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F'-SPACES AND z-EMBEDDED SUBSPACES

MARK MANDELKER

A completely regular Hausdorff space is an Ff -space if
disjoint cozero-sets have disjoint closures. Here the theory of
prime ^-filters is applied to the study of F'-spaces. A -̂em-
bedded subspace is one in which the zero-sets are all intersec-
tions of the subspace with zero-sets in the larger space. It
is shown that every z-embedded subspace of an F'-space is
also an F'-space. Also, a new characterization of F'-spaces
is obtained: Every ^-embedded subspace is C*-embedded in its
closure.

F- and F'-spaces were introduced in [4] in connection with the
study of finitely generated ideals in rings of continuous functions;
further results on jP'-spaces are found in [1] and [2].

Throughout this paper we shall use the terminology and notation
of the Gillman-Jerison treatise [5]. Only completely regular Hausdorff
spaces will be considered.

As noted above, a subspace Y of a space X is ^-embedded in X
if for every zero-set Z in Y there is a zero-set W in X such that
Z = W f) Y. For example, a C*-embedded subspace is clearly -̂em-
bedded; also, a Lindelof subspace is always z-embedded (Jerison, [9,
5.3]). Relations between z-, C*-, and C-embedding have been given
by Hager [7]. We shall find that z-embedded subspaces are of interest
in problems concerning z-filters, and thus in problems concerning Ff-
spaces.

The author is grateful to Professor W. W. Comfort for much
helpful correspondence concerning these spaces.

1* Traces and induced z-filters* If 7 ^ 1 , we define the trace
c ^ | Γ = {Zf]Y:Ze J^} of any z-filter J^~ on X, and the induced
z-filter J>r* = {Ze Z(X) :ZpιYe J H for any z-filter ^ on Y.

We now consider six basic lemmas in the calculus of traces and
induced ^-filters; the first two are easy to verify and the third is
proved in [10].

LEMMA 1. // & is a prime z-filter on Y, then &>% is a prime
z-filter on X. [5, 4.12].

LEMMA 2. If Y is z-embedded in X and ^~ is a z-filter on Y,
then

LEMMA 3. Let Y be a z-embedded subspace of X. If J?" is a
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z-filter on X every member of which meets Y, then J?~ \ Y is a z-
filter on Y. If ^ is prime, then J?r\ Y is also prime. [10, Th. 5.2].

We shall use ^//v and <?* to denote the z-filters Z[MP] and Z[0p],
respectively. For example, if peX, then &x is the 2-filter of all
zero-set-neighborhoods of p in X. In the next two lemmas we use
induced ^-filters and traces to relate (^x with the corresponding ^-filter
on a subspace of X that contains p. The first lemma is immediate.

LEMMA 4. // V is a neighborhood of p in X, then 0*x

LEMMA 5. If Y is z-embedded in X, and pe Y, then ^ γ — &v

x \ Y.

Proof. Clearly έ?\^ | Y £ έ?$. On the other hand, if Ze &γ, there
is We ^ x such that W"Π Y Q Z. Since Y is ^-embedded, by Lemma
3 έ?v

x I Y is a z-filter on Γ, and since PΓ Π Γ is in ^ x \ Γ, so is Z.

LEMMA 6. i^or α ?̂/ X, cmώ α̂ ?/ F £ X, ΐ/ ^ α^d ̂  are prime
z-filters on Y contained in the same z-ultrafilter on Y, then 3?* and

are contained in the same z-ultrafilter on X.

Proof. If not, then ^ and &* contain distinct z-filters ^v\
hence they, and thus also & and ^ , have disjoint members, so that
& and & could not be contained in the same z-ultrafilter.

2* Subspaces of i*7'-spaces* We are now ready to use traces of
z-filters to obtain our first result.

THEOREM 1. Every z-embedded subspace of an F'-space is also
an Fr-space.

Proof. According to [4, 8.13] (see also Theorem 3 below), a
space T is an F'-space if and only if #*% is prime for every pe T.

Let Y be z-embedded in an jF"-space X. For any p e Y, we have
έ?\ — 0>x I γf by Lemma 5. Since X is an jP'-space, &x is prime,
and hence by Lemma 3, ^ γ is also prime. Thus Y is an i^'-space.

This result generalizes Corollary 1.6 and Theorem 1.11 of [1] which
give the result in the case of a Lindelof subspace or a C*-embedded
subspace. An example of a z-embedded subspace of an i^'-space that
is neither Lindelof nor C*-embedded is the subspace X — Y of the
space X constructed in [4, 8.14],

It is easily verified (see for example [6, 3.1]) that every cozero-set
is z-embedded. Hence as an application of Theorem 1 we find that
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every cozero-set in an F'-space is also an F'-space. Thus we also
obtain an immediate proof of a result in [1, §4]: in any space, a
point with an F'-neighborhood admits a fundamental system of F'-
neighborhoods.

A zero-set in X need not be ^-embedded in X; for example, it is
easily seen that the zero-set D of the space Γ of [5, 3K] is not z-
embedded.

The ^-filters έ?p may also be used to obtain other properties of
F'-spaces. For example, by Lemmas 1 and 4 we see that, as noted
in [1, §4], F' is a local property, i.e., if every point of X has an F'-
neighborhood, then X is an F'-space. Since it is clear that any local
property that is inherited by cozero-sets is also inherited by all open
subspaces, Theorem 1 also yields the following result of [1],

COROLLARY 1. [1, §4]. Every open subspace of an Fr-space is
also an F'-space.

A space is an F-space if any two disjoint cozero-sets are completely
separated [5, 14N.4]. Since cozero-sets are ^-embedded, it is easily
seen that "cozero-set" is transitive, i.e., is S is a cozero-set in X and
T is a cozero-set in S, then T is also a cozero-set in X Thus it is
clear that a cozero-set in an F-space is also an F-space, as noted in
[5, 14.26]. Hence the analog f or F-spaces of the statement above on
fundamental systems is also true, as noted in [1, § 4], We note that
"zero-set" is not transitive; for example the zero-set D above has
many zero-sets that are not zero-sets of Γ. But in a norvial space,
"zero-set" is transitive.

It is well-known that if X is any locally-compact, σ-compact space,
then βX - X is an F-space ([5, 14.27]; see also [12, 3.3] or [11, Cor-
ollary 1]), and thus for any X, any zero-set (i.e., compact Gδ) in βX that
does not meet X is an F-space [5, 140.1]. Here is an analog for F'-
spaces. For any X, any locally compact Gδ in βX that does not meet X
is an F'-space. To see this, let Y be such a set and let p e Y. Then
p has a compact zero-set neighborhood Z in Y. Since Z is a Gδ in
Y, it is a compact Gδ in βX, and hence an F-space. Since F' is a
local property, Y is an F'-space.

In particular, if X is σ-compact, and locally compact at infinity
(i.e., βX — X is locally compact, see [8, p. 94]), then βX — X is an
F'-space.

For example, the spaced of [5, 4M] is σ-compact but not locally
compact. According to [8, 3.1], a space X is locally compact at in-
finity if and only if the set R(X), of all points of X at which X is
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not locally compact, is compact. Since R(Σ) = {σ}, Σ is locally com-
pact at infinity; hence βΣ — Σ is an F'-space. However, since βΣ — Σ
is an open subspace of /9N — N, this is a special case of Corollary 1.

For an application not covered by Corollary 1, we consider the
following.

EXAMPLE. Let Λo = βR — N. A moment's reflection shows that
Λo is σ-compact and that R(ΛQ) = /SN — N; hence βΛ0 — ΛQ is an Ff-
space. This example also shows the usefulness of [8, 3.1] in a situa-
tion in which it is not convenient to examine βX — X directly.

The analog of Corollary 1 for F-spaces is not settled. However,
under the continuum hypothesis it is shown in [3, 4.2] that all open
subsets of the particular .F-spaces βR — R and /3N — N are also F-
spaces.

As to closed subspaces, it is trivial that a closed subspace of a
compact i^-space is also an F-space, since it is C*-embedded [5, 14.26].
For locally compact ^-spaces we have the following.

COROLLARY 2. Every closed subspace of a locally compact F-space
is an Fr-space.

Proof. Let X be a locally compact F-space and G a closed sub-
space. It is shown in [5, 14.25] that X is an F-space if and only if
βX is an JP-space (this also follows immediately from Lemmas 1 and
3 using the relations 0>%x = {^xf and έ?x = έ?v

βx\X which follow
from [5, 7.12(a)]). Hence βX is a compact F-space and thus cl^G is
an F-space. Also, X is open in βX and hence G — X Π cl^G is an
open subspace of clβxG. Hence G is an jF"-space by Corollary 1.

3* Continuous images* Our ^-filters also yield a simple proof
of the following result, which is essentially the content of the lemma
in [2].

THEOREM (Comfort-Ross). An open continuous image of an Ff-
space is also an F'-space.

Proof. Let τ : I - > 7 b e an open continuous mapping of an Fr-
space X onto a space Y. For any p e X, since &x is prime, so is its
sharp-image τ^^v

x [5, 4.12], and hence any ^-filter containing τ%^v

x is
also prime [5, 2.9]. If Zeτ^^x, then ΊΓ[Z] is a neighborhood of p,
so that Z is a neighborhood of τp\ hence τ^x g έ?ψ, and thus έ?γ
is prime. Hence Y is an jP'-space.
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We note that a closed continuous image of an F'-space need not
be an F'-space. For example, if X is the open unit disk in the plane,
and the compactification BX is the closed disk, then the unit circle
BX — X is a closed continuous image of the F'-space βX — X, but
is not an i^'-space, since a metrizable i^-space must be discrete [5,
14N.3].

4* Induced mappings* In attempting to extend Theorem 1 to the
case that X is an jF'-space and τ : Y —•> X is a continuous mapping of
Y into X, a reasonable condition which generalizes ^-embedding is that
for every zero-set Z in Y there is a zero-set W in X such that Z =
τ*-[W]. In this case Y is also an F'-space; however, the following
result, an analog of [5, Th. 10.3(b)], shows that this situation is es-
sentially the same as that of Theorem 1.

THEOREM 2. Let τ : Y —>X be a continuous mapping of Y into
X, and τf the induced mapping W—+τ*-[W] of Z(X) into Z(Y). Then
τr is onto Z(Y) if and only if τ is a homeomorphism whose image
is z-embedded in X.

Proof. For any zero-set W in X we have r~[ΐF] =
where W f] τ[Y] is a zero-set in τ[Y]. Thus in proving the necessity
we may assume that τ is onto X. Any two distinct points p1 and p2

of Y have disjoint zero-set-neighborhoods of the form τ*~[TFJ and
^[Wi], where W1 and W2 are zero-sets in X; it follows that WΊ and
W2 are disjoint and hence τpγ Φ τp2. Thus τ is one-to-one. In both
Y and X the closure of a set is the intersection of the zero-sets
containing it. It follows that for any subset E of Y, we have
clrE = r~[clxr[i?]]. Thus τ[c\γE] = clzτ[E], and τ is a homeomor-
phism. The sufficiency is clear.

5* Characterization of ί7'-spaces* We now give a characteriza-
tion of i^'-spaces in terms of z-embedded subspaces (see condition (4)
below), and include for convenience several other known characteriza-
tions. Characterization (5) is due to Comfort, Hindman, and Ne-
grepontis [2, Th. 1.1], while the others are from [4] and [5].

THEOREM 3. For any X, the following are equivalent.
(1) For every p e X, the ideal Op [resp. z-filter <^p] is prime.
(2) The prime ideals [resp. prime z-filters] contained in any

given fixed maximal ideal [resp. fixed z-ultrafilter] form a chain.
(3) Given peX and f e C(X), there is a neighborhood of p on

which f does not change sign.
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(4) Every z-embedded subspace is C*-embedded in its closure.
(5) Every cozero-set is C*-embedded in its closure.
(6) For each f e C(X), pos / and neg / have disjoint closures.
(7) Disjoint cozero-sets have disjoint closures (i.e., X is an F'-

space).

Proof. As in [5, 14.25], the equivalence of (1), (2), and (3) follows
directly from [5; 7.15, 14.8(a), 14.2(a), 2.8, 2.9].

(2) implies (4). Let Y be z-embedded in X. According to [5,
6.4], Y is C*-embedded in cl Y if every point of cl Y is the limit of
a unique z-ultrafilter on Y. Let ^ γ and ^/^ be z-ultrafilters on Y
converging to the same point p in cl Y. By Lemma 1 the induced z-
filters ^/fί\ and ^/έ\ are prime. Let Ze ^//\\ thus Z Π Ye ^/fλ. If V is
any neighborhood of p in X, then V Π cl Y contains some member of
^/f, [5, 6.2]; hence VΠ cl Y meets ZΠ Y and thus V Π Z Φ 0. It
follows that peZ. Thus ^//\ is contained in the z-ultrafilter ^/Sp

x,
and similarly ^£\. By hypothesis, ^ \ and ^£\ are comparable. If,
say, ^ \ £ ^/S\, then since Y is z-embedded, we have by Lemma 2,
^ = ^ * | Γ £ ^ i [ Γ = ^ 2 , so that ^ - ^T2. Hence Y is C*-
embedded in cl Y.

(4) implies (5). As noted in §2, every cozero-set is z-embedded.

(5) implies (6). Put T = clx(pos / U neg / ) . Put g = 1 on pos /
and g = — 1 on neg/, and extend g to heC*(T). Since h = 1 on
clx(pos/) and Λ, = — 1 on cl x(neg/), these closures are disjoint.

(6) implies (7). If X - Z(f) and X - Z(g) are disjoint, then
X - Z(f) £ pos(/2 - £2) and X - Z(</) £ neg(/2 - g2).

(7) implies (1). If Z and IF are zero-sets with Z U T7 = X, then
X — Z and X — FT are disjoint cozero-sets and thus have disjoint
closures. Hence int Z U int W = X, and thus Ze έ?v or PFe ^P ί ) . By
[5, 2E], &v is prime.

We may use Theorem 3 to obtain an alternative proof of Theorem
1 as follows. Let Y be z-embedded in an F'-space X. Let T be a
z-embedded subspace of Y. Then T is z-embedded in X, and thus
C*-embedded in clxΓ, hence in clyT. Thus Y is an F'-space. Still
another instructive proof may be based on condition (2) and Lemmas
6 and 2.

Theorem 3 also yields the following extension of [1, Th. 1.8].
Any F'-space with a dense normal z-embedded subspace is an F-space.
The proof given in [1] serves here as well.

The above characterization of .F'-spaces in terms of z-embedded
subspaces has an analog for .P-spaces, [7]; it may also be obtained from
our characterization of .F'-spaces as follows.
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COROLLARY (Hager). A space X is an Fspace if and only if
every z-embedded subspace is C*-embedded.

Proof. According to [5, 14.25], X is an F-space if and only if
every cozero-set is C*-embedded in X. Since a cozero-set is z-embedded,
the sufficiency is clear. Now let X be an F-space and Y a ̂ -embedded
subspace. Since X is z-embedded in βX, so is Y. Since βX is an
i^-space, it follows from Theorem 3 that Y is C*-embedded in c\βxY.
The latter space is compact, hence C*-embedded in βX. Thus Y is
C*-embedded in βX, hence in X.
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