MÖBIUS FUNCTIONS OF ORDER k

Tom M. Apostol

Let k denote a fixed positive integer. We define an arithmetical function μ_{k}, the Möbius function of order k, as follows:

$$
\begin{aligned}
& \mu_{k}(\mathbf{1})=1, \\
& \mu_{k}(n)=0 \text { if } p^{k+1} \mid n \text { for some prime } p, \\
& \mu_{k}(n)=(-1)^{r} \text { if } n=p_{1}^{k} \cdots p_{r}^{k} \prod_{i>r} p_{i}^{a}, \quad 0 \leqq a_{i}<k, \\
& \mu_{k}(n)=1 \text { otherwise } .
\end{aligned}
$$

In other words, $\mu_{k}(n)$ vanishes if n is divisible by the $(k+1)$ st power of some prime; otherwise, $\mu_{k}(n)$ is 1 unless the prime factorization of n contains the k th powers of exactly r distinct primes, in which case $\mu_{k}(n)=(-1)^{r}$. When $k=1, \mu_{k}(n)$ is the usual Möbius function, $\mu_{1}(n)=\mu(n)$.

This paper discusses some of the relations that hold among the functions μ_{k} for various values of k. We use these to derive an asymptotic formula for the summatory function

$$
M_{k}(x)=\sum_{n \leqq x} \mu_{k}(n)
$$

for each $k \geqq 2$. Unfortunately, the analysis sheds no light on the behavior of the function $M_{1}(x)=\sum_{n \leqq x} \mu(n)$.

It is clear that $\left|\mu_{k}\right|$ is the characteristic function of the set Q_{k+1} of ($k+1$)-free integers (positive integers whose prime factors are all of multiplicity less than $k+1$). Further relations with Q_{k+1} are given in §'s 4 and 5.

The asymptotic formula for $M_{k}(x)$ is given in the following theorem.

Theorem 1. If $k \geqq 2$ we have

$$
\begin{equation*}
\sum_{n \leqq x} \mu_{k}(n)=A_{k} x+O\left(x^{1 / k} \log x\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}=\frac{1}{\zeta(k)} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{k}} \prod_{p \mid n} \frac{1-p^{-1}}{1-p^{-k}} . \tag{2}
\end{equation*}
$$

Note. In (2), $\zeta(k)$ is the Riemann zeta function. The formula for A_{k} can also be expressed in the form

$$
\begin{equation*}
A_{k}=\frac{1}{\zeta(k)} \sum_{n=1}^{\infty} \frac{\mu(n) \varphi(n)}{n J_{k}(n)} \tag{3}
\end{equation*}
$$

where $\varphi(n)$ and $J_{k}(n)$ are the totient functions of Euler and Jordan, given by

$$
\varphi(n)=n \prod_{p \mid n}\left(1-p^{-1}\right), J_{k}(n)=n^{k} \prod_{p \mid n}\left(1-p^{-k}\right) .
$$

We also have the Euler product representation

$$
\begin{equation*}
A_{k}=\prod_{p}\left(1-\frac{2}{p^{k}}+\frac{1}{p^{k+1}}\right) \tag{4}
\end{equation*}
$$

2. Lemmas. The proof of Theorem 1 is based on a number of lemmas.

Lemma 1. If $k \geqq 1$ we have $\mu_{k}\left(n^{k}\right)=\mu(n)$.
Lemma 2. Each function μ_{c} is multiplicative. That is,

$$
\mu_{k}(m n)=\mu_{k}(m) \mu_{k}(n) \quad \text { whenever } \quad(m, n)=1
$$

Lemma 3. Let f and g be multiplicative arithmetical functions and let a and b be positive integers, with $a \geqq b$. Then the function h defined by the equation

$$
h(n)=\sum_{d^{a} \mid n} f\left(\frac{n}{d^{a}}\right) g\left(\frac{n}{d^{b}}\right)
$$

is also multiplicative. (The sum is extended over those divisors d of n for which d^{a} divides n.)

The first two lemmas follow easily from the definition of the function μ_{k}. The proof of Lemma 3 is a straightforward exercise.

The next lemma relates μ_{k} to μ_{k-1}.
Lemma 4. If $k \geqq 2$ we have

$$
\mu_{k}(n)=\sum_{d^{k_{i n}}} \mu_{k-1}\left(\frac{n}{d^{k}}\right) \mu_{k-1}\left(\frac{n}{d}\right) .
$$

Proof. By Lemmas 2 and 3, the sum on the right is a multiplicative function of n. To complete the proof we simply verify that the sum agrees with $\mu_{k}(n)$ when n is a prime power.

Lemma 5. If $k \geqq 1$ we have

$$
\left|\mu_{k}(n)\right|=\sum_{d^{k}+1_{i n}} \mu(d) .
$$

Proof. Again we note that both members are multiplicative functions of n which agree when n is a prime power.

Lemma 6. If $k \geqq 2$ and $r \geqq 1$, let

$$
F_{r}(x)=\sum_{n \leq x} \mu_{k-1}(n) \mu_{k-1}\left(r^{k-1} n\right)
$$

Then we have the asymptotic formula

$$
F_{r}(x)=\frac{x}{\zeta(k)} \frac{\mu(r) \varphi(r) r^{k-1}}{J_{k}(r)}+O\left(x^{1 / k} \sigma_{-s}(r)\right),
$$

where $\sigma_{\alpha}(r)$ is the sum of the α th powers of the divisors of r, and s is any number satisfying $0<s<1 / k$. (The constant implied by the O-symbol is independent of r.)

Proof. In the sum defining $F_{r}(x)$ the factor $\mu_{k-1}\left(r^{k-1} n\right)=0$ if r and n have a prime factor in common. Therefore we need consider only those n relatively prime to r. But if $(r, n)=1$ the multiplicative property of μ_{k-1} gives us

$$
\mu_{k-1}(n) \mu_{k-1}\left(r^{k-1} n\right)=\mu_{k-1}(n)^{2} \mu_{k-1}\left(r^{k-1}\right)=\left|\mu_{k-1}(n)\right| \mu(r),
$$

where in the last step we used Lemma 1. Therefore we have

$$
F_{r}(x)=\mu(r) \sum_{\substack{n \leq x \\(n, r)=1}}\left|\mu_{k-1}(n)\right|
$$

Using Lemma 5 we rewrite this in the form

$$
\begin{aligned}
F_{r}(x) & =\mu(r) \sum_{\substack{n \leq x \\
(n, r x=1}} \sum_{d|k| n} \mu(d)=\mu(r) \sum_{\substack{d k \leq x \\
(d, r)=1}} \mu(d) \sum_{\substack{q \leq x \mid d k \\
(q, r)=1}} 1 \\
& =\mu(r) \sum_{\substack{d k \leq x \\
(d, r)=1}} \mu(d) \sum_{t \mid r} \mu(t)\left[\frac{x}{t d^{k}}\right] \\
& =\mu(r) \sum_{t \mid r} \mu(t) \sum_{\substack{d, k \leq x \\
(d, r)=1}} \mu(d)\left[\frac{x}{t d^{k}}\right] .
\end{aligned}
$$

At this point we use the relation $[x]=x+O\left(x^{s}\right)$, valid for any fixed s satisfying $0 \leqq s<1$, to obtain

$$
\begin{aligned}
F_{r}(x) & =\mu(r) \sum_{t \mid r} \mu(t) \sum_{\substack{d, \leq x \\
(d, r)=1}} \mu(d)\left\{\frac{x}{t d^{k}}+O\left(\frac{x^{s}}{t^{s} d^{k s}}\right)\right\} \\
& =x \mu(r) \sum_{t \mid r} \frac{\mu(t)}{t} \sum_{\substack{d, \leq x \\
d, r v=1}} \frac{\mu(d)}{d^{k}}+O\left(x^{s} \sum_{t \mid r} \frac{1}{t^{s}} \sum_{d \leq x^{1} / k} \frac{1}{d^{k s}}\right) .
\end{aligned}
$$

If we choose s so that $0<k s<1$ we have

$$
\sum_{d \leq x^{1 / k}} \frac{1}{d^{k s}}=O\left(\int_{1}^{x^{1 / k}} \frac{d t}{t^{k s}}\right)=O\left(x^{-s+1 / k}\right)
$$

and the O-term in the last formula for $F_{r}(x)$ is $O\left(x^{1 / k} \sigma_{-s}(r)\right)$. To complete the proof of Lemma 6 we use the relations

$$
\sum_{t i r} \frac{\mu(t)}{t}=\frac{\varphi(r)}{r}
$$

and

$$
\begin{aligned}
\sum_{\substack{d^{k} \leq x \\
(d, r)=1}} \frac{\mu(d)}{d^{k}} & =\sum_{\substack{d=1 \\
(d, r)=1}}^{\infty} \frac{\mu(d)}{d^{k}}+O\left(\sum_{d>x^{1 / k}} d^{-k}\right) \\
& =\frac{1}{\zeta(k)} \prod_{p_{1}, r} \frac{1}{1-p^{-k}}+O\left(x^{(1-k) / k}\right) \\
& =\frac{1}{\zeta(k)} \frac{r^{k}}{J_{k}(r)}+O\left(x^{(1-k) / k}\right)
\end{aligned}
$$

3. Proof of Theorem 1. In the sum defining $M_{k}(x)$ we use Lemma 4 to write

$$
\begin{aligned}
M_{k}(x) & =\sum_{n \leq x} \mu_{k}(n)=\sum_{n \leq x} \sum_{d^{k} \mid n} \mu_{k-1}\left(\frac{n}{d^{k}}\right) \mu_{k-1}\left(\frac{n}{d}\right) \\
& =\sum_{d^{k \leq x}} \sum_{m \leqq x / d^{k}} \mu_{k-1}(m) \mu_{k-1}\left(d^{k-1} m\right) \\
& =\sum_{d^{k \leq x}} F_{d}\left(x / d^{k}\right)=\sum_{r \leq x^{1} 1 / k} F_{r}\left(x / r^{k}\right) .
\end{aligned}
$$

Using Lemma 6 we obtain

$$
\begin{equation*}
M_{k}(x)=\frac{x}{\zeta(k)} \sum_{r \leq x^{1 / k}} \frac{\mu(r) \varphi(r)}{r J_{k}(r)}+O\left(x^{1 / k} \sum_{r \leq x^{1 / k}} \frac{\sigma_{-s}(r)}{r}\right) \tag{5}
\end{equation*}
$$

The sum in the first term is equal to

$$
\begin{aligned}
\sum_{r \leqq x^{1 / k}} \frac{\mu(r)}{r^{k}} \prod_{p \mid r} \frac{1-p^{-1}}{1-p^{-k}} & =\sum_{r=1}^{\infty} \frac{\mu(r)}{r^{k}} \prod_{p \mid r} \frac{1-p^{-1}}{1-p^{-k}}+O\left(\sum_{r>x^{1 / k}} \frac{1}{r^{k}}\right) \\
& =\sum_{r=1}^{\infty} \frac{\mu(r) \varphi(r)}{r J_{k}(r)}+O\left(x^{(1-k) / k}\right) .
\end{aligned}
$$

The sum in the O-term in (5) is equal to

$$
\begin{aligned}
\sum_{r \leq x^{1 / k}} \frac{\sigma_{-s}(r)}{r} & =\sum_{r \leq x^{1 / k}} r^{-1} \sum_{d \delta=r} d^{-s}=\sum_{\delta \leq x^{1 / k}} \delta^{-1} \sum_{d \leq x^{1 / k / k}} d^{-1-s} \\
& =O\left(\sum_{\delta \leq x^{1 / k}} \delta^{-1}\right)=O(\log x)
\end{aligned}
$$

Therefore (5) becomes

$$
M_{k}(x)=\frac{x}{\zeta(k)} \sum_{r=1}^{\infty} \frac{\mu(r) \varphi(r)}{r J_{k}(r)}+O\left(x^{1 / k} \log x\right)
$$

which completes the proof of Theorem 1.
To deduce (4) from (2) we note that (2) has the form

$$
A_{k}=\frac{1}{\zeta(k)} \sum_{n=1}^{\infty} f(n)
$$

where $f(n)$ is multiplicative and $f\left(p^{a}\right)=0$ for $a \geqq 2$. Hence we have the Euler product decomposition: [see 3, Th. 286]

$$
\begin{aligned}
A_{k} & =\frac{1}{\zeta(k)} \prod_{p}\{1+f(p)\}=\prod_{p}\left(1-p^{-k}\right) \prod_{p}\left\{1-\frac{1}{p^{k}} \frac{1-p^{-1}}{1-p^{-k}}\right\} \\
& =\prod_{p}\left\{1-p^{-k}-\frac{1-p^{-1}}{p^{k}}\right\}=\prod_{p}\left\{1-\frac{2}{p^{k}}+\frac{1}{p^{k+1}}\right\} .
\end{aligned}
$$

4. Relations to k-free integers. Let Q_{k} denote the set of k free integers (positive integers whose prime factors are all of multiplicity less than k), and let q_{k} denote the characteristic function of Q_{k} :

$$
q_{k}(n)= \begin{cases}1 & \text { if } n \in Q_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Gegenbauer [2, p. 47] has proved that the number of k-free integers $\leqq x$ is given by

$$
\begin{equation*}
\sum_{n \leqq x} q_{k}(n)=\frac{x}{\zeta(k)}+O\left(x^{1 / k}\right), \quad(k \geqq 2) \tag{6}
\end{equation*}
$$

From the definition of μ_{k} it follows that $q_{k+1}(n)=\left|\mu_{k}(n)\right|$, so Gegenbauer's theorem implies the asymptotic formula

$$
\begin{equation*}
\sum_{n \leq x}\left|\mu_{k}(n)\right|=\frac{x}{\zeta(k+1)}+O\left(x^{1 /(k+1)}\right), \quad(k \geqq 1) . \tag{7}
\end{equation*}
$$

From our Theorem 1 we have

$$
\begin{equation*}
\sum_{n \leqq x} \mu_{k}(n)=A_{k} x+O\left(x^{1 / k} \log x\right) \quad(k>1) \tag{8}
\end{equation*}
$$

The two formulas (7) and (8) show that among the ($k+1$)-free integers, $k>1$, those for which $\mu_{k}(n)=1$ occur asymptotically more frequently than those for which $\mu_{k}(n)=-1$; in particular, these two sets of integers have, respectively, the densities

$$
\frac{1}{2}\left(\frac{1}{\zeta(k+1)}+A_{k}\right) \quad \text { and } \quad \frac{1}{2}\left(\frac{1}{\zeta(k+1)}-A_{k}\right) .
$$

This is in contrast to the case $k=1$ for which it is known that

$$
\sum_{n \leqq x}|\mu(n)|=\frac{x}{\zeta(2)}+O\left(x^{1 / 2}\right), \quad \text { but } \quad \sum_{n \leqq x} \mu(n)=o(x),
$$

so the square-free integers with $\mu(n)=1$ occur with the same asymptotic frequency as those with $\mu(n)=-1$ [see 3, p. 270].

Our Theorem 1 can also be derived very simply from an asymptotic formula of Cohen [1, Th. 4.2]. Following the notation of Cohen, let Q_{k}^{*} denote the set of positive integers n with the property that the multiplicity of each prime divisor of n is not a multiple of k. Let q_{k}^{*} denote the characteristic function of Q_{k}^{*}. Then $q_{k}^{*}(1)=1$, and for $n>1$ we have

$$
q_{k}^{*}(n)= \begin{cases}1 & \text { if } n=\prod_{i=1}^{r} p_{i}^{a_{i}}, \quad \text { with each } \quad a_{i} \not \equiv 0(\bmod k), \\ 0 & \text { otherwise } .\end{cases}
$$

The functions q_{k}^{*} and μ_{k} are related by the following identity:

$$
\begin{equation*}
q_{k}^{*}(n)=\sum_{d^{k} \mid n} \mu_{k}\left(\frac{n}{d^{k}}\right) . \tag{9}
\end{equation*}
$$

This is easily verified by noting that both members are multiplicative functions of n that agree when n is a prime power, or by equating coefficients in the Dirichlet series identity (14) given below in $\S 5$. Inversion of (9) gives us

$$
\begin{equation*}
\mu_{k}(n)=\sum_{d^{k \mid n}} \mu(d) q_{k}^{*}\left(\frac{n}{d^{k}}\right) . \tag{10}
\end{equation*}
$$

Cohen's asymptotic formula states that for $k \geqq 2$ we have

$$
\begin{equation*}
\sum_{n \leq x} q_{k}^{*}(n)=A_{k} \zeta(k) x+O\left(x^{1 / k}\right) \tag{11}
\end{equation*}
$$

where A_{k} is the same constant that appears in our Theorem 1. To deduce Theorem 1 from (11) we use (10) to obtain

$$
\begin{aligned}
\sum_{n \leqq x} \mu_{k}(n) & =\sum_{n \leqq x} \sum_{d^{k} \mid n} \mu(d) q_{k}^{*}\left(\frac{n}{d^{k}}\right)=\sum_{d^{k \leq x}} \mu(d) \sum_{m \leqq x / d^{k}} q_{k}^{*}(m) \\
& =\sum_{d^{k} \leq x} \mu(d)\left\{A_{k} \zeta(k) \frac{x}{d^{k}}+O\left(\frac{x^{1 / k}}{d}\right)\right\} \\
& =A_{k} \zeta(k) x \sum_{d \leq x^{1 / k}} \frac{\mu(d)}{d^{k}}+O\left(x^{1 / k} \sum_{d^{k \leq x}} \frac{1}{d}\right) \\
& =A_{k} \zeta(k) x \sum_{d=1}^{\infty} \frac{\mu(d)}{d^{k}}+O\left(\sum_{d>x^{1 / k}} d^{-k}\right)+O\left(x^{1 / k} \log x\right) \\
& =A_{k} x+O\left(x^{1 / k} \log x\right) .
\end{aligned}
$$

Conversely, if we start with equation (9) and use Theorem 1 we can deduce Cohen's asymptotic formula (11) but with an error term $O\left(x^{1 / k} \log x\right)$ in place of $O\left(x^{1 / k}\right)$.
5. Generating functions. The generating function for the k free integers is known to be given by the Dirichlet series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{q_{k}(n)}{n^{s}}=\frac{\zeta(s)}{\zeta(k s)} \quad(s>1) \tag{12}
\end{equation*}
$$

[see 3, Th. 303, p. 255]. It is not difficult to determine the generating functions for the functions μ_{k} and q_{k}^{*} as well. Straightforward calculations with Euler products show that we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{k}(n)}{n^{s}}=\zeta(s) \prod_{p}\left\{1-\frac{2}{p^{k s}}+\frac{1}{p^{(k+1) s}}\right\} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{q_{k}^{*}(n)}{n^{s}}=\zeta(k s) \sum_{n=1}^{\infty} \frac{\mu_{k}(n)}{n^{s}} \tag{14}
\end{equation*}
$$

for $s>1$. Equation (14) is also equivalent to equations (9) and (10). From (12) and (14) we obtain the following identity relating μ_{k}, q_{k}, and q_{k}^{*} :

$$
\zeta(s) \sum_{n=1}^{\infty} \frac{\mu_{k}(n)}{n^{s}}=\left(\sum_{n=1}^{\infty} \frac{q_{k}(n)}{n^{s}}\right)\left(\sum_{n=1}^{\infty} \frac{q_{k}^{*}(n)}{n^{s}}\right)
$$

This shows [see 3, §17.1] that the numerical integral of μ_{k} is the Dirichlet convolution of q_{k} and q_{k}^{*} :

$$
\sum_{d \backslash n} \mu_{k}(d)=\sum_{d \backslash n} q_{k}(d) q_{k}^{*}\left(\frac{n}{d}\right)
$$

Bibliography

1. Eckford Cohen, Some sets of integers related to the k-free integers, Acta Sci. Math. Szeged 22 (1961), 223-233.
2. Leopold Gegenbauer, Asymptotische Gesetze der Zahlentheorie, Denkschriften der Akademie der Wissenschaften zu Wien 49 (1885), 37-80.
3. G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, 4th edition, Oxford, 1962.

Received April 11, 1969.
California Institute of Technology

