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EXISTENCE OF TRICONNECTED GRAPHS WITH
PRESCRIBED DEGREES

S. B. RAO AND A. RAMACHANDRA RAO

Necessary and sufficient conditions for the existence of a
p-connected (linear undirected) graph with prescribed degrees
du d2, --,dn are known for p = 1, 2. In this paper we solve
this problem for p = 3.

Let dlf d21 , dn be positive integers and let dγ ^ d2 ^ <J dn.

LEMMA. If a triconnected graph G exists with degrees d19 d2, ,

dn, then

(1) dt^Z.

(2) d19 d21 , dn is graphical, i.e., there exists a graph with these
degrees.

(3) dn + dn_γ ^ m — n + 4 where 2m = Σ?=i ^*
(4) 1/ cZw + dw_1 = m - n + 4, ίfcew m ^ 2n — 2.

Proof. (1) and (2) are evident. To prove (3), let xny xn_x be the
vertices of G with degrees dn and dw_L respectively. Then the num-
ber of edges in G — {xn1 ŵ_1} is m — (dn + dn_x — 1) or m — (dn + dlw_1)
according as xn, xn^ are adjacent or not adjacent in G. Also G — {xn,
xn-i} is connected, so (3) follows. If now dn + dn_γ — m — n + 4, then

2m :> dn + dn_, + S(n - 2) = m + 2n - 2 .

This completes the proof of the lemma.

THEOREM. Conditions (1) to (4) o/ the lemma are necessary and
sufficient for the existence of a triconnected graph with degrees
d^ d21 , dn.

Proof. Necessity was proved in the lemma.
To prove sufficiency, first let conditions (1), (3) be satisfied and

let dn + dn_γ — m — n + 4 = n + X where 2 S λ, ̂  n — 2. Let k be
the number of d{ such that 1 ^ i <Ξ n — 2 and ^ = 3. Then define

ei = d4 — 2 for i = fc + 1, , n — 2 .

Then we have

nγΛdi = 2m - dn- dn_, = 3w + λ - 8 ,
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Define now η = n — 2 — λ and ε = k — η. Then η ^ 0, and ε :> 2
since

2m^m — n + 4 + 3k + 4(n — 2 — k)

= m + 3n — k — 4

and so

X = m — 2n + 4:^n — k .

Write now

1 for i = 1, 2, .--, ε ,

e< = • 2 for i = ε + 1, , k ,

di - 2 for i = k + 1, , n - 2 .

Then Xfr;2 e< = 2(π — 3) and so there exists a tree T with degrees
e19 eΛ_2, attained by the vertices xlf , xn_2i say, in that order [2].
Take two more vertices xn_γ and a;,, and join them. Also join each of
ff»-if ^ to a?< for i = 1, , ε, fc + 1, , n — 2. Of the 37 vertices
xε+1, •••,%, join dΛ - 1 — 1 — ε — n + 2 + k to ajn_j. and the rest
(dn — 1 — ε — n + 2 + k in number) to xn. Note that

dn_x — 1 — s — n + 2 + k = dn_γ — λ - 1 :> 0 .

The graph we thus obtain has degrees dlf -—,dn and is triconnected
since any vertex of T with degree in T less than 3 is joined to either
xn^ or xn.

Next let conditions (1), (2) be satisfied and let

dn + d«_i ^ m — w + 3 .

Then (4 < m — ^ + 2, so there exists a biconnected graph G with
degrees c ,̂ d2, ---, dn [2]. If G is not triconnected, let ^ , x, be two
vertices such that G — {̂ , x̂  } is disconnected. Let C19 C2, be the
components of G - {xi9 Xj}. By (1), | Cg\ ^ 2 for 0 = 1, 2, . Also
by hypothesis,

m — di — d3- ̂  w — 3 ,

so it follows that one of the components, say Clt contains a cycle.
We first prove that there exists an edge (x, y) in CL and two

chains μ19 μ[ of G connecting x and y such that (x, y), μλ, μ[ are dis-
joint except for x and y, and μγ is contained in Cx. Since G is bicon-
nected, there exists a chain connecting α̂  and x3- with all intermediate
vertices in C2.

If now two vertices x, y with degree two in Cx are adjacent and
belong to a cycle of Clf the required edge is (x, y). So we may take
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that no two vertices of degree two in Cx can belong to a block (on
more than two vertices) and be adjacent. Let B be any block of CΊ
which is not an edge. If some cycle of B has a chord (x, y), then
(x, y) is the required edge. Otherwise, by the results of [1], two
vertices y, z of degree two in B will be adjacent to a vertex x of
degree three in B. If w is another vertex of B adjacent to x, then
there is a chain connecting w to y in B — {x}. This chain together
with (x, w) may be taken as μ19 To get μ[, go from x to z along
(x, z), from z to xζ or xd (through another block of Cι at z if necess-
ary), then to y. Thus (x, y) is the required edge.

Let now (x, y) be an edge of C1 chosen as explained above. If
C2 is a tree, take any edge (u, v) of C2. Then (u, v) is a chord of a
cycle of G. If C2 is not a tree, choose an edge (u, v) of C2 such that
there are chains μ2, μf

2 of G connecting u and v, (u, v), μ21 μ2 are dis-
joint except for u, v, and μ2 is contained in C2.

We define fG(s, t) to be the number of components of G — {s, t}.
Now we will make a modification on G so that the degrees of the
vertices are unaltered, f(xi9 xό) decreases and f(s, t) does not increase
for any two vertices s and t.

First we associate with x, a subset A(x) of {xi9 xό) by the follow-
ing rule. Xi e A(x) if and only if there is a chain v connecting x to
x{ with all intermediate vertices in CΊ such that v is disjoint with
(x, y) and ^! except for x. Similarly A(y) is defined. If C2 is a tree,
put A(u) = il(v) = {»<, %}. Otherwise A(%), A(v) are defined in a manner
similar to that of A(x) and A(y). Now A(a?), A(y) are made nonempty
by a proper choice of //^ and A(u), A(v) are made nonempty by a pro-
per choice of μ2 (in case C2 is not a tree).

Now suppress the edges (x, y), (u, v) and join x to one of u, v and
y to the other as follows. Join x to u if A(α ) ^ A(u) and A(i/) ^ A(v)
whenever such a choice is possible. Let the new graph thus obtained
be H. To be specific we take that x is joined to u in H.

First we show that H is biconnected. Obviously G1 = G — (a?, 2/)
is biconnected. Now we show that (u, v) is a chord of a cycle of Gx.
If C2 is a tree, then the cycle is

(u, x) + £ φ , 7/] + (y, v) + [v, , p j + (plf x^ + (Xi, p2) + [p2, , u]

where p19 p2 are suitable pendant vertices of C2. Otherwise the cycle
is

μ2[u, v] + μ'2[v, u]

where if μ2 contains the edge (x, y), then (x, y) is replaced by μλ[x, y]
and the resulting cycle is made elementary.

Trivially now fG(xi9 xό) = fH(%n χj) + l Next we will show that
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(5) fa(s,t)^fH(s,t)

for any two vertices s and t. For this it is enough to show that
x, y are connected and u, v are connected in H — {s, t}.

First let s = x{. Now x, y, u, v belong to a cycle in H — {α J, so
(5) follows. So we may take {s, t) Π {xi9 %j} = 0 .

Now let 8 = x. Then to prove (5) it is enough to show that u, v
are connected in H — {x, t} when t Φ u and t Φ v. This is evident if C2

is a tree or ί ί μ2. So let t e μ2 and C2 be not a tree. If A(t&) Π
A(v) Φ 0 , there is a chain connecting w, v in i ί — {ce, t}. So we take
without loss of generality A(u) = xό and A(v) = x{. If now xseA(y),
then w, v are connected through a?,- and y in H — {x, t}. So we take
A(y) = xt. If XjβA(x)f then 7/ would not have been joined to v, so
A(x) = Xf Now in G, ^j is connected to some vertex z of μL by a
chain with all intermediate vertices belonging to CL but not to μλ.
Now we obtain a chain connecting u, v in H — {x, t} by going from
u to α̂  , Xj to z, z to y along /̂ ^ y to ^ , and a?€ to v. Thus we may
take {s, ί} n {»<, x, , a;, T/} = 0 .

Next let s — u. If £ $ μiy then (5) is trivial, so let t e μγ. Sup-
pose first that C2 is a tree. Then we obtain a chain connecting x, y
in H — {u, t} by going from x to Xt or £Cy, then to v through a suita-
ble pendant vertex of C2 and then to y. If C2 is not a tree, the
situation is similar to that of the preceding paragraph. Thus we take
{s, t) n {xi9 Xj, x, y,u,v} = 0.

If none of s, t belongs to μ19 then (5) is trivial. So let seμ^
Suppose now that C2 is a tree. Then for any fixed vertex ί, there

are chains in H — {s, t) from one of u, v to both xt and xj9 and a
chain from the other (of the vertices u, v) to x{ or xά. Hence u, v
are connected and (5) follows.

Suppose next that C2 is not a tree. Obviously we may take
se μ1 and t e μ2. If now A(x) Π A(y) Φ 0 or A(w) Π A(v) ^ 0 , then
again (5) follows. So we may take A(x) = xi9 A(y) — x3 , A(u) = Xj
A(v) = Xi Now we obtain a chain connecting x,y in fZ" — {s, ί} by
going from x to w, % to αjif xy to y. This proves (5) completely.

Now by a repeated application of the above procedure we reduce
the graph until finally /(s, ί) = 1 for any two vertices. The final
graph has degrees d19 d21 , dn and is triconnected and this completes
the proof of the theorem.

Perhaps necessary and sufficient conditions, similar to the condi-
tions (1) to (4) above, for the existence of a p-connected graph with
prescribed degrees dlf d2, , dn can be obtained for all p ^ 3, but
the authors have not yet succeeded in this.



EXISTENCE OF TRICONNECTED GRAPHS 207

REFERENCES

1. M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968), 85-94.
2. A. Ramachandra Rao, Some extremal problems and characterizations in the theory
of graphs, a thesis submitted to the Indian Statistical Institute, Calcutta, 1969.

Received August 13, 1969.

INDIAN STATISTICAL INSTITUTE, CALCUTTA






