: n(n(z, t), s) = w(x, t + s) for each xe X
and ¢, se R.

3. Continuity axiom: 7 is continuous on X X R.

In this paper X will always be Hausdorff.

We shall let w(z, t) = xt for brevity. For each z¢ X, C(x) = zR,
C*(x) = xR*, and C~(x) = R~ are called the trajectory (or orbit),
positive semi-trajectory, and negative semi-trajectory through «, respec-
tively. A point xe€ X is called a eritical or rest point if aR = 2. If
« is not critical and xt = & for some ¢ > 0, then x is called periodic.
For Mc X, M is said to be invariant if C(M) = M and positively
(negatively) invariant if C*(M) = M (C-(M) = M).

We shall denote the boundary, interior, and closure of a set M C X
by oM, M°, and M, respectively. For any simple closed curve C in
R? we shall denote the bounded and unbounded components of R* — C
by int C and ext C, respectively. We shall let n(x) and n(M) denote
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the neighborhood filters of z€ X and M c X, respectively.

The sets C(x), C*(z), and C~(x) shall be denoted by K(z), K*+(x),
and K (x), respectively. The positive (negative) limit set of x€ X is
LH(®) = MiezK (@) (L (x) = Nz K (xt)). The limit set of xe X is
L(x) = L*(x) U L™ ().

A set Mc X is called positively (orbitally) stable if for every
Ue n(M) there exists a Ve n(M) such that V = C*(V)C U. Negative
and bilateral stability are defined by replacing C*(V) above by C~(V)
and C(V), respectively. One can easily verify that a set M is bilater-
ally stable if and only if M is both positively and negatively stable.
When we write stable we shall mean positively stable.

For each z e X, the positive (negative) prolongation of x is given
by

D*(w) = MQWC*(M ) (D(@) = MDW)C_(M ) -
The prolongation of x is D(x) = D*(x) U D~(x). The positive (negative)
prolongational limit set of x is given by

JH(x) = tDRDJr(xt) J(x) = th‘(act)) .

The prolongational limit set is J(x) = J*(x) U J ().
The following theorem which we shall use several times in this
paper is due to Ura (see [6] and [11]).

THEOREM 2.1. Let X be locally compact and 0M be compact. Then
M s stable (negatively stable) if and only ¢f DY(M) = M (D~ (M) = M.)
Furthermore, M is bilaterally stable if and only vf D(M) = M.

A flow (X, 7) is called parallelizable if it is isomorphic to a parallel
flow; that is, if there is a flow (Y x R, ©') such that (y, {)s = (y, ¢t + s)
for each y€ Y and ¢, s€ R and a homeomorphism f: X — Y x R such
that f(at) = f(x)t for each ze X and te R. We shall use the following
characterization of a parallelizable flow. For a proof see [3] and [4].

THEOREM 2.2. Let X be a locally compact separable metric space.
A flow (X, 7) is parallelizable if and only if for each x € X, D*(x)=C*(x)
(D~ (z) = C~(z)) and there are no rest points or periodic orbits.

A flow (X, 7w) is said to have characteristic 07(07) if D¥(x) =
K+ (x)(D(x) = K~ (x)) for each z€ X. A flow having both characteristic
0" and 0~ is said to have characteristic 0. A flow (X, 7) is said to
have characteristic 0 if D(x) = K(z) for each x€ X. The flow (X, )
has characteristic 07(07) if and only if J(x) = L™(z) (J (») = L™ ()



DYNAMICAL SYSTEMS OF CHARACTERISTIC 0 449

for each zeX. The corresponding statement does not hold for flows
of characteristic 0 (J(z,) # L(z,) in Example 2).

The basic properties of dynamical systems used in succeeding
sections are contained in [5], [6], and [7].

3. Flows of characteristic 0 in R®. The characteristic 0+ and
0~ concepts were introduced by Ahmad in [1]. He classified such
systems on the plane in terms of their critical points. In [8] necessary
and sufficient conditions are given for a flow (R? 7) to have charac-
teristic 0F or 0~ in terms of the set S of critical points. Ahmad showed
that a flow (R? m) has characteristic 0* if and only if S= @ and
(R?, ) is parallelizable, S = R? or S = {s;} is a global Poincaré center
(that is, all trajectories in R* — {s,} are periodic orbits surrounding s,).

It seems natural to ask whether there is a connection between
flows of characteristic 0 and flows of characteristic 0+, 0, or 0*. Since
Dt(x) = K*(®) and D~ () = K~ (x) for each z ¢ R* implies D(z) = K(x),
any flow of characteristic 0= is a flow of characteristic 0. A flow
which has characteristic 0% (07) but not characteristic 0 is given below
in Example 1. Examples 2 and 3 consist of flows of characteristic 0
that are not of characteristic 0+, 0, or 0=.

ExAMPLE 1. The system of differential equations

T = —
¥y=—vy

defines a flow of characteristic 0+ in which the origin is a proper node.
Note, however, that D((0, 0)) = R* = {(0, 0)} = K((0, 0)) so that the
flow does not have characteristic 0.

Similarly, the flow defined by # = 2 and ¥ = ¥ is of characteristic
0~ but not of characteristic 0.

EXAMPLE 2. Let a flow be defined by the system

(1) 7= —¢*sin @
b—1
for » = 0. Figure 1 illustrates the trajectories of the flow.
This flow is of characteristic 0 but not characteristic 0+, 0~, or
0*. For let z, be a point on the parabolic boundary of the region
consisting of the pole and the periodic orbits surrounding the pole.
Then D(x,) = D*(x,) = D (x,) = C(z,) = K(x,) implies that Dt(z,) +#
K*(z,) and D (%) = K (x,).

ExamPLE 3. The flow defined by the system of differential equations
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FIGURE 2

T= —ay
(2) ,__{ x—1—9y forx=0
v= —z—1—9 forz<0

is of characteristic 0. After changing system (1) to Cartesian coordi-
nates, system (2) can be obtained by translation and reflection. The
phase plane of (2) is illustrated in Figure 2.

4. Characterization of flows having characteristic 0. The pur-
pose of this section is to give necessary and sufficient conditions for
a flow (R? m) to have characteristic 0. Unless otherwise specified we
shall let (R? 7) be a fixed flow of characteristic 0 and S be the set
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of critical points. We shall first prove a few lemmas.

LemmA 4.1. If L*(») = @ (L~ (x) = @) for some v € R?, then x s
etther periodic or critical.

Proof. Let yeL*(z). Then xeJ (y) since yeJ*(x). Hence,
xe D(y) = K(y) < L*(x). Seibert and Tulley have shown in [10] that
a point is positively (negatively) Poisson stable if and only if it is
either a critical point or a periodic point. The result for L~(x) = &
follows similarly.

LEMMA 4.2. If xz€8S or x 1is periodic, them C(x) is bilaterally
stable.

Proof. The proof follows from Theorem 2.1 since D{xt) = K(xt) =
K(x) = C(x) for each ¢ in R implies D(C(z)) = C(z).

NotaTION. For any s€ S we shall henceforth let

N, = {xe R* x = s or x is periodic and SN int C(x) = {s}} .

LeEMMA 4.3. If s, is an isolated point of S, then s, is a Poincaré
center and N, is an unbounded connected open set. If N, #+ R then
0N, is a single trajectory and N, is a simply connected component of
R* — 0N,

Proof. Let C be a simple closed curve with SN intC = {s,}. By
virtue of Lemma 4.2 there exists a Ven(s,) such that C(V)c int C.
Since L*(z) = @ for each eV, V — {s} consists of periodic points.
If e V — {s)} then @ = SNintC(x) = SN int C = {s;}. Thus, V con-
sists of s, and periodic orbits surrounding s, implying that s, is a
Poincaré center.

Let xe N,, — {s,} and ye (int C(x)) — {s,}. Since L*(y) # @,y is
periodic. We have @ = SN int C(y) = SN int C(x) = {s;} so that ye N,,.
Hence, int C(») C N,. Furthermore, N, is connected since N, =
U.exs, int C(x) is the union of connected sets each containing the
point s,.

If ON,,= @ then N, = R® and s, is a global Poincaré center.
Suppose 0N, # . Note that dN, is invariant since N, is invariant.
We shall show that in this case 0N, contains no critical points or
periodic points. First, suppose s€ 0N, N S. There is an open simply
connected neighborhood U in 7(s) such that s, ¢ U. By Lemma 4.2
there exists a V,e7(s) such that C(V))c U. Let x€ V., N,. Then
C(z)c U. Since U is simply connected, s,€ int C(x) C U which is a
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contradiction. Hence, SN N, = @. Next, suppose there is a periodic
point @ in ON,. Let S, = SNintC(x). There is a simply connected
neighborhood Ue 7n(C(x)) such that SN U = S,. By Lemma 4.2 there
is a V,e9(C(x)) such that C(V,)c U. For ye (N, N V,) — {s;} we have
C(y) c V,. Since U is simply connected, int C(y) C U. Hence, s, € SN
U=S,. The sets S, and S — S, are closed, so there are simple closed
curves C, and C, contained in int C(x) and ext C(z), respectively, such
that SN (extC) N (int C,) = @. By Lemma 4.2 there is a V, € 7(C(x))
such that C(V,) c (ext C) N (int C;). Now N, is connected with s,e N,
and C(x) C 0N,, so that we can select a point y from N, N V; N int C(x).
Thus, S,Nint Cy) # @, S,cint C,, and C(y) c V,C ext C, imply S,
int C(y). Hence, S, = {s;} and x€ N,,. Finally, for any point ze V; N
ext C(x), L*(2) + @ implying z is periodic. Since C(z) < C(V,) Cint C,
we have SN int C(z) = S,. The point z is in N,, and C(x) Cint C(z) C N,
This contradicts x€ dN,. Therefore, the points of ON,, are neither
periodic nor critical.

By virtue of Lemma 4.1 and the fact that 6N, contains no periodic
or rest points, L*(x) = @ for each x€oN,. Thus, dN,, is not bounded
and hence N, is an unbounded open set.

We now show that N, is a single trajectory. Let x and y be
distinct points of dN,. Let C, and C, be simple closed curves such
that xe int C,, ye int C,, and int C,Nint C, = @. For zin N, Nint C,
we have intC(z)c N,, and so extC(z)en(y). Thus, (intC)nN
(ext C(z)) € 9(y) and (int C,) N (ext (C(2)) N N,, # @. Let we (intCy) N
(ext C(z)) N N,,. Then C(z) Cint C(w) = N,. We have z¢ int C(w) and
zeext C(w). Since z, z€int C, and int C, is connected, it follows that
C(w) Nint C, # . Hence, we can find nets (w;) and (w;t;) converging
to y and z, respectively. In other words, 2 € D(y) = K(y) = C(y).

Suppose N, is not a component of R* — dN,. Since N, is con-
nected, it is a subset of some component B. If N, = B, then oN,, N
B # @ contradicting BC R* — 0N,. Hence, N, is a component of
R* — ON,,.

Finally, let R* = N,. Suppose that C is a simple closed curve
lying in N, with int C# N,. Then int C connected and N, Nint C =
int C imply that oN, NintC # @. Furthermore, dN, NextC = @
since ON,, is unbounded. Thus, C N dN,, # @ contradicting Cc N,,.
Therefore, N, is simply connected.

LEMMA 4.4. If S, = SNint C(x,) for some periodic point x,, then
S, consists of exactly one Poincaré center.

Proof. Let N = {xeint C(x,): © is periodic and S, = SN int C(x)}
and D = N,eyint C(z). At least x,€ N, so that D = @. Also, D is
the intersection of closed invariant sets containing S, so that D is a



DYNAMICAL SYSTEMS OF CHARACTERISTIC 0 453

closed invariant set and S,c D. It also follows that 4D is invariant.

In order to facilitate the argument we show that Ve n(C(y))
implies VN N= @ for all yedoD. Suppose VNN = @ for some
Ven(C(y). By Lemma 4.2 there is a connected set Ue 7(C(y)) such
that C(U)c V. For ze N, UNC(x) = @. Since yecint C(x) and U is
connected we have Ucint C(x). The point x# was arbitrary, so that
Uc D. But this implies y € D° which contradicts y € oD.

Suppose that D is not a singleton. We first show that there
exists a point ye€ N such that D = intC(y). If D = int C(x,) then
we are done. Assume D = int C(x,) and choose points # in D and y
in 0D such that x == y. Either y€ S, or y is periodic. Suppose there
exists a simple closed curve C such that xzeextC and C(y)cintC.
By Lemma 4.2 there is a Ven(C(y)) such that C(V)cintC. We
have shown that VN N = @. Let ze VN N. Then C(z)cC(V) cC int C.
But this implies that « € int C(z) C int C contradicting x € ext C. Thus,
y is periodic and xz € int C(y). Since x# was an arbitrary point of D,
we have D Cint C(y). Furthermore, C(y) C 0D C int C(z) for each ze N
implying int C(y) CN..» int C(z) = D. Hence, D = int C(y).

Since S, is compact there exists a simple closed curve C c int C(y)
with S,cint C. By Lemma 4.2 there is a Ve n(C(y)) such that C(V) <
ext C. Each point z in V N int C(y) is periodic by Lemma 4.1, and so,
S, Nint C(z) = @. Since C(z) cext C, int C(z) Nint C = @, and int C
is connected, we have S, int C C int C(z) and z€ N. Thus, D Cint C(2)
and C(z) Cint C(y) imply that D cCint C(y) which contradicts y e D.
Consequently, D must be a singleton.

Finally, @ # S,c D implies that D is composed of an isolated
critical point. By Lemma 4.8, S, consists of a Poincaré center.

LEemMMA 4.5. If S+ @ and S+ R?, then S consists of Poincaré
centers.

Proof. Let S, denote the set of Poincaré centers. We can select
a point s from 0S since S @ and S+ R:. For any compact set
Uen(s) there exists a Ven(s) such that C(V)< U by Lemma 4.2.
For any x¢ V N (R* — 8), L*(x) #+ @ implying that « is periodic. Thus,
Lemma 4.4 implies S, = ©.

Suppose s€d(S — S,). Since s is bilaterally stable, 7(s) contains
a compact connected simply connected invariant set V. Either V
contains a regular point or a center. If it contains a regular point
%, then = must be periodic so that int C(x), and hence V, must con-
tain a center. Therefore, we can assume that V contains a center
s Now, for each we N, — {s}, s,€int C(x) and, by Lemma 4.4,
scext C(x). Thus, V must meet C(x) = dint C(x) since it is connected.
But this implies C(x) c V and hence N, C V, contradicting Lemma
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4.3. Therefore, (S — S)) = @, and so S = S,.

LEMMA 4.6. If S+ @ and S =# R? then S consists of at most
two Poincaré centers.

Proof. Suppose s, s,, and s, are distinct points of S. We shall
show that this supposition leads to a countable collection of mutually
disjoint closed sets whose union is R? which is impossible. Unless
explicitly stated, the remainder of the proof will be considered rela-
tive to the extended dynamical system on R**. We denote the closure
of the trajectory through # in the extended system by K*(x).

Since the sets N, are disjoint and open relative to R*, A = R* —
U..s N, is nonempty. For each ze 4, K*(x) = C(2) U {co} is a simple
closed curve. Let M ={xe A: N,,c A, and N,,U N,,C B, where 4, and
B, are the components of R** — K*(x)}. By Lemma 4.3, M # & since
dN,, — {s} c M. Note that 4, = A, U K*() and let F, = U,y 4..
Each set A, is connected and contains N,,, and so F, is connected.

For any point p, in F, — {=} we have F, = 4,. For let p,

and ¢, be distinct points in 0F, — {-o} and let C, and C, be simple
closed curves in R? surrounding p, and ¢, respectively, such that
int C,Nint C, = @. There exists a point p for which A, Nint C,, and
hence C(p) N int C,, are nonempty sets. Since B, N int C,€ 7(g,) there
exists a point ¢ such that A, N B, N int C,+ @; hence, C(g) N int C,# @.
Now, A, meets 4, and B,, so that 4, A4,. Thus, A, is a connected
set which meets both int C, and ext C, implying that C(g) Nint C, = @&.
We can find nets (x;) and (x;t;) converging to ¢, and p,, respectively;
hence, p, € D(¢q,) = K(¢q.) = C(g) and oF,, — {e} = C(p,). Now, C(p)Z N,
for any s in S since N, N F,, = @ implies there exists an % in M such
that C(p,) € N, C 4, C F;, contradicting C(p,) C oF,. Thus, C(p,)CA.
Since F, is an invariant set, either C(p)C F, or C(p) N F, = Q.
Suppose C(p,) N F,, = @. Then F, — {co} is the connected set F;,
and so it is a component of R** — K*(p) = R** — 0F,. Also, N, U
N,,C N.cx B, = R*" — F,, which means p, € F,, contradicting C(p,)N
F, = @. Hence, F, = A4,.
Analogously, for s, and s, there exists points p, and p, in A and
sets F,, and F,, such that F,, = 4}, and F, = A},. Note that F, =
A, and F, C B,. If 0F, = K*(p) = K*(p,) = 0F,, then F, U F,, = R*
which contradicts s,¢ F', U F,. Hence, F, N F,, = {co}. Similarly,
F,NF,=F,NF, ={x}

Let F = U, F,,. Obviously, R** = F, and so R** — F = . Sup-
pose that A N (R** — F) = @. Then R** — F must consist of periodic
and rest points, so that N,c R** — F for some s€S. Furthermore,
ON, — {o} C A implies that N, C oF = Ji., K*(»;). By letting oN, =
K*(p,) we have R** = N, U F,, since N, and F; are components of
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R*™ — K*(p,). But this implies that s;¢ F,, for i # k which is clearly
not possible. Therefore, A N (R* — F) = .

For each point & in AN (R* — F') one component R** — K*(x)
contains F’ since K *(x) does not separate any of the sets N,, N,,, and
N,, from the other two. Denote the components of R** — K*(x) by
G, and H, where Fc H,. For any point y in AN (R*™ — F), let
M,={zxe AN (R*™ — F): G,CG,}). Note that M, # @ since ye M,.
Let F, = U.ex, G.. By arguing as we did for F',, we can find a point
w in 0F, N A such that F, = G,. For each point p in A N (R** — F)
for which F; = F, select a point y, in C(w) and denote F; by F,.
Let I" be the index set for all the F, sets and let I = I'U {s,, s, 54}.

If x and z are distinct points in I, then F, N F, = {~}. For sup-
pose F, N F, = {c}. The sets F? and F? are components of R** — oF,
and R*™ — OF,, respectively, where 6F, and 6F, are simple closed
curves each consisting of {-} and a single trajectory. Thus, either
OF, — {c} C F?, 0F, — {co} C F?, or F:N F? = . The first two state-
ments imply that F, = F,, and hence # = z, contradicting x == z. The
third statement implies that F, U F, = R** which is impossible. There-
fore, F,N F, = {co}.

Next, R* = U,.; F,. For let z belong to R** — E where E =
U..; F.. Since AcC E, there is a point s in S such that ze N,. For
some point y in E, K*(y) = 0N,. Furthermore, there is a point z in
I such that K*(y) = 0F, since K*(y) CoFE. The sets N, and F?{ are
disjoint components of R** — K*(y), and so R** = N, U F,. This im-
plies F, = E, and thus s;€ F, for + = 1, 2, 3, which is clearly impos-
sible. Hence, R* = E.

The set {F,: x€ I} is a countable collection of closed sets such that
F,.NF, = {c} for x = 2. Hence, {F, — {eo}: xe€ I} is a countable col-
lection of mutually disjoint sets closed in R*and R* = U,.; (F, — {0}).
This is not possible as we indicated at the outset of our argument.
Therefore, s, s,, and s, are not distinct.

LEMMA 4.7. Let S == R*. Then the flow restricted to R* — U,.s N,
18 parallelizable.

Proof. Let Y = R* — U,es N,. The set {c} is compact and in-
variant. According to Theorem 2 p. 151 of [9], J(x) = < for each 2
in Y—{«}. Thus, relative to Y —{c}, J(x) = @ and D*(z) = C*(x).
The result follows by Theorem 2.2.

THEOREM 4.8. A flow (R? ) has characteristic 0 if and only if
one of the following holds.

(1) S= @ and (R* 7) is parallelizable.

(2) S constists of at most two Poincaré centers. For each s€ S,
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either s is a global Poincaré center or N, is unbounded and 0N, is a
single trajectory. The restriction of the flow to R — U,.s N, s paral-
lelizable.

(3) S= R~

Proof. The necessity of the conditions follows from the lemmas.
Conversely, Theorem 2.2 shows that condition (1) is sufficient. Simi-
larly, if condition (2) holds, we get D(x) = K(x) for each x€ R* —
U..s N,. For each se€ S, N, is a component of R* — oN, since 0N, is
a single trajectory. Thus, N, is a connected simply connected set.
Obviously, x € N, implies D(x) = K(x). Hence, condition (2) is sufficient.
Condition (3) is trivially sufficient.

COROLLARY 4.9. A flow (R? ) has characteristic 0 if and only
if D(x) = C(z) for each x< R*.

ReEMARK. That there are six basic types of planar flows (up to
dynamical isomorphism) having characteristic 0 follows from Theorem
4.8. These are

(1) parallelizable flows,

(2) flows having a global Poincaré center,

(3) flows similar to Example 2,

(4) flows similar to Example 3,

(5) flows similar to Example 3 except that 0N, = 0N, where S =
{s, t}, and

(6) flows having only critical points.

Note that only the flows in (1), (2), and (6) have characteristics 0, 07,
0-, and 0* and that the flows in (8), (4), and (5) have only characteristic 0.

The author is grateful to his Ph. D. research advisor, Professor
Shair Ahmad, for suggesting that he characterize flows of character-
istic 0 as part of his thesis research. This paper is based on Chapter
3 of the thesis.
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