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ON LEFT QF-3 RINGS

HiroYuKl TACHIKAWA

In this paper the following results are proved:

(i) Three classes of left QF-3 rings are closed under
taking left quotient rings respectively.

(ii) A subcategory of left modules having dominant di-
mensions =2 over a right perfect left QF-3 ring R is equiva-
lent to a category of all left /R f-modules, where f is a suitable
idempotent of R.

(iii) In case a left QF-3 ring is obtained as the endomor-
phism ring of a generator, dominant dimensions (= 2) of
modules are closely connected with the vanishing of Ext-
functors.

(iv) Three classes of left and right QF-3 rings are identical
in case of perfect rings.

Let R be an associative ring having an identity element 1 and
denote by R (resp. R;) a left (resp. right) R-module R. To gener-
alize the notion of QF-3 algebras [18] we shall make the following
definitions:

(1) R is said to be left QF-3, if R has a direct summand Re
(e is an idempotent of R) which is a faithful, injective left ideal.

(2) R is said to be left QF-3+, if the injective hull E(,R) of
=R is projective.

(3) R is said to be left QF-3’, if the injective hull E(;R) of R
is torsionless in the sense of Bass [1].

Right QF-3, QF-3* and QF-3' rings are defined in a similar fashion.
It is obvious that the class of left QF-3’ rings is the most general
class of the above three classes.

Our main purpose in this note is to introduce some generalizations
of results for QF-3 algebras [11], [12], [15], [16], [17] and semi-primary
QF-3 rings [4], [6], [13], [14] to the above generalized classes of rings.

We shall say that the dominant dimension of left (resp. right)
R-module X, denoted by dom. dim ,X(resp.dom. dim X3), is at least
n, if there exists an injective resolution of X:

0 X w, W, R W,

such that all W,, 1 < ¢ < n, are torsionless. Then it is clear that R
is left (resp. right) QF-3’ if and only if dom. dim R (resp. dom. dim R;) =
1.

In §1 we shall show that each class defined as above is closed
under taking quotient rings (not necessarily classical), that is, a left
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quotient ring S of R is left QF-3, QF-3* or QF-3 if R is left QF-3’,
QF-3* or QF-3 respectively. Further, S is the maximal left quotient
ring of R if and only if dom.dim ¢S = 2. This is a generalization of
the results for QF-3 algebras by Morita [12], Tachikawa [17] and
Mochizuki [11]. Then, as an immediate consequence we have that R
and the double centralizer R’ of any faithful right ideal of R are
contained in the same class, and dom. dim ;R = 1, if R’ + R. Here
it is to be noted that the double centralizer of a faithful left ideal
of R is not necessarily left QF-3, even if R is left QF-3' (cf. §4,
example 1).

In §2 we shall consider a left QF-3 ring R which has a faithful
projective right ideal K and shall develop a proof in order to notice
that the injectivity of K, is not necessary to obtain some results in
[14, Propositions 1.1 and 1.2]. Further, defining a special injective
dimension closely connected to a fixed injective module, we shall prove
that in the case R is a right perfect left QF-3 ring, there exists a
suitable idempotent f of R such that the subcategory of left R-
modules of dominant dimension at least two is equivalent to the catego-
ry of all left fRf-modules. We shall remark also that the two charac-
terizations for dominant dimension by Mueller [15] can be applied to
an estimation of dominant dimensions of endomorphism rings of modules
which are generators.

Recently, the characterization of Artinian QF-3 rings due to Wu,
Mochizuki and Jans [19] suggested the notion of QF-3’ rings to Colby
and Rutter [4] and Kato [7]. In [4] it was proved that semi-primary"
left QF-3’ rings are not necessarily left QF-3*, however ‘‘left QF-3’”’
implies ‘‘left QF-3’’ for semi-primary rings. Without the proof we
shall state in §3 that the same result holds for perfect rings, since
the proof in [4] is available for this case. Moreover, we shall prove
by duality of modules and the result proved in the first part of §2
the notions of two sided QF-3’, QF-3* and QF-3 are identical for per-
fect rings.

1. Quotient rings of QF-3 rings. Let R be a ring with an identi-
ty element 1 and N a submodule of a left R-module M. M is said
to be a rational extension of N in case f(N) = 0 implies f = 0 for
f eHom,, (L, M), where L is any submodule of M containing N. Then,
following Lambek [10], a ring S is said to be a left quotient ring of
R if S contains R as a subring and if S is a rational extension of R
as a left R-module. To begin with we shall prove

ProrosiTioN 1.1 Let S be a left quotient ring of R. If R 1s

t In this case a ring R is said to be semi-primary if it contains a nilpotent ideal
N with R/N semi-simple with minimum condition.
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left QF-3' (resp. QF-3%), then S is left QF-3’' (resp. QF-3%).

Proof®. Denote by I the injective hull E(,R). Then, by the
assumption I = FE(;S) and we have

IS LR 1L S,

(resp. IS, @R 5, B S)

where @ is an R-monomorphism and j is the inclusion mapping.

Suppose s be an element of S such that ¢@j(sx) = s(@j(x)) for
some x€l. Then we have a projection p, of [], S(resp. >, P S) onto
S such that the R-homomorphism

s — i@ (sw) — s(pj(x))

of S into S is nonzero but has kernel containing R. However, this
contradicts that ,S is a rational extention of E. Hence ¢j is an S-
monomorphism and consequently S is left QF-3' (resp. left QF-3*).

PropoSITION 1.2. Let S be a left quotient ring of R. If R 1is
left QF-3, then S 1s left QF-3.

Proof. Let Re, e = e be a faithful projective, injective left ideal
of R. Since .S is an essential extension of R and ¢ = ¢, ,Se is an
essential extension ,Re so Se = Re.

Next, we shall prove that (Se is injective. Let L be a left ideal
of S and ¢ a left S-homomorphism of L into Se. Denote by ¢ the
map of L N R into Se(= Re) which is the restriction of . Since
»Re is injective, it follows by Baer’s Criterion that there exists an
element ¢ of Re such that §(l) = lq for all le LN R. Then we shall
define a map ¥ of L into Se by putting Z(r) = ¢(r) — rq, for all
reS. Now we shall suppose that ¥ (r,) # 0 for some nonzero element
r, of L. ¥(r) and r, are both elements of S. Since ,S is a rational
extension, there exists an element », of R such that »%(r,) # 0 and
ro€R. Then ry,e RN L and hence 77 (r) = rp(r) — r(rq) =
(rer) — rorq = P(ryr)) — (rgr)qg = 0. This is a contradiction. Thus
U(r) =0 for all re L. Hence a left S-homomorphism @ of S into Se
defined by @(r) = rq for all »€ S is an extension of @ and by Baer’s
Criterion we obtain that (Se is injective.

It remains to prove the faithfulness of (Se. Let ¢ be a nonzero
element of S. Then there exists an element d of R such that dge R
and dq + 0. Then there exists an element x of Re such that dqx + 0,

2 The author is grateful to the referee who clarified the proofs in this section,
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because ,Re is faithful. Hence gz - 0, x € Se, this implies that ;Se
is faithful.

Let us denote by @ the maximal left quotient ring of R. Then
we have

ProrosiTiON 1.3. If R is left QF-3' and S is a left quotient
ring of R, then dom. dim. (S = 2 if and only if S = Q.

Proof. It is known [9] that S is a subring of @ and @ can
be imbedded into I by a Q-monomorphism j. Lambek proved in [9]
that j(Q) = {x e I| h(4(S)) = 0 implies h(x) = 0 for h e Homy(I, I)}. If
dom. dim (S = 2, I/5(S) is isomorphic to a submodule of a direct pro-
duct of copies of S. Hence for x ¢ I such that x¢ j(S), there exists
a S-homomorphism f of I into I with f(x) == 0 and f(5(S)) = 0. Thus
by the remark above x ¢ j(Q) and consequently S = Q.

Conversely assume S = @. Since the maximal left quotient ring
of @ is itself, by the same reason we have ,., Ker 2 = j(Q), where
H, = {h e Hom, (I, 1) | h(j(Q)) = 0}.

Thus,

0— Q12T

ke H,

is exact, where @(x) = (---, h(x), ---), x € I. It follows that
dom. dim ;S = dom. dim ,Q = 2.

In case R is a finite dimensional QF-3 algebra, E(,R) is similar
to the unique minimal faithful left R-module and the double central-
izers of these modules are isomorphic to each other. Thus Proposition
1.3 is a generalization of the result for QF-3 algebras by Tachikawa
[17] and Mochizuki [11].

COROLLARY 1.4. Let K be a faithful right ideal of R. If R is
left QF-3 (QF-3’ or QF-3+), then the double centralizer R' of K, is also
left QF-3 (QF-3’ or QF-38* respectively).

Proof. Since every left quotient ring of R can be imbedded natu-
rally into @, we shall prove that R’ is a left quotient ring. For this
purpose it is sufficient to show that for any two elements #, - 0 and
r, of R’, there exists an element » of R such that ] == 0 and »7; € R.
However, K is faithful, hence there exists an element k¢ K = R such
that k7! = 0 and it is obvious kr,ec K < R.

COROLLARY 1.5. Let R’ be a double centralizer of a faithful right
ideal of R. If dom.dim R = 2, then R’ = R,
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2. On left QF-3 rings. Throughout this section we shall assume
that Re means always a faithful, projective, injective left ideal of R
and @ is the maximal left quotient ring of R.

We shall denote by K a finitely generated, projective, faithful
right ideal of R, by C the ring eRe, by D End,(K;) and by U the
D-C-bimodule Ke respectively. Then we have

ProOPOSITION 2.1. Let R’ be the double centralizer of K,. If R
is a left QF-3 ring having Re as a faithful, projective, injective left
ideal, then it holds

(1) gp[Hom, (,Kg, nUl)l. = rR'e,.,

(2) ,U is injective.

Proof. Since K, is faithful, we shall identify a D-endomorphism
of ,K obtained by the right multiplication of an element r of R with
r itself. Then it follows that Hom, (K, U) = Hom, (K, Ke) 2 Re. On
the other hand, Hom, (K, U) (= Hom, (K, Ke¢)) is a subset of R’ =
Hom, (K, K). Hence we have that Hom, (K, U) & R’e. However, it
is known by Proposition 1.2 that Re = R’e. Thus we have (1).

Next, assume that the diagram

00— Y2,y

gjﬂ

is given, where the row is exact, Y, Y’ are left D-modules and j,
are left D-homomorphisms. Then we have the following diagram

Hom @9 Hom, (K, Y)]

—
—

0 — [Hom, (K, Y)]

-~
//’
=

[Hom, (K, U)] .

By (1), x[Hom, (K, U)] is isomorphic to Re and hence injective. There-
fore there exists a dotted R-homomorphism @ so as to make the above
diagram commutative. Further, we have the next commutative diagram:

0 — K ® Hom, (K, ¥) 22509 ¢ o Hom, (K, Y)
R ~ R

l /

-

’1®H0m(1,<p) //1®q)

| —
K@ Hom, (K, U) .
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Since K is a finitely generated, projective right R-module, the funector
K @, Hom, (K, —) is naturally equivalent to the identity functor on
the category of left D-modules. It follows that ,U is injective.
This completes the proof.

Let ,_# and ,_# be categories of left R-modules and left D-modules
respectively. We shall define covariant functors S:, 7 — . #
and T: ., 7 — ,.# by S(Y) = z[Hom, (K, Y)] for Ye, 2 and
T(X) = p)[K&Q, X] for X e . respectively. Then, since K is finitely
generated, projective it is well known that there exists a natural
equivalence o: TS — 1,,_#, where 1,_# means the identity functor
on , 7 and o(Y) (rQ f) = f(r) for re K, f e Hom, (K, Y). On the
other hand, there exists a natural transformation (not necessarily an
equivalence) 7:1, , — ST, where 1, , means the identity functor on
e and [t2(X)]|(r) =rQRwx, for xe X, re K.

Assume that W is isomorphic to a direct product [];.,Re"?,
Re® = Re. Since K, is finitely generated, projective, by (1) of Pro-
position 2.1 we have that

AW = [[ Re® = ﬁAHomB (K, Ke'V) = Hom,, (K, _Hl Ke™)

Aed
= Hom,, (K, K(? _HARe‘“) =~ Hom, (K, K(}E} W)= ST(W)
and the composite of all isomorphisms is z(W).

Now, we shall introduce a special injective dimension closely con-
nected with ,U. Let Y be a left D-module. Then we shall say that
Y has U-injective dimention = % (denoted by U-inj. dim ,Y), if there
exists a following injective resolution of Y-

0 Y v, V. e V.,

such that all V,, 1 < ¢ < =, are isomorphic to direct products of copies
of U. It is to be noted that this notion can be defined for any in-
jective module.

Then we have

PROPOSITION 2.2. Let .o be the category consisting of left R-
modules X such that dom.dim X = 2 and <z the category of left
D-modules Y such that U-inj.dim ,Y = 2. Then .o and <% are
equivalent by S and T.

Proof. If Xe.v, then we have a injective resolution of X:

0— X W, W, -++, where W,1=1,2,

are torsionless and injective. Since ,Re is faithful, ,R is imbedded
into a direct product of copies of Re. On the other hand, every
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torsionless, injective left R-module is imbedded into a direct product
of copies of ,R. Thus, every torsionless injective left R-module is
imbedded into a direct product of copies of Re. Hence, without loss
of generality we can assume that W, are isomorphic to [[;c,, Re®”, 1 =
1, 2, Re® = Re. It follows by the finitely generated projectivity and
the faithfulness of K, that U-inj.dim ,7(X) =2, if Xe.». Con-
versely dom. dim ,S(Y) = 2, if Ye <%, by Proposition 2.1 (1). Now,
by the exposition preceding this proposition, it is enough to prove
that the restriction of z:1_, —— ST to .o/ is an equivalence. How-
ever, from the above remark and the exposition, in the following
commutative diagram

0 X Wl W2
lr(X) lf( W) ‘tt( W>)
0— ST(X) — ST(W,) —> ST(W,)

we know that z(W,) and z(W,) are left R-isomorphisms. Hence by
the Five lemma it follows that 7(X) is a left R-isomorphism.

THEOREM 2.3. Let R be a right perfect ring. If R is left QF-3,
then there exists an idempotent f of R such that fR, s faithful,
and the category .o consisting of all left R-modules of dominant

dimension at least two is equivalent to the category ;n, . of all left
fRf-module.

Proof. Since R is a right perfect ring, every nonzero left R-
module has nonzero socle and there exists at most a finite number of
non-isomorphic irreducible left R-modules. Therefore we can assume
that the socle S of Re is a direct sum of finite number of non-isomorphic
irreducible left R-module. Then there is an idempotent f of R such
that Rf/Nf is isomorphic to ,S, where N is the Jacobson radical of
R.

Suppose that fR, is not faithful. Then there exists an nonzero
element r of R such that fRr = 0. Since Re is faithful, there exists
an element x of Re such that rx = 0. Hence we have a nonzero sub-
module Rrx of Re. It follows that Rra NS =0, for Re is an es-
sential extension of S. Therefore fRrxz -+ 0. Thus we have that
and fRr =+ 0, but this is a contradiction.

Now, it is known that we can set fR as K in Proposition 2.2
and fRf as D. It follows that ;,,fRe is injective. Further, the condi-
tion that Rf/Nf = .S insure that ,,,f Re is cogenerator. Hence every
left fRf-module has fRe-injective dimension = 2 (in fact = ). This
completes the proof by Proposition 2.2.
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By similar proofs as in [14, Proposition 2.6 and Theorem 2.4] and
[13, Corollary 5.3] we have further

THEOREM 2.4. Under the same assumption as in Theorem 2.3,
the following facts hold:

(1) Let X be a left R-module. dom.dim X = 2 if and only if
X = ;Hom, (fR, Y) for a left D-module Y where D = fRf.

(2) If |[End,(fR)]° = R, then R’ = Q (= the double centralizer
of E(zR)).

(3) If dom.dim . X = 1, then there exists a left R-module X'
such that X' X and such that dom.dim ,X' > 2. Further,
dom. dim ,X"” = 1 and dom. dim ,X'/X" =0, if X'DX"DX.

(4) The following two conditions are equivalent (n = 1).

I. dom.dim X =mn +1

II. (a) x[Hom, (fR, fRQ, X)] = X,

(b) Extt (fR, FRQR, X) =0 for L=<k <n—1.

Now for given left modules M and U over a ring D, we shall say
that U is a M-cogenerator if for a nonzero left D-homomorphism f of
M into itself there exists a left D-homomorphism ¢ of M into U
such that the composite of f and o is a nonzero left D-homomorphism.
Then we prove

ProrosiTION 2.5. Let M be a left module over a ring D such
that (i) ,M is a generator and (ii) M has an injective, M-cogenerator
submodule ,U. Then the inverse D-endomorphism ring R of ,M 1is
left QF-3. Conversely, every left QF-3 ring is obtained in the above
way for a suitable ring D and ,M which satisfy (1) and (ii).

Proof. Assume that ,M satisfies the conditions (i) and (ii). Since
oM is a generator, M, is finitely generated, projective and hence
Hom, (,M,, ,U)] is injective. On the other hand, if we denote by
e the projection of M onto U, ,[Hom, (,M,, ,U)] is Re and hence is
projective. Let 7 be a nonzero element of R. By (ii) there exists
an element 7’ ¢ Re such that 7+’ - 0. Thus Re is faithful and R is
left QF-3.

To prove the converse, we have only to take R as D,R as M
and Re as U respectively.

In view of Proposition 2.5, it seems of interest to obtain a method
by which we can calculate dom. dim ,R in case R = [End, (M)]’ and

3 (2) follows from (1) and Theorem 1.5 by putting ¥ = fR and (2) implies that
every right perfect left QF-3 ring R’ of dominant dimension > 2 is obtained as an
inverse fRf-endomorphism ring of a generator-cogenerator fRf-module. (cf. Kato [8].)
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»M is a generator. However it was done already by Morita [13],
when D is an Artinian ring. We shall remark here that his condition
concerned with the self injective dimension can be replaced by another
condition related to Ext-functors.

PROPOSITION 2.6. Assume that D, M and R retain their mean-
ings in Proposition 2.5. Then 1 tmplies 11, where 1 and II are the
following two conditions for a left R-module X:

I. dom.dim, X=n+1 n=1).

II.  (a) [Hom, (Mg, ;M Qr X)] = 2 X

(b) Exth (PA M, MR:X)=0for1<k<n—1and for every
maximal left tdeal P of D such that D/P is mot isomorphic to any
submodule of U.

The two conditions are equivalent, if D is a right perfect ring.
Similarly, if ,U is a cogenerator, the two conditions are equivalent,
proviced we replace PO M in II (b) by M.

Proof. Let S =Hom, (,M, —) and T = M Q, — be two covariant
functors. Assume I. There exists an exact sequence

(1) 0—s X — W, W,— -+ Wi

such that all W; are direct products of S(U)!. Then, in the follow-
ing commutative diagram:

0 X W1 Wz - s Wn+1

(2) JT l jfz JMH

0— ST(X) — ST(W,) — ST(W,) — «++ — ST(W,,))

T, Ty ***, Toey are isomorphisms, becacuse M, is finitely generated,
projective. Hence 7 is an isomorphism and this implies

II. (a) Hom, (,M, ,M &, X) = . X.

On the other hand, we have the following exact sequence

(3) 0—TX)—T(W)— T(W)— -+ —> T(W,.)

where all T(W,) are isomorphic to direct products of ,U(= TS(U)).
Since T(W;) are injective, the sequence (3) can be consider as an in-
jective resolution of T(X). Hence by the exactness of the bottom

sequence in (2) it follows that

+ By Proposition 2.5 we know Re = S(U).
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(4) Extt M, T(X)) = Exth (M, MR X) = 0, 1<k<n-1.
R
Let

Jgo 251 g2 On

(5) 0 — T(X) V. V. Vi

be the minimal injective resolution of 7(X). Then, by [15, Lemma
1] V., is isomorphic to a direct summand of a direct product T(W,)
of U. Hence any irreducible submodule of V; is isomorphic to a sub-
module of U. Thus by [15, Lemma 7] we have that Ext% (B, T(X)) =
Extt (B, M&, X) =0 for all 0 <k <n and for all irreducible left
D-modules B which are not isomorphic to submodules of U.

Now, let P be a maximal left ideal of D such that D/P = B.
Then,

(6) Exts (P, MQX) = Extt'' (B, MQX) =0, 1l<k=n-—1.

Hence form (4) and (6) we obtain

II. (b) Exth (PO M, MR, X) =0, 1<k<n-1.

Conversely, assume II. Clearly II (b) implies (4) and (6). Since
S is left exact, it follows from II (a) and (4) that

Jgo Jgi S()‘ Jgn
0— XTS5V 2B 8(v) 25 T (v,

is an injective resolution of X, where 6 is a given isomorphism:
X—Hom, (M, MK, X)(= ST(X)) in II (a).

Now, we shall assume that D is right perfect. Since every non-
zero left D-module has a nonzero socle, each V; is the injective hull
of its socle. However, by [15, Lemma 7] it follows from (6) that B
is not isomorphic to a submodule of V. Hence V; is imbedded into
a direct product of U and consequently S(V;) is imbedded into a direct
product of S(U). Thus dom. dim ,X = n + 1 by [15, Lemma 1].

In case ,U is a cogenerator, V; is imbedded into a direct product
of U and the converse also holds® by [15, Lemma 1].

Especially, dom. dim R is characterized only by the vanishing of
Exth (P M, M), k=1,2,---.

3. Perfect QF-3 rings. Following Thrall’s paper [18] we shall
say that R has a minimal faithful left module L if L is a faithful
left R-module and if L appears as a direct summand of every faith-
ful left R-module. It is clear that L is projective, and injective,
and is isomorphic to some left ideal direct summand of R. Jans

5 This proof can be regarded as a proof of Theorem 2.8, (4) for the case R =
[Endn(fR)]°, since fRf is right perfect and pfR is a cogenerator.
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proved in [5] that semi-primary ring has a minimal faithful left
module, if E(,R) is projective.

The next propositions show the equivalence between notions of
left QF-3 and left QF-3’ for right perfect rings and show a necessary
and sufficient condition for perfect, left QF-3’' rings to be left QF-3+.

ProprosITION 3.1. If R is a right perfect ring, then the follow-
wng conditions are equivalent:

(1) E(R) is torsionless, ti.e., R is left QF-3'.

(2) R has a mintmal faithful left module.

(3) R has a faithful, projective, injective ideal, i.e., R is left
QF-3.

PrOPOSITION 3.2. Let R be a perfect left QF-3' riny. Then R
1s left QF-3" if and only if the socle of R is finitely generated.

For the proofs we shall refer to that of Proposition 2 and Theo-
rem 2 in [4], which are known to be valid, if we consider that for
right perfect rings, every nonzero left module has nonzero socle and
for left perfect rings, every projective module is isomorphic to a direct
sum of primitive left ideals.

ProprosITION 3.3. Let R be a perfect ring. If R is left and
right QF-3’, then R is left and right QF-3*.

Proof. By Proposition 3.1 we may assume that R has faithful,
projective, injective left ideal Re and right ideal fR, where ¢ and f
are idempotents of R. Then it is seen by Proposition 2.1, (2) fRe is
an injective left fRf-module as well as an injective right eRe-module.
Further, by Proposition 2.3, without loss of generality we can assume
that fRe is a cogenerator in the category of all left fRf-modules and
the category of all right eRe-modules respectively. By Proposition
2.1, (1) we have that Hom,,, (fRe, fRe) = eRe°,;,, and Hom,,, (fRe,
fRe) = ;,,fRf and hence End,,; (fRe) = ¢Re° and End,., (fRe) = fRf.
Therefore the fRe-duality between categories of finitely generated
left fRf-modules and finitely generated right eRe-modules holds, and
by Proposition 2.1, (1) we have that Hom,,, (fR, fRe) = Re and
Hom,,, (Re, fRe) = fR which implies fR and Re are both fRe-reflexive
in the sense of Cohn [3]. It follows by [12, Lemma 2.2] that the
socle of fR is reflexive. Since fRf is a perfect ring, the socle of
srsfR is a nonzero submodule and hence it is isomorphic to a direct
sum of a finite number of irreducible fRf-modules. Thus, for an
integer n, we have an exact sequence:
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0—— ;oifR z @ [fRe]. Hence
0 — Homyy, (/R /) — pofc> (Hom e (/E, £Ro)]
R 3\ @ [Re]

is exact and consequently, FE(;R)(= E(yR’)) can be imbedded into a
direct sum of finite number of copies of Re. Thus E(,R) is projective.
By symmetry it can be proved that E(R;) is projective.

4. Examples. 1. As was remarked in the introduction, we shall
give a left QF-3' ring R such that the double centralizer of a faithful
left ideal of R is not left QF-3’. For this purpose first we shall refer
to

PropPOSITION 4.1. Let R be a left primitive ring with a minimal
ideal M. If R is left QF-3', then R s left QF-3 and M is a faith-
ful, projective, injective ideal.

Proof. Since zM is imbedded into E(,R), the injective hull E(,M)
of M is imbeded into E(,R). Hence we have an exact sequence:

0 —> E(,M) —— I B,

where R = R, N,..Ker p, = 0, provided ¢, are defined by op(x) =
(-, p(x), --+), x € E(;M). Now, suppose Ker p, = 0 for all ¢,, v e 4.
Since M is essential in E(,M), Kerp, N M+ 0. It follows that
Ker ¢, 2 M, because M is minimal. This implies ,.,Kerp, 2 M = 0,
and this is a contradiction. Therefore E(,M) can be imbedded into
R, and hence E(,M) is projective. Since R has a faithful, projective,
injective ideal E(,M), R is left QF-3.

On the other hand, M is faithful and hence R can be imbedded
into a direct product of copies of M. Hence, similarly as above we
can prove that E(,M) can be imbedded into M. However M is minimal
and hence M is isomorphic to E(,M). Thus M is projective and in-
jective.

Let K be a field and V an infinite dimensional left K-vector space.
Denote by F' the inverse K-endomorphism ring of V. Then F is a
primitive ring and has a pair of projective, minimal ideals M and N
such that M = ,V* = Homg (yVy, xK), N, = V,. Since N, is pro-
jective, M is injective and hence F' is left QF-3. However F' is not
right QF-3’. For otherwise, it would follow by Proposition 4.1 that
F' is right QF-3 and N is injective. Then, by [6, Th. 1]
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Ve= N=M* = Homy (;My, Kx) = V§*,

but it is impossible, because (V: K) = co.

Now, consider the double centralizer F”’ of ,M. Since [End, (M)]° =
K, it follows F’ = End, (M). Then, similarly as above we can prove
that F"” is not left QF-3’. Hence the double centralizer F’ of a faith-
ful left ideal M of a left QF-3 ring F' need not be left QF-3'.

2. The following example shows that perferct left QF-3 rings
are not necessarily semi-primary. Let K be a field, ;V, s-dimensional
vector spaces over K,s = 1,2, ---. Denote by M the direct sum of
all V,. Then every element of [End, (M)]’ can be considered as a
row finite matrix. Let A be a subring of [End, M)]° such that each
element of A has the following matrix representation A E + 3, T, where
N e K, E is the identity matrix, T, is the zero matrix for almost all
s and T, is written by

>, 7;Ciy, where p = (s+ 1)(s+2)/2,9g =s(s+1)/2 and C;;

means the matrix with 1 in the (7, 7) position and 0’s elsewhere and
7;,€ K. Then, T, is a lower triangular matrix and every element of
the Jacobson radical N of A is a sum of 7.’s.

Now, consider a ring R = Ke,, + M*c, + Ke,;, + Acy, + Mc,, + Ky,
where M* = ,[Hom, (,M,, .K.)]x and + means the direct sum as K-
modules, and the multiplication of ¢,;, 1 < 4,5 < 3, is same as that
of matrix units and mf = f(m) for fe M*, me M.

Then primitive idempotents of R are ¢, = e, ¢, = €, and ¢,; = ¢,
and the Jacobson radical J of R is M*¢, + Kc¢, + Ney, + Me,,. Since
R/lJ=K@P KD K and J is left and right T-nilpotent, R is perfect.
However R is not semi-primary, for J is not nilpotent. Since Re, =
[Homy (x¢,R, .K)], Re, is a faithful, projective, injective left ideal of
R and hence R is left QF-3. On the other hand, by Proposition 3.2
R is not left QF-3*, because the socle of ,R is not finitely generated.

3. The next example shows that every right Artinian QF-3 ring
is not necessarily left Artinian,® while every Artinian self-injective
ring (i.e., quasi-Frobenius ring) is left Artinian.

Let @ and P be skewfields such that P is a subfield of @ and
the right dimension of @ over P is finite and the left dimension of
Q@ over P is infinite. The existence of such skewfields was proved
by Cohn [2]. Similarly as in Example 2, consider a ring R such that

6 It was proved by K. Morita [13, Th. 1.1] that for left or right Artinian rings
‘“left QF-3” implies ‘“‘ right QF-3"’.
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Qc, + Qc, + Qey, + Pey, + Qe + Qeys, that is to say, R is a subring
of the matrix ring @,. Then it is clear that R is right Artinian but
not left Artinian. On the other hand, R is semi-primary and Rec,
and ¢, R are faithful, projective, injective, left and right ideals re-
spectively.

4. The next example shows a non-perfect QF-3 ring.

Let K be the field of rational numbers and Z the ring of rational
integers. Consider a subring R of the matrix ring K, such that
Ke,, + Ke,, + Key, + Zey, + Key, + Keyye It is clear that E(,R)(resp.
E(Ry)) is isomorphic to the direct sum of 3-copies of a projective,
injective ideal Re, (resp. c,;R). Hence R is QF-3, while R is not per-
fect.
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