EXISTENCE OF TRICONNECTED GRAPHS WITH PRESCRIBED DEGREES

S. B. Rao and A. Ramachandra Rao

Abstract

Necessary and sufficient conditions for the existence of a p-connected (linear undirected) graph with prescribed degrees $d_{1}, d_{2}, \cdots, d_{n}$ are known for $p=1,2$. In this paper we solve this problem for $p=3$.

Let $d_{1}, d_{2}, \cdots, d_{n}$ be positive integers and let $d_{1} \leqq d_{2} \leqq \cdots \leqq d_{n}$.
Lemma. If a triconnected graph G exists with degrees d_{1}, d_{2}, \cdots, d_{n}, then
(1) $d_{i} \geqq 3$.
(2) $d_{1}, d_{2}, \cdots, d_{n}$ is graphical, i.e., there exists a graph with these degrees.
(3) $d_{n}+d_{n-1} \leqq m-n+4$ where $2 m=\sum_{i=1}^{n} d_{i}$.
(4) If $d_{n}+d_{n-1}=m-n+4$, then $m \geqq 2 n-2$.

Proof. (1) and (2) are evident. To prove (3), let x_{n}, x_{n-1} be the vertices of G with degrees d_{n} and d_{n-1} respectively. Then the number of edges in $G-\left\{x_{n}, x_{n-1}\right\}$ is $m-\left(d_{n}+d_{n-1}-1\right)$ or $m-\left(d_{n}+d_{n-1}\right)$ according as x_{n}, x_{n-1} are adjacent or not adjacent in G. Also $G-\left\{x_{n}\right.$, $\left.x_{n-1}\right\}$ is connected, so (3) follows. If now $d_{n}+d_{n-1}=m-n+4$, then

$$
2 m \geqq d_{n}+d_{n-1}+3(n-2)=m+2 n-2 .
$$

This completes the proof of the lemma.
Theorem. Conditions (1) to (4) of the lemma are necessary and sufficient for the existence of a triconnected graph with degrees $d_{1}, d_{2}, \cdots, d_{n}$.

Proof. Necessity was proved in the lemma.
To prove sufficiency, first let conditions (1), (3) be satisfied and let $d_{n}+d_{n-1}=m-n+4=n+\lambda$ where $2 \leqq \lambda \leqq n-2$. Let k be the number of d_{i} such that $1 \leqq i \leqq n-2$ and $d_{i}=3$. Then define

$$
e_{i}=d_{i}-2 \text { for } i=k+1, \cdots, n-2 .
$$

Then we have

$$
\begin{aligned}
& \sum_{i=1}^{n-2} d_{i}=2 m-d_{n}-d_{n-1}=3 n+\lambda-8 \\
& \sum_{i=k+1}^{n-2} e_{i}=3 n+\lambda-8-3 k-2(n-2-k)=n+\lambda-k-4 .
\end{aligned}
$$

Define now $\eta=n-2-\lambda$ and $\varepsilon=k-\eta$. Then $\eta \geqq 0$, and $\varepsilon \geqq 2$ since

$$
\begin{aligned}
2 m & \geqq m-n+4+3 k+4(n-2-k) \\
& =m+3 n-k-4
\end{aligned}
$$

and so

$$
\lambda=m-2 n+4 \geqq n-k
$$

Write now

$$
e_{i}= \begin{cases}1 & \text { for } i=1,2, \cdots, \varepsilon \\ 2 & \text { for } i=\varepsilon+1, \cdots, k \\ d_{i}-2 & \text { for } i=k+1, \cdots, n-2\end{cases}
$$

Then $\sum_{i=1}^{n-2} e_{i}=2(n-3)$ and so there exists a tree T with degrees $e_{1}, \cdots e_{n-2}$, attained by the vertices x_{1}, \cdots, x_{n-2}, say, in that order [2]. Take two more vertices x_{n-1} and x_{n} and join them. Also join each of x_{n-1}, x_{n} to x_{i} for $i=1, \cdots, \varepsilon, k+1, \cdots, n-2$. Of the η vertices $x_{\varepsilon+1}, \cdots, x_{k}$, join $d_{n-1}-1-\varepsilon-n+2+k$ to x_{n-1} and the rest ($d_{n}-1-\varepsilon-n+2+k$ in number) to x_{n}. Note that

$$
d_{n-1}-1-\varepsilon-n+2+k=d_{n-1}-\lambda-1 \geqq 0
$$

The graph we thus obtain has degrees d_{1}, \cdots, d_{n} and is triconnected since any vertex of T with degree in T less than 3 is joined to either x_{n-1} or x_{n}.

Next let conditions (1), (2) be satisfied and let

$$
d_{n}+d_{n-1} \leqq m-n+3
$$

Then $d_{n}<m-n+2$, so there exists a biconnected graph G with degrees $d_{1}, d_{2}, \cdots, d_{n}$ [2]. If G is not triconnected, let x_{i}, x_{j} be two vertices such that $G-\left\{x_{i}, x_{j}\right\}$ is disconnected. Let C_{1}, C_{2}, \cdots be the components of $G-\left\{x_{i}, x_{j}\right\}$. By (1), $\left|C_{g}\right| \geqq 2$ for $g=1,2, \cdots$. Also by hypothesis,

$$
m-d_{i}-d_{j} \geqq n-3
$$

so it follows that one of the components, say C_{1}, contains a cycle.
We first prove that there exists an edge (x, y) in C_{1} and two chains $\mu_{1}, \mu_{1}^{\prime}$ of G connecting x and y such that $(x, y), \mu_{1}, \mu_{1}^{\prime}$ are disjoint except for x and y, and μ_{1} is contained in C_{1}. Since G is biconnected, there exists a chain connecting x_{i} and x_{j} with all intermediate vertices in C_{2}.

If now two vertices x, y with degree two in C_{1} are adjacent and belong to a cycle of C_{1}, the required edge is (x, y). So we may take
that no two vertices of degree two in C_{1} can belong to a block (on more than two vertices) and be adjacent. Let B be any block of C_{1} which is not an edge. If some cycle of B has a chord (x, y), then (x, y) is the required edge. Otherwise, by the results of [1], two vertices y, z of degree two in B will be adjacent to a vertex x of degree three in B. If w is another vertex of B adjacent to x, then there is a chain connecting w to y in $B-\{x\}$. This chain together with (x, w) may be taken as μ_{1}. To get μ_{1}^{\prime}, go from x to z along (x, z), from z to x_{i} or x_{j} (through another block of C_{1} at z if necessary), then to y. Thus (x, y) is the required edge.

Let now (x, y) be an edge of C_{1} chosen as explained above. If C_{2} is a tree, take any edge (u, v) of C_{2}. Then (u, v) is a chord of a cycle of G. If C_{2} is not a tree, choose an edge (u, v) of C_{2} such that there are chains $\mu_{2}, \mu_{2}^{\prime}$ of G connecting u and $v,(u, v), \mu_{2}, \mu_{2}^{\prime}$ are disjoint except for u, v, and μ_{2} is contained in C_{2}.

We define $f_{G}(s, t)$ to be the number of components of $G-\{s, t\}$. Now we will make a modification on G so that the degrees of the vertices are unaltered, $f\left(x_{i}, x_{j}\right)$ decreases and $f(s, t)$ does not increase for any two vertices s and t.

First we associate with x, a subset $A(x)$ of $\left\{x_{i}, x_{j}\right\}$ by the following rule. $x_{i} \in A(x)$ if and only if there is a chain ν connecting x to x_{i} with all intermediate vertices in C_{1} such that ν is disjoint with (x, y) and μ_{1} except for x. Similarly $A(y)$ is defined. If C_{2} is a tree, put $A(u)=A(v)=\left\{x_{i}, x_{j}\right\}$. Otherwise $A(u), A(v)$ are defined in a manner similar to that of $A(x)$ and $A(y)$. Now $A(x), A(y)$ are made nonempty by a proper choice of μ_{1}, and $A(u), A(v)$ are made nonempty by a proper choice of μ_{2} (in case C_{2} is not a tree).

Now suppress the edges $(x, y),(u, v)$ and join x to one of u, v and y to the other as follows. Join x to u if $A(x) \neq A(u)$ and $A(y) \neq A(v)$ whenever such a choice is possible. Let the new graph thus obtained be H. To be specific we take that x is joined to u in H.

First we show that H is biconnected. Obviously $G_{1}=G-(x, y)$ is biconnected. Now we show that (u, v) is a chord of a cycle of G_{1}. If C_{2} is a tree, then the cycle is

$$
(u, x)+\mu_{1}[x, y]+(y, v)+\left[v, \cdots, p_{1}\right]+\left(p_{1}, x_{i}\right)+\left(x_{i}, p_{2}\right)+\left[p_{2}, \cdots, u\right]
$$

where p_{1}, p_{2} are suitable pendant vertices of C_{2}. Otherwise the cycle is

$$
\mu_{2}[u, v]+\mu_{2}^{\prime}[v, u]
$$

where if μ_{2}^{\prime} contains the edge (x, y), then (x, y) is replaced by $\mu_{1}[x, y]$ and the resulting cycle is made elementary.

Trivially now $f_{G}\left(x_{i}, x_{j}\right)=f_{H}\left(x_{i}, x_{j}\right)+1$. Next we will show that

$$
\begin{equation*}
f_{G}(s, t) \geqq f_{H}(s, t) \tag{5}
\end{equation*}
$$

for any two vertices s and t. For this it is enough to show that x, y are connected and u, v are connected in $H-\{s, t\}$.

First let $s=x_{i}$. Now x, y, u, v belong to a cycle in $H-\left\{x_{i}\right\}$, so (5) follows. So we may take $\{s, t\} \cap\left\{x_{i}, x_{j}\right\}=\varnothing$.

Now let $s=x$. Then to prove (5) it is enough to show that u, v are connected in $H-\{x, t\}$ when $t \neq u$ and $t \neq v$. This is evident if C_{2} is a tree or $t \notin \mu_{2}$. So let $t \in \mu_{2}$ and C_{2} be not a tree. If $A(u) \cap$ $A(v) \neq \varnothing$, there is a chain connecting u, v in $H-\{x, t\}$. So we take without loss of generality $A(u)=x_{j}$ and $A(v)=x_{i}$. If now $x_{j} \in A(y)$, then u, v are connected through x_{j} and y in $H-\{x, t\}$. So we take $A(y)=x_{i}$. If $x_{j} \in A(x)$, then y would not have been joined to v, so $A(x)=x_{i}$. Now in G, x_{j} is connected to some vertex z of μ_{1} by a chain with all intermediate vertices belonging to C_{1} but not to μ_{1}. Now we obtain a chain connecting u, v in $H-\{x, t\}$ by going from u to x_{j}, x_{j} to z, z to y along μ_{1}, y to x_{i}, and x_{i} to v. Thus we may take $\{s, t\} \cap\left\{x_{i}, x_{i}, x, y\right\}=\varnothing$.

Next let $s=u$. If $t \notin \mu_{1}$, then (5) is trivial, so let $t \in \mu_{1}$. Suppose first that C_{2} is a tree. Then we obtain a chain connecting x, y in $H-\{u, t\}$ by going from x to x_{i} or x_{j}, then to v through a suitable pendant vertex of C_{2} and then to y. If C_{2} is not a tree, the situation is similar to that of the preceding paragraph. Thus we take $\{s, t\} \cap\left\{x_{i}, x_{j}, x, y, u, v\right\}=\varnothing$.

If none of s, t belongs to μ_{1}, then (5) is trivial. So let $s \in \mu_{1}$.
Suppose now that C_{2} is a tree. Then for any fixed vertex t, there are chains in $H-\{s, t\}$ from one of u, v to both x_{i} and x_{j}, and a chain from the other (of the vertices u, v) to x_{i} or x_{j}. Hence u, v are connected and (5) follows.

Suppose next that C_{2} is not a tree. Obviously we may take $s \in \mu_{1}$ and $t \in \mu_{2}$. If now $A(x) \cap A(y) \neq \varnothing$ or $A(u) \cap A(v) \neq \varnothing$, then again (5) follows. So we may take $A(x)=x_{i}, A(y)=x_{j}, A(u)=x_{j}$ $A(v)=x_{i}$. Now we obtain a chain connecting x, y in $H-\{s, t\}$ by going from x to u, u to x_{j}, x_{j} to y. This proves (5) completely.

Now by a repeated application of the above procedure we reduce the graph until finally $f(s, t)=1$ for any two vertices. The final graph has degrees $d_{1}, d_{2}, \cdots, d_{n}$ and is triconnected and this completes the proof of the theorem.

Perhaps necessary and sufficient conditions, similar to the conditions (1) to (4) above, for the existence of a p-connected graph with prescribed degrees $d_{1}, d_{2}, \cdots, d_{n}$ can be obtained for all $p \geqq 3$, but the authors have not yet succeeded in this.

References

1. M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968), 85-94.
2. A. Ramachandra Rao, Some extremal problems and characterizations in the theory of graphs, a thesis submitted to the Indian Statistical Institute, Calcutta, 1969.

Received August 13, 1969.
Indian Statistical Institute, Calcutta

