
A SYSTEM OF QUADRATIC DIOPHANTINE EQUATIONS
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1. Introduction. In spite of the efforts of many mathematicians of the last

300 years, comparatively few general methods of solving nonlinear Diophantine

equations are available, and much of the literature on the subject consists of

isolated results. When it comes to systems of simultaneous nonlinear Diophantine

equations, the results become even more fragmentary, and a complete solution

of such a system is a rarity. In this paper we study a pair of simultaneous quad-

ratic Diophantine equations that can be solved easily and completely by differ-

ence equation methods.

The system in question,

(1) x I y2 + ay + 1, y \ x2 + ax + 1 ,

where a is a fixed integer, is essentially a pair of simultaneous quadratic e-

quations in four unknowns. This system is equivalent to a nonlinear second order

difference equation. Furthermore, every solution of this nonlinear difference e-

quation is also a solution of a linear difference equation with constant coeffi-

cients. We can thus obtain the complete solution of (1) in integers. With some

additional effort we can obtain all positive integral solutions.

The principal result is that if a Φ i 2, then there exists a finite number of

sequences such that x and y satisfy (1) if and only if they are consecutive

terms of one of these sequences. These sequences are similar to the Fibonacci

sequence in that there is a linear relation connecting any three consecutive

terms. For the special case a = 0, we obtain the following result: x and y are

positive integers such that

x\y2 + 1 a n d y\x2 + 1

if and only if x and y are consecutive elements of the sequence 1, 1, 2, 5, 13,

34, obtained from the classical Fibonacci sequence by striking out alter-

nate terms. For a = ± 2, the chief differences are that there is an infinite number

of sequences and that 0 can be a term of a sequence.
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Clearly the system (1) is closely related to the quadratic Diophantine e-

quations of the type

(2) x2 — cLxy + y2 + ax + ay + 1 = 0 .

An easy consequence of our main results is that for fixed a jL ± 2, (2) has inte-

gral solutions for only a finite number of integral values of α. These values of α

can easily be found by the methods of this paper.

It is possible that similar methods can be used to obtain further insight into

the general quadratic Diophantine equation in two unknowns. At any rate, there

is a large class of such equations that can be completely and easily solved this

way, and partial solutions can be obtained to many others.

2. Preliminary discussion. Let a be a fixed rational integer. Let x and y be

rational integers satisfying (1) . Then there exists an integer z such that

(3) xz = y2 + ay + 1.

Now xz = 1 (mod y) and hence

x2 (z 2 + az + 1) = 1 + ax + x2 = 0 (mod y).

Furthermore, x and y are relatively prime. Thus we have

y I z2 + az + 1 a n d z\y2 + ay + 1.

Continuing in this manner, we obtain a chain , x, y9 z, such that any two

consecutive terms satisfy (1), and any three consecutive terms satisfy (3) . We

note that x and y determine z uniquely except when x = 0.

DEFINITION. A sequence of integers ί ui} with at least three terms,

is an a-chain if (A) any three consecutive terms satisfy the nonlinear difference

equation

and (B) un = 0 if and only if un is either the first or the last term in the se-

quence.

We shall consider two α-chains { uι \ and { vι \ the same, if and only if there

exists an h such that either un = v, for all n or un = Ihi _ for all n.



A SYSTEM OF QUADRATIC DIOPHANTINE EQUATIONS 211

It is clear that two integers x and y satisfy (1) if and only if they are con-

secutive integers of an α-chain. Furthermore any two consecutive nonzero terms

of an α-chain determine it completely. Thus the solution of ( 1 ) is reduced to the

problem of determining all α-chains.

3. The tiniteπess theorem. We shall now establish the following theorem.

THEOREM 1. // a J=. ± 2 there is only a finite number of a-chains.

Proof. Let ί u{ \ be an α-chain. Since a φ. ±2, it follows that un Φ 0 for all n,

and that \ m \ has neither a first nor a last element. Without loss of generality we

may suppose that

for all n. Now

Hence

+ 1 >\u\ + aUι + 1\ = \ u 2 u Q \ >\uίuo

Therefore we can write

U j + b,

w h e r e e = ± 1 a n d \b\ < \a\ + 1 . S i m i l a r l y ,

U2 =

w h e r e e 2 = ± 1 a n d \c\ < \a\ + 1 . T h e r e a r e a t m o s t 4 ( 2 \a\ + 3 ) 2 w a y s o f

c h o o s i n g ei9 e 2 , b, a n d c. N o w

u2

χ + auι
fc 6 2 + c e t ) uγ

Thus for each choice of 6 ^ 62> >̂ a n <^ c there are at most two values of Up

except when

€ 6 = 1 , fre + c 6 j = o , and be = 1 .

In this case we have

e i = e 2 = ± l , b = c = ±1,
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and hence a = ± 2. Thus if a φ ± 2 the number of α-chains is not more than

8 ( 2 I a I + 3 ) 2 , and the theorem is proved.

We note that the foregoing argument gives us a procedure for determining all

possible α-chains for a fixed value of a φ ± 2 .

4. The linear recurrence relation. We shall now show that any three consecu-

tive terms of an α-chain satisfy a linear relation.

THEOREM 2. For any given a-chain { U( \ there is a fixed integer α such that

(5) un+ι - aun + un_ι + a = 0

holds for any three consecutive terms of\ uι \.

Proof. Let a be the rational number such that

u - au + u^ + a = 0.

We shall first show that ( 5 ) holds for all n. Since the direction of an α-chain is

reversible, it is sufficient to show that ( 5 ) implies that

u - au 1 + u + a = 0 .n+2 n +1 n

Suppose that ( 5 ) holds for a fixed n9 and that un + ι i s not the last element of

{ U(\. Then

~ un~ aun '

Now un Φ 0, and hence

= α "n + l

which is the desired result. We need now only show that α is an integer. From

(5) it follows that aun is an integer for all un. Now any two consecutive terms,

un and un + v are relatively prime. Hence a is an integer, and the proof of Theo-

rem 2 is complete.

From (4) and (5) we obtain the useful identity

(6) ul - aun un_ι + B 2 _ i + a { U n + Un_j + 1 = 0,

which holds for any two consecutive terms of an α-chain. Theorem 1 combined
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with (6) gives us the following:

COROLLARY. For fixed a φ. ± 2 the Diophantine equation

x2 — CLxy + y2 + ax + ay + 1 = 0

has integral solutions for only a finite number of integral values of a.

5. Expl ic i t formulas. In t h i s s e c t i o n we s h a l l u s e ( 5 ) and ( 6 ) to o b t a i n

e x p l i c i t formulas for the e l e m e n t s of the α - c h a i n ί uι \.

S u p p o s e first t h a t α = — 2. Here ( 6 ) i m p l i e s t h a t

a = ± 2 and un + un_χ = - a/2.

Therefore we have

(7) u2m = V u2m+ι = v uQ + uχ = - α / 2 = ± 1 .

Thus { U( \ is either the finite α-chain 0, - α/2, 0 or a cyclic chain of period 2.

Furthermore, if a = ± 2, then (7) gives us an infinite number of α-chains. Hence

Theorem 1 is false for this case.

Suppose next that α = 2. Here the solution of (5) is

(8) uR = - an2/! + bn + c ,

where b and c are constants which can be determined from any two terms of the

α-chain.

Finally suppose that α φ + 2. We put

vn = un - α/( a - 2),

and ( 5 ) becomes

( Q ) t> - α i ; + i> = 0 .

Let ξ and ^ - 1 be the roots of

x2 - ax + 1 = 0.

T h e n t h e g e n e r a l s o l u t i o n of ( 9 ) i s

vn = ,l

where A and B are arbitrary constants. Thus if a Φ ± 2 we have
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(10) un = Λξn + Bξ~n + α/(α-2) .

ihe constants A and B depend not only on the given α-chain but also on the

particular elements chosen to be u0 and iίj, However, iί we substitute (10) in

(4) and simplify, we obtain

(11) ΛB(a2 - 4 ) = 1 + α 2 / ( α - 2 ) .

Ί bus tίie product All depends only on a and α.

6. Positive and negative terms. To determine all positive integral solutions

of the system ( 1), it is necessary to find all pairs of consecutive positive ele-

ments of the α-chains. We now proceed to determine the signs of the elements

of all α-chains.

If { U{ \ is an α-chain, then clearly { — U( \ is a —α-chain with the same value

of α. Thus without loss of generality we suppose α > 0. The cases α = 0, 1,2

must be discussed separately, and will be treated in later sections. Throughout

this section it will be assumed that α > 3. Thus we have un ^ 0 for all n, and

hence the α-chain { α; ! has neither a first nor a last element. We begin by es-

tablishing a few simple properties, valid when a > 2.

I. If { uι \ has two consecutive positive terms, then un is positive for all n.

II. Any negative term of \ U[ \ is less than at least one of its two immediate

neighbors.

Properties I and II are easy consequences of ( 4 ) .

III. If α ^ - 2 , and two consecutive terms of { U{ \ have opposite signs, then

the positive one has smaller absolute value.

Proof. Since a > — 2, we have

UnUn-l + Un-l £

and III follows at once from (6) .

IV. If α > —2, then any element of { U( \ of least absolute value is positive.

Property IV follows immediately from II and III.

It can be shown that if a > 3, the smallest possible value of α is 3 - 2α.

This value is actually assumed by the α-chain with u0 = ux — — 1. Thus
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α > 3 - 2 α > 2 - α 2 ,

and (11) yields the result:

V. If α < - 2 , then AB < 0.

We are now in a position to discuss the nature of the α-chains, a > 3.

Suppose first that a > 3. Then un is given by (10), and we may suppose that

ξ> 1. Using I, IV, and (10), we can see that either un is positive for all n, or

{ Ui} has exactly one positive term, the term of least absolute value.

If α = 2, then by I, IV, and (8) we see that the term of least absolute value

is positive and all others are negative.

Suppose next that | α | < 2. Then ζ is a primitive ί/th root of unity, where

d - 12/(3 — α ). In this case (10) can be written in the form

u = C s i n ( D + iπn/d) + a/{a - 2 ) ,
n

where C and D are real constants. Now α/( a - 2) < 0, and { u{ \ has at least one

positive term by IV. Hence C φ. 0. We see that { u( i is cyclic of minimal period

d = 12/(3 - α ) , the positive terms of \ U{ \ are those of least absolute value, and

there is only one positive term in each cycle.

Since α = -2 is possible only if a - ± 2, we need now only consider α < - 3 .

If α < —3 we may assume that — 1 < ξ< 0. By replacing, if necessary, un by

un- x in (10), we may suppose also that A < 0. Then by V, B > 0. Hence

U2m+2>U2m a n d V + . < U2m-l

for all integral m. Furthermore, for m sufficiently large, u2m and u_2m-ι a r e

positive while w2m + i a n ( ^ u-2m a r e negative. It follows from I and II that { u{ \

has no consecutive positive terms and exactly one pair of consecutive negative

terms.

Since all —α-chains can be obtained by reversing the signs of α-chains, simi-

lar results hold for a < - 3 .

7. The case α = 2. Let us suppose first that ί U( \ is a 2-chain with at least

one zero element, say uQ = 0. Without loss of generality we can suppose that u0

is the first term of ! ιi{}. Then (4) yields uι = — 1. It is easily seen that 0, — 1,

u2, ••• is a 2-chain for any integral value of u2, and that α = - u2 - 2. If

u2 < - 4 , then it follows from (8) and (10) that un <Ofor all n > 0. If - 3 < u2 < 0

then ί ui} has finite length and no positive terms. If &2 > 0, then it can be shown
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that un and un+ι have opposite signs for all n > 0.

We may now assume that S U{ \ is a 2-chain with no zero terms. Since

we see that un £ - 1 for all n. We suppose next that there is an i such that U( = 1,

say uι = 1. Then u0 u2 = 4. Without loss of generality we can take u2 > u0 and

thus u2 = 4, 2, or - 2 . Putt ing u2 = 4, we obtain the 2-chain , 25, 4, 1, 1, 4,

25, with α = 7, whose terms are the squares of alternate elements of the

Fibonacci s e q u e n c e 1 . Putt ing u2 = 2, we obtain the 2-chain •••, 9, 2, 1, 2, 9,

50, with α = 6. The odd terms of this 2-chain are perfect squares, and the

even terms are of the form 27V2 If we put u2 = —2, we get the 2-chain •••, —2,

1, - 2 , 1, •••, which is a member of the infinite family of cyclic chains defined

b y ( 7 ) .

We suppose finally that ί uι \ is a 2-chain with all | un \ > 1, and that uι is a

term of least absolute value. Now u0 and u2 are both relatively prime to uί9 and

hence

Therefore

U + I ) 2 = uQu2> u\.

Thus

uv>Q and « , = « „ = ± U t + 1).

Now if u2 = —ui — 1, then α = —2, and we are led to the infinite family of 2-

chains given by ( 7 ) . If u2 = ux + 1, then we have

uχ | U + I ) 2 = U + 2 ) 2 .

Therefore u t is either 2 or 4, and we are led to the two 2-chains: , 3, 2, 3,

8, with α = 4, and , 5, 4, 5, 9, with α = 3. Thus every 2-chain falls

into one of three classes:

(A) an infinite class of chains with at least one zero term, one chain for

each value of α;

1 T h e Fibonacci sequence 1, 1, 2, 3, 5, 8, ••• is defined by UQ = Uι = 1 and Un+ί
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(B) an infinite class of cyclic chains with period 2, α = — 2, and no zero

terms;

(C) four special chains with all positive terms and a = 3, 4, 6, and 7 re-

spectively.

We can obtain all -2-chains by reversing the signs of these 2-chains.

5. Tlie case a = 1. Here un ^ 0 for all n. Without loss of generality we sup-

pose that ιιί has least absolute value, and that \ u2\ > | Mo l Since

it follows that \uo\ = | ut | . Since u 0 and u t are relatively prime, it follows that

uι = ± 1. Suppose first that α t = 1. Then u0 u2 = 3. Hence u2 = ± 3. If w2 = 3

then we have the 1-chain2

. . . , 13, 3, 1, 1, 3, 13, 61, 291, 1393, . . .

with a = 5. If u2 = - 3 , we have the 1-chain ••«, 1, - 1 , 1, - 3 , 7, «« with

α = - 3 . We suppose next that uγ = - 1 . Here u0 u2 = 1. If we put u2 = 1, we ob-

tain the last mentioned 1-chain again. If u2 = - 1 , then un = — 1 for all n, and we

have the constant 1-chain , — 1, — 1, — 1, with α = 1.

Thus we see that there are exactly three 1-chains, one consisting entirely of

positive terms, one in which every term is - 1 , and one consisting of alternating

positive and negative terms. We have proved the following theorem.

THEOREM 3. Let x and y be positive integers. Then

x\y2 + γ + 1 and y \ x2 + x + 1

if and only if x and y are consecutive terms of the sequence 1, 1, 3, 13, « ,

where the nth term is given by

Furthermore,

χ\y2 - y + 1 and y \ x2 - x + 1

if and only if x = y — 1.

9. The case a = 0. As in the previous section, we suppose \ui\ minimal and

2 The accidental discovery of the re lat ions 13 | 6 1 2 + 6 1 + 1 and 61 | 1 3 2 + 13 + 1 led

to this entire investigation.



218 W. H. MILLS

I U2 I ά 1 uo l ^ e n o t ; e that if the integers un form a 0-chain then so do the inte-

gers ~un and the integers ( - l ) ^ ^ . T h u s it is sufficient to consider the case

where uι > 0 and u2 > 0. Now uQ and u2 are both relatively prime to ul9 and

hence if uγ > 1 we have

l " 0 « 2 I > K + i ) 2 > « ϊ + i = 1 % « 2 I

Therefore

Mt = 1, uQ u2 = 2, and hence ^ 2 = 2, MQ = 1 .

This leads us to the 0-chain , 5, 2, 1, 1, 2, 5, 13, ••• with a = 3.We note

that the elements of this 0-chain are alternate elements of the Fibonacci se-

quence. We see that there are exactly three 0-chains, one consisting entirely of

positive terms, one consisting entirely of negative terms, and one with alter-

nately positive and negative terms. Furthermore, we have proved the following

theorem.

THEOREM 4. Let x and y be positive integers. Then

x\y2 + 1 and y\x2 + 1

if and only if x and y are consecutive elements in the sequence 1, 1, 2, 5, 13,

whose elements are alternate terms of the Fibonacci sequence,

10. Table of α-chains, 0 < a < 10. By methods similar to those used in the

last three sections, it is a simple matter to determine all α-chains for small

positive values of α. In the table on page 123 we give the values of a and a ,

and three consecutive terms of each α-chain, 0 < a < 10. In the table, u stands

for an arbitrary integer and r for an arbitrary positive integer.

11. Systems with a finite number of solutions. If a > 0, then the α-chain

• , 1, 1, a + 2, leads to an infinite number of positive integral solutions

of the original system ( 1), and . . . , - 1 , 1, - α - 2 , leads to an infinite num-

ber of positive solutions of the system

x\y2 + ay + 1, y \ x2 - ax + 1.

On the other hand, there are values of a for which the system

(12) χ \ y 2 - ay + 1 , y\χ2 - ax + 1

has only a finite number of positive integral solutions. Using the results of §6,



A SYSTEM OF QUADRATIC DIOPHANTINE EQUATIONS 219

TABLE OF O-CHAINS, 0 < a < 10.

a

0

1

2

3

4

5

6

7

α

-3

3

3

-3

1

5

~u~2

-2

3

4

6

7

-3

9

-5

-3

-1

9

11

-7

-3

5

13

-9

-6

-3

0

12

15

-11

U
09

-1,

1,

-1,

-1,

1,

o,
- i - / ,

5,

3,

2,

1,

-1,

1,

-1,

-2,

-2,

2,

1,

-1,

-3,

5,

1,

-1,

-2,

-4,

-2,

2

1,

-1,

1,

-1,

1,

1,

-1,

1,

-1,

r,

4,

2,

1,

1,

-1,

1,

-1,

-1,

1,

1,

1,

-1,

-1,

3,

1,

-1,

-1,

-1,

1,

1,

1,

-1,

u
2

-2

-2

2

-3

-1

3

u

- 1 - r

5

3

2

4

1

5

2

1

-3

3

6

3

1

5

7

4

2

1

-4

4

8

5

α

7

8

9

10

α

-3

1

13

17

-13

-9

— 7

-3

-1

1

5

9

15

19

-15

-3

21

-17

-12

-8

-6

-4

-3

-3

— 1

0

2

3

3

8

10

17

18

23

-5,

-3,

3,

1,

-1,

-2,

-3,

-6,

-3,

-2,

6,

3,

2,

1,

-1,

-7,

1,

-1,

"~ 2,

-4,

-3,

-5,

-5,

-8,

-5,

-5,

-2,

-3,

23,

4,

5,

3,

2,

1,

-1,

1,

1,

1,

-1,
_ 1

-1,

- ] ,

2,

1,

5,
9

1,

1,

-1,

-1,

1,

-1,

-1,

~1,

-2,

-2,

-3,

-1,

3,

2,

1,

1,

19,

3,

2,

1,

1,

1,

u
2

1

-3

3

9

6

3

2

1

-7

— 5

11

7

5

10

7

1

11

8

4

2

5

3

4

1

-8

-5

-6

-4

24

10

5

4

6

12
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we see that (12 ) has an infinite number of positive integral solutions if and

only if there exists an α-chain with α > 1 which has at least one negative term.

If a > 8, then a necessary condition that (12) have only a finite number of

positive integral solutions is that a + 2 be prime. For if a + 2 = RS9 a > 8, R > 1,

S > 1, then ••• , -fi, 1, - S , ••• is an α-chain with α > 1. This condition is not

sufficient, for , — 7, 3, —19, is a 41-chain with α = 5.

Futhermore, if a = 1 or if 3 < a < 9, then (12) has only a finite number of

positive solutions. For example, the system

x\y2 - 8y + 1, y \ x2 - 8 * + 1, y > * > 0

has exactly nine integral solutions, namely x - 1, y = 1, 2, 3, and 6; Λ; = 2,

y = 11; Λ; = 3, y = 7; * = 5, y = 14; * = 11, y = 17; .and % = 14, y = 17.
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