CON THE DIMENSION THEORY OF RINGS (1I)

A. SEIDENBERG

1. Introduction. As in [3], we shall say that an integral domain O is n-

dimensional if in O there is a proper chain

(0)CP, C...CP,C(1)

of prime ideals, but no such chain

(0)ycp/Ce..Cc Py (1)

In Theorem 2 of [3] it was shown that if O is n-dimensional, then Olx] is at
least (n + 1)-dimensional and at most (2n + 1 )-dimensional: here, as throughout,
% is an indeterminate. After preparatory constructions in Theorems 1 and 2
below, this theorem is completed in Theorem 3 by showing that for any integers
m and n with n+ 1 < m < 2n + 1, there exist n-dimensional rings O such that
O[x] is m-dimensional. The other theorems mainly concern 1-dimensional rings.
Such rings O can be divided into those for which O[x] is 2-dimensional and
those for which this condition fails, the so-called F-rings. The paper [3] was
concerned with the existence of F-rings and showed [3, Theorem 8] that the
1-dimensional ring O is not an F-ring if and only if every quotient ring of the
integral closure of O is a valuation ring. Below, in Theorem 5, we show more
generally that if O is 1-dimensional but not an F-ring, then Olx,,+++, x,] is
(n + 1)-dimensional, where the x; are indeterminates: this theorem depends on
the essentially more general Theorem 4, which says that if O is an m-dimen-
sional multiplication-ring, then O{xy,+++, x, ] is (m + n)-dimensional. In the

case that the x; are not indeterminates, one can still say (Theorem 10) that
dim O{x;, «++,%,] =1 + degree of transcendency of O{x,, +-+ ,x,1/0,

provided that the intersection of the prime ideals (# (0)) in O is = (0), where
O is a l-dimensional ring such that O[x] is 2-dimensional. For F-rings O,
Theorem 6 shows that
n+2 <dimOlxy,oreyxp) <2041,
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where the x; are indeterminates, while Theorem 7 constructs for any N and n
with

n+2<N<2n+1

an F-ring O such that Olx;,++., x,] is N-dimensional. Similar results for

rings of dimension greater than 1 would be interesting if one could get them.

2. Simple extensions. Let us call the integral domain O of type (n,m) if
dim O =n and dim O(x]=m.

TneoREM 1. Let O be iptegrally closed and of type (n,m), let K be its
quotient field, and let K’ be a proper extension of K in which K is algebraically
closed. Let 3 be any field having a discrete rank 1 valuation with K’ as resi-
due field. Let O* be the set of elements whose residues are finite and in O.

Then O* is integrally closed and of type (n + 1, m + 2).

Proof. Let o € 22, with « integral over 0%,
WS +a 05 P teeitag=0 (a; € 0%),

an equation of integral dependence. Dividing this equation by &° and supposing
1/% to have residue 0, we get the contradiction 1 = 0. So & has finite residue,
and

W t+a, & e vy =0,
where the bars indicate residues. Since K is algebraically closed in K*, we have
® €K; and & € 0, since O is integrally closed. Hence O* is integrally closed.

Let P be the set of o € O* having residue 0. Then P is a prime ideal. From

the definitions one obtains
O*/P ~ 0,

whence O* is at least (n+1)-dimensional. If P’ is a prime ideal in O*, P’ £ (0),
then P’ D P. In fact, let g € P *; since g is O*, we have v(g)=s > 0, where v
is the given valuation (and the group of integers is the valuation group). Then
the (s + 1)th power of any element in P is divisible by g, whence P C P From
this it follows that 0* is at most (n + 1)-dimensional.

The quotient ring O} is integrally closed and has only one prime ideal
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(# (0)). Moreover it is not a valuation ring. In fact, let & € 3 be an element
having residue in K” but not in K. Since & can clearly be written as a quotient
of two elements of positive value, we have that & is in the quotient field of
Of; but neither & nor 1/« has residue in K, so neither o nor 1/u is in 0%.
Thus Of is not a valuation ring, and hence is an F-ring, by [3, Theorem 81. It
follows at once that O*[x] « P is not minimal in O*[x]. Now

0*[x1/0*[x] - P ~ O*/P[x1 ~ O[x],

so O*[x] is at least (m + 2)-dimensional.

Finally, let (0)CP, CP, C..-CPgC (1) be a chain of prime ideals in
O*[x]. Let P, be minimal; then P;n O* = (0), as otherwise

P,nOD P and P; D O%[x].P.

Similarly one concludes that if no chain of prime ideals P/ C P”” can be inserted

between (0) and P,, then
PnO0*=P and P, =0%[x].P

(by [3, Theorem 1], P, cannot contract in O to (0)). From this it follows at

once that O*[x] is at most (m+2)-dimensional, and the proof is complete.

REMARK. The above construction stems from an example of Krull showing
that an integrally closed integral domain with only one proper prime ideal need
not be a valuation ring; see [ 2, p.670f].

TuEOREM 2. Let O, K, K, X, O* be as in Theorem 1 -except that we
assume K = K’. Then O* is integrally closed and of type (n+1, m+1).

Proof. The proof follows exactly the lines of the proof of Theorem 1, except

that here O} is a valuation ring, as one easily sees.

THEOREM 3. For every n and m such that n+1 < m < 2n + 1 there exist
integrally closed rings of type (n,m).

Proof. Any field is of type (0,1). Theorem 1 gives us an integrally closed
ring of type (1,3), and Theorem 2 gives us one of type (1,2)—the required
valuations obviously exist. Suppose now by induction that for some n and each
my n+1 <m < 2n+1, we have an integrally closed ring of type (n,m). If
n+3 <m<2n+3,thenn+1<m~-2< 2n+1, and from an integrally closed
ring of type (n,m—2) we get, by Theorem 1, an integrally closed ring of type
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(n+1,m). f m =n + 2, we apply Theorem 2 similarly to get an integrally closed
ring of type (n+ 1,m).

As for simple algebraic extensions O[c] of an n-dimensional ring O, it is
clear that dim O[] < 2n. On the other hand, let O be an integrally closed ring
of type (n, m) and let O* be a ring constructed as in Theorem 1; also let £ and

P be as in Theorem 1. Let
« €X,a £05,Va £0%.
Then

O*[«l/0*[a] . P ~ O*/P[x] ~ Olx],

by [3, Theorem 71, so O*[c] is at least (m+1)-dimensional; it is also at most

(m+1)-dimensional, since O*[x] is (m+2)-dimensional. Hence
(n+1)+1 <dimO*[a] < 2(n+1).

It is thus clear that for any n” > 0 and m” with n”+ 1 < m’ < 2n’, there exists

an n-dimensional ring O* such that for some ¢ in the quotient-field of C* we
have dim O*[a] = m” — Also

dim O[u] < dim O

is possible. In fact, let O be a valuation ring of rank n, (0) Cp C...Cp C(1),
the chain of prime ideals in O. Let ¢ €p;,,, ¢ £ p;; then dim Oll/cl=1.In
short, dim O[a] covers precisely the range from 0 to 2n as O varies over the

n-dimensional rings O.

3. Multiple transcendental extensions. We recall that a multiplication-ring
may be defined as an integral domain O such that O, is a valuation ring for

each prime ideal p in O (see [ 2, p.554]1).

THEOREM 4. If O is an m-dimensional multiplication-ring, then Ox {,+«+,%,]

is (m+n )dimensional, where the x; are indeterminates.

Proof. To facilitate the proof, we define the dimension of a prime ideal P in
an extension 0" = O[d,+++,0,] of a finite-dimensional ring O (relative to O)

as follows:
dim P = d.t. (07/P)/(0/P) + dim O/p,

where p=Pn O (and ‘“d.t.”’ abbreviates ‘‘degree of transcendence’’). The
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following points (a), (b) do not assume O to be a multiplication-ring.

(a) Let 0%, O, P, p be the images of 0%, O, P, p, respectively, under a

homomorphism with kernel contained in P. Then dim P = dim P.

In fact, 0%/P = 0’/P and O/p = O/p; also Pn O = p.
(b) Let M be a nonempty multiplicatively closed system in O not meeting p,
Oy=ta |0 =a/b, a €0, b €M},
Of =1 |a=a/b, a €0’ beMl.
Then
dim P — dim O/p = dim Ofy + P — dim Oy /Oy - p.
In fact, the rings 0°/P and 0f /Oj + P have the same quotient field, as do

the rings O/p and Oy /Oy + p. Note also that Oy - P n Oy = Oy - p, whence the
required equality follows.

Let P,, P, be two prime ideals in O, P; C Py, p; = Pin O, i = 1,2, We want
to compare dim Py with dim P,. If p, = p,, then, passing to a residue class
ring, we may assume p, =p, = (0). Taking ¥ = O - (0), we pass to the quotient-
ring Op, which is a finite integral domain. Thus dim P, > dim P, if p, =p,.

‘This conclusion holds also if p, Cp, provided O is a multiplication-ring.
(c¢) If P, and P, are prime ideals in O{x,+++,x,] and P; C P,, then
dim P; > dim Py
also
dim P; —dim P, > dim O/p, — dim O/p,,

o
provided that O is a multiplication-ring.

In fact, we may suppose p, Cp,, and have only to prove the second point.
Also, by (b), we may pass to any quotient-ring Oy, where ¥ does not meet p,.
Taking M = O - p,, we may assume that O is a valuation-ring and that p, is its
ideal of non-units. Let zy,-++,2, be elements of O’ which are algebraically
dependent mod P; over O. Then they are also dependent mod P,. In fact, let

f(zh""zr) = 0(P1)9
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where the coefficients of the polynomial f are in O but not all in p . Dividing
by a coefficient of least value, we may suppose f to have a coefficient equal

to unity. But then we have a relation mod P,. This proves that
dt. (0°/P,)/(0/p,) < dut. (O7/P)/(O/p,),
that is, (c) is proved.
The theorem now follows from (c) since dim (0) = m + n.
COROLLARY. If O is an m-dimensional multiplication-ring then
dim Ol G yeeey Up)l <m+r,
where
r=dit. Oloty ,eee, 0,1/0.
Proof. The foregoing proof shows that
dim Olx;,+++,2,] < dim (0) =m + dut. Olxy o+ ,%,1/0,

and in doing so makes no use of the fact that the x; are indeterminates; this

fact is used only to get that

dim Olxy yeeeyxp] > m+n.

THEOREM 5. If O is a 1-dimensional ring such that Olx] is 2-dimensional,
then

dim Oy, eeey ] < 14+ date Olcty yoee, 0,1/0;
if the 0; are indeterminates, then
dim O[& ,eee, Gpl=1+n.

Proof. We may suppose O to be integrally closed. In that event, O is a
multiplication-ring, by [3, Theorem 8]. The present theorem now follows im-

mediately from the preceding corollary.

THEOREM 6. If O is 1-dimensional, then O[xy,++,%,] is at most (2n+1)-

dimensional, where the x; are indeterminates.

Proof. Let (0)Cp, Cp, Ceee Cps C(1) be a chain of prime ideals in
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Olxy,+++,xp ). Let K = quotient field of 0. If p_n O=(0), then the above
chain extends to a chain of s prime ideals in K[x,+++,%,], so s < n. Suppose,

then, that

P;n0=(0), pi+ln0=p # (0),

whence also p,,,n O =p, since O is 1-dimensional. Passing to K[xy,+«+, x, 1,

we see that i < n; and passing to

O[xp"’9xn]/Pi+l =O/P [;1,-“,;”],

we have s ~ (i + 1) < n, since O/p is a field. Hence s < 2n + 1.

THEOREM 7. If O is an F-ring, then Olxy, «++,x,] is at least (n + 2)-
dimensional and at most (2n + 1)-dimensional. For any N, n+2 < N < 2n+1,
there is an F-ring O such that Olx,,+++,x,] is N-dimensional, where the x;

are indeterminates.
Proof. Let K be a field, x, y,, +++,y,, indeterminates. Let
K'=K(yseee5y,), = =K’(x),
and let v be the discrete rank 1 valuation of X obtained by placing
viagjxt+ ajeg it 4o +asxS) =1,

where aj €K’ a; # 0. Let O* be the set of elements whose residues are finite
and in K. The ring O* consists of the elements in K(x,yl, Y ) which can

be written in the form
C{(x’yl’ .o.,ym)/B(x’yl’ -oo,ym ),

where

o, BEKI[x, Yo ’ym]’ B (o, Yo "")’m) #0,
0’~(0,}'1, Yy, )/B(O,)’l!"',ym)eK.

By Theorem 1, O* is an F-ring; and O* contains only one proper prime ideal,

namely the ideal P consisting of the elements /B with

O((nyl, ""xm)/B(O, Xyp9 *°* ,xn)=0.
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We shall prove that for m < n, O* [x,, «++ ,x,] is (m+n+1)-dimensional. In
O*[xy,+++,%,] let P, be the ideal of polynomials which vanish for x; =

y;(i=1, -+, m). We claim this ideal is in
O*[xy,eee yxple P =P’
In fact, let
Zail"'in xil oee xri" € 0*l[xy, eoe ,2,]
be in Py, and write

i
3

1 In _ . . i1 in . A i in
cee x) = zc,l...Lnx1 ceex "+ Z‘,olll...;nx1 SRR

S g x
where Ciyeneiy, €K, dijuni, € P. This polynomial vanishes for x; = Yppi=1leen,
m; hence also for x; =y;, i =1,-++,m, x = 0. Hence

il in
S iy wil e %

vanishes forx; =y;, i =1,+++, m, whence

ZCH"anx ceex” =0,

and

) i in i in
Za"l’"inxl ...xn ='2dil"'inxl ...xn EO*[xl,-.-,xn].P=P',

Let P; be the ideal of elements in O*[xy,+++,x,] which vanish for x; =y,
i=1,+++,j. Then P; is prime and (0) CPy C... CPyp CP" Since any chain
of n prime ideals in O*/P[x, ,+++,x,] gives rise to such a chain in O*[x,,.--,
%,] containing P’, we see that O*[x;,-++,%,] is at least (m+n+1)-dimen-
sional. On the other hand, O*[x,, -« ,x,] is of degree of transcendency
m+n+1 over K, and so O*[x; ,+++,x,] is at most (m+n+1)-dimensional.
This last point follows from the following lemma, the proof of which is exactly
as in the well-known case that O is a valuation ring.

LEMMA. Let O be an arbitrary integral domain containing a field K, and let

O be of degree of transcendency r over K. Then O is at most r-dimensional.

Proof. This follows at once if we can show that the degree of transcendency
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of O/P over K is less than r for any proper prime ideal P in O. If 6, 65 ,+++,
0s € O map into (given ) algebraically independent elements in O/P, and 6 € P,
0 # 0, then 8, 0,,+++, 6 are algebraically independent over K. Hence

d.t. O/K > d.t. (O/P) /K.

4. Arbitrary finite extensions. Let O be an arbitrary integral domain which
is not a field, It is certainly possible, for appropriate O, that some simple ring
extension O[u] of O will be a field. In fact, let O be such that the intersection
of all its prime ideals (# (0)) is not the ideal (0); for example, any integral
domain with a finite, positive number of prime ideals (£ (0)) will do. If ¢ (£ 0)
is an element in all the prime ideals, then O[1/c] is a field; for if P is a prime

ideal in O[1/c], P # (0), then
PnO=p # (0)
and
1=(1/c)-c€0[1/cl-pCP.
We also have the converse.

THEOREM 8. Given an integral domain O, there exists a field F which is a
simple ring extension of O if and only if the intersection of all the prime ideals

(#£(0)) in O is # (0).
Proof. Let F = Clal. Here o must be algebraic over O, say

oM +c 0™ reeire, =0, ¢; €0, co #0.

Then co& is integral over O, as is the ring O; = O[coa]l. Let F; =0, [al;
then F, is a field [1, p.253]. Over every prime ideal in O there lies a prime
ideal in O,; since O, is algebraic over O, if the intersection of the prime ideals
(#(0)) in O, is # (0), then the like is true in O. Hence we may assume that
O = 04, that is, that o is in the quotient field of 0. By a similar reasoning we
may suppose O is integrally closed. From the fact that 1/a € Ola ], one finds
that 1/« is integral over O, hence in 0. Thus o =1/b, b € 0. The element b
must be in every prime ideal p(# (0)); in fact, if b € p, then O[1/b] C O,
whence 0[1/b] =0[u] is not a field. This completes the proof. — This theorem
has been previously proved in [ 4, p.76].

A study of algebraic extensions of O must therefore separate the cases that
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the intersection of the prime ideals (£ (0))is =(0) or is # (0).

THEOREM 9. If O is a 1-dimensional ring such that O[x] is 2-dimensional,
and the intersection of the prime ideals (£ (0)) in O is =(0), then the like
is true of any simple algebraic ring extension O[] of O (where it is assumed,

of course, that Ola] is an integral domain).

Proof. By Theorem 5, we know that O[«] is O- or l-dimensional, and the
previous theorem excludes the first alternative. Also O[«,x] is 2-dimensional,
for otherwise O[y,x], y an indeterminate, would be of dimension more than 3,

contradicting Theorem 5. Thus it remains to prove that the intersection of the
prime ideals (# (0)) in O[x] is = (0). Let

o+ 0" i, =0, ¢; €0, co £ 0,

and let S={p} be the set of prime ideals (# (0)) in O which do not contain
co; S is not empty. Then N p = (0), for if d €Np, d # 0, then co d is in every
prime ideal (£ (0)) of O. Over every prime ideal p €S there lies a prime ideal
P in Olal. If T={P} is the set of prime ideals in O[%] contracting to prime
ideals in S, then one concludes immediately that NP = (0). A fortiori the inter-
section of all prime ideals (£ (0)) in O[«] is = (0). This completes the proof.

If O is an integral domain in which the intersection (Mp) of the prime ideals
(#(0)) is #£(0), then for every r it is possible to define a finite extension
Ol0yy v+ tpnl of O such that

dim O[dly, ++v 5 O]z

and

d-t. O[O(l, e, O(n]/O-‘r;

namely, we adjoin to O an element 1/c, ¢ €Mp, so that O[1/c] is the quotient
field of O, and thereupon adjoin r indeterminates. The situation is different
for a 1-dimensional ring which is not an F-ring and in which the intersection of
the prime ideals (£ (0)) is = (0).

THEOREM 10. Let O be a 1-dimensional ring such that O[x] is 2-dimen-
sional, and let the intersection of the prime ideals (# (0)) in O be = (0). Then
for any integral domain O[&y, =+, Uy,
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dim Oty evvy tpl=1+dit. OlGy, eoey Gpl/O.
Proof. Let

K = quotient field of O, r=d.t. Olcty, <o+, ¢,1/0.

Then K[, «++, Gyl is r-dimensional and a chain (0)CP, C...CP, C(1)

of prime ideals in K[¢(;, «++, ¢t ] contracts to a chain
(O)Cpl C-..CprC(l), and pin0=(0), i=1, eee,r.
Moreover, p, is not maximal, for if it were, then
Olcty, wovy0g1/p, = Olcy, on\ 0ty ]

would be a field; hence also K[C?l, coe ,&n] would be a field, whence the CI,-
would be algebraic over K, therefore also over 0. This contradicts the previous

theorem. Hence
dim O[ctyy eoey 0] > 1+ det. Olcty, oev, 0nl/0,
and we have already seen the reverse inequality.

Since the theory of 1-dimensional rings must separate the cases that the
intersections of prime ideals (£ (0))is = (0) or £ (0), it may be of interest to
have an example of a l-dimensional ring, not an F-ring, with infinitely many
prime ideals (# (0)) having intersection # (0). We construct such a ring O as
follows. Let K be a field containing all roots of unity, x an indeterminate, L the
algebraic closure of K(x), S the integral closure in L of K[x], and O, the
quotient-ring of S with respect to the multiplicatively closed system of poly-
nomials in K[x] which are not divisible by x. Infinitely many prime ideals in
S lie over (x) in K[x]; to see this, let n be any integer not divisible by the
characteristic of K, a;, .-+, a, the nth roots of unity, y = n\/ 1+x. In Klx,y]
there lie n prime ideals over (x), namely (x,y—a;), since (0,a;) is a point
of y"=1+x. Going up to S, we see that there exist at least n prime ideals
over (x). Every prime ideal in O which differs from (0) contains x, and there
are infinitely many such ideals. We now verify immediately that O is a ring of

the required type.
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