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UNSTABLE POINTS IN THE HYPERSPACE
OF CONNECTED SUBSETS

N E I L R. GRAY

A topological property which has proved useful is that of
possessing an unstable point. It is thus interesting to see
which topological spaces consist entirely of unstable points.
The purpose of this paper is to describe a class of such spaces.
This is done in the

THEOREM. If X is a finite simplicial complex then the
hyperspace C(X) consists entirely of unstable points if and
only if X has no free 1-simplex.

The proof given here is for the case where X is connected
—the more general theorem follows obviously from this case.

2* Definitions and remarks. A point p in a space Z is called
unstable if for each open neighborhood U of p there is a homotopy
ht: Z—>Z such that h0 = 1, pίh^Z), and for all ί, ht \ Z\V — 1 and
ht(U)dU. (Here 1 denotes the identity mapping on Z.) A point
which is not unstable is called stable. (Synonyms for "unstable" are
"labile" and "homotopically labil"; see, for example, [2].)

If (X, d) is a compact metric space we denote by 2X the collection
of all nonempty, closed subsets of X. When furnished with the
Hausdorff metric [3, p. 167] 2X is called the hyperspace of closed
subsets of X. The Hausdorff metric can be defined as follows: for
x G X and EaX we define dist (x, E) = inf {d(x, y)\ye E}. For ε > 0
we define V£(E) = {x e X | dist (x, E) < ε}. Then the Hausdorff metric
p on 2X is given by p(E, E') = inf {ε > 0 | E c Vε(E') and E' c Vε(E)}.
Note that in order to show p(E,E') < ε it suffices to show the following:
dist (x, E') < ε for each x e E and dist (a?', E) < ε for each x' e Er.
The subspace of (2X, p) consisting of the nonempty, closed, connected
subsets of X is denoted by C(X). (We still use the metric p on
C(X).) It is well known that C(X) and 2X are compact.

A function / : (X, d) —» (X, d) is called an ε-mapping of X if
d(x, f(x)) < ε for each x in X.

Finite simplicial complex denotes a geometric realization of an
abstract finite simplicial complex, and has the Euclidean topology.

A 1-simplex is called free if it is not a proper face of some other
simplex in the complex.

If (X, d) is a metric space then d is said to be a convex metric
[1, p. 1101] if for each pair of points α, b in X there is a point z in
X such that d(a, z) = d(z, b) = 1/2 d(a, b). In case (X, d) is complete
this is equivalent to: for each pair of points α, b in X there is a set
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JaX which is isometric with the closed interval [0; d(a, b)] under an
isometry h such that h(0) = a and h(d(a, 6)) = 6 . (There may be more
than one such set.) This last is, in turn, equivalent to: for each
pair of points α, b in X and positive numbers a, β such that a + β =
d(a, b) there is a point z in X such that d(a, z) = a, d(z, b) = β.

The following two theorems will be used in the sequel:

THEOREM A. If Y is a compact ANR and pe Y then p is
unstable if for every ε > 0 there is a continuous ε-mapping f:Y—>Y
such that p$f(Y). The proof is found in [2],

THEOREM B. If Y is a Peano continuum then there exists a
convex metric for Y which is compatible with the topology on Y.
The proof is found in [1].

It is known [4] that when X is a Peano continuum, C(X) is an
AR. Thus, if X is a connected finite simplicial complex (and hence
a Peano continuum), C(X) is a compact ANR, and Theorem A applies—
to show a point in C(X) is unstable we need only construct the
appropriate ε-mapping.

Note that stability is a local property: if U is a neighborhood of
y in a space Y and V is a neighborhood of z in a space Z and / is
a homeomorphism of U onto V such that f(y) — z then y is unstable
in Y if and only if z is unstable in Z%

3* Some lemmas*

LEMMA 1. If X is a Peano continuum and if g: X—>2X is con-
tinuous, then the function f: 2X —> 2X defined by fE = UM^) I x e E}
is continuous. Furthermore, if a > 0 and p({x}, g(x)) < a for each
xeX then f is a a-mapping.

Proof, ( i ) Each fE is closed: suppose yefE. Pick

ynefE [\SUM , n = 1,2,3, . . .

Then a sequence {xn} can be found in E so that yn e g(xn), w = l,2,3, .
Because E is compact we may assume the sequence {xn} has a limit a?
in E. Then g(xn) has limit g(x)afE. We show yeg(x). Suppose
the contrary. Then for some d > 0 we have dist (y, g(x)) ^ 2δ. But
since g{xn)-*g(x) we have g{x«)c.Vs{g{ίc)) for sufficiently large n.
Thus, for sufficiently large n, dist (#, flf(ί»Λ)) ;> dist (y, Vδ(flf(ίc))) ^ δ.
But dist (T/, flr(a;n)) ̂  d(i/, τ/%) for all n. Since d(?/, τ/J — 0 we have
dist (y, g(xn)) —* 0, a contradiction.
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(ii) / i s continuous: Let ε > 0. Choose δ > 0 so that p(g(x),
g(y)) < ε when d(x, y) < δ. Suppose p(E, E') < δ. If y e fE then
y e g(x) for some x e E. Because p{E, Ef) < δ there is a point x' e E'
with d(x, x') < δ. Then ρ(g(x)9 g(x')) < ε, so dist(τ/, #(#')) < e. Thus
there is a point #' e g(xf) with d(τ/, ?/') < ε. But y' e fE', so we have
dist (y, fE') < ε. An entirely similar argument shows that y' e fEf

implies dist(τ/', fE) < ε. By a remark above we then have p(fE9 fE')<ε.
Thus / is continuous.

(iii) / is an α-mapping: we must show p(E,fE)<a for each E
in 2X. If x G E then, since p({x}, g(x)) < a, we have dist (x, g(x)) < a.
Then d(x, y) < a for some y e g(x). Since g(x) c /2£, dist (x, fE) < α.
Now suppose yefE. Then yeg(x) for some &G2?. Because |θ({a;},
#(#)) < a we have d(#, #) < α so dist (y, E) < a. Thus p(E, fE) < αβ

LEMMA 2. If X is a Peano continuum and if g:X—*C(X) is
continuous, then the function f: C(X) —* C(X) defined by fE —
\}{g{x)\x£.E} is continuous. Furthermore, if p({x}, g(x)) < a for
each xe X then f is an a-mapping.

Proof. We need only show that fE is connected for each E e C(X).
Let EeC(X) and suppose fE is not connected. Then we can write
fE = Ax U A2 where At and A2 are nonempty, A1 f]A2 = 0 and Ax and
A2 are closed in fE (and hence in X). Let £Ί = {x eE\ g(x) c Ax},
Ĵ a = {x e £71 g(x) c A2}. Because g(x) is connected for each x in E
we must have either g(x) c At or flr(a ) c A2. Thus E — E1[JE2 and
E,{\E2= 0 . Also, EγΦ Q)\ it E,= 0 then E2 = E and fEaA2i a
contradiction. Similarly, E2Φ 0. Finally, continuity of # insures
that 2?! and i?2 are closed. Thus E is not connected, contrary to the
choice of E. Therefore / is continuous.

LEMMA 3. If (X, d) is a compact metric space with convex
metric d and if a > 0 then the function f defined on C(X) by
fE = {x e XI dist (x, E) ^ a/2} is an a-mapping of C(X) into itself.

( i ) / i s well-defined: it is clear that fE is closed. To see that
fE is connected we merely observe that each point of fE is joined
to E by a line segment lying in fE, and that E itself is connected.

(ii) / i s continuous: we show that p(fE,fE')<β whenever
ρ(Ef E

f) < β. Suppose ρ(E, E') < β. Let y e fE. Because E is com-
pact we can choose a point x in E such that d(y, x) = dist (y,E)<Za/2.
Since p(E, Er) < β we can find a point x' eEr such that d(x, xf) < β.
Then d(x', y) ^ d(x', x) + d(x, y)< β + a/2. If d(x', y) ^ a/2 then

» e/E", so dist (y, fE') - 0. If d(x', y) - α/2 + δ > α/2 then there is
a point j / ' e Z such that d(x', yf) = α/2 and c?(τ/', T/) = δ. Then T



518 NEIL R. GRAY

and (since δ < β), dist (y, fE') ^ d(y, y') < β. Thus yefE implies
dist (y, fE') < β. By interchanging E and Ef in this argument we
have that y'efE' implies dist (y',fE) < β. Thus ρ{fE,fEr) < β.

(iii) / is an α:-mapping: this follows immediately from the
obvious inclusions valid for all EeC(X): EafE and Va(E)i)fE.

LEMMA 4. If X is the closed unit interval [0; 1] then in C(X)
the stable points are precisely those intervals [a; b] such that
0 < a < b < 1.

Proof. Let T denote the 2-simplex in the coordinate plane whose
vertices are (0,0), (1,0), (1/2,1/2). Consider the map#:C(X)->T
defined by g([a; b]) = ((α + δ)/2, (6 — α)/2). Then g is a homeomorphism
onto T.

Since the unstable points of T are precisely the boundary points
of T, we see that the unstable points of C(X) are just those that
are mapped by g into these boundary points. Since for (x, y) e T we
have (x, y) e boundary T if and only if (1) y = 0 or (2) x = y or (3)
y — 1 — x we see that [α; b] is unstable in C(X) if and only if

(1) t^lJi = o (that is, [a; b] is a point) or
ill

(2 ) (^±λ = ^ £ (that is, α = 0) or
Δ Λ

(3) L z « = 1 - «JL* (that is, 6 = 1).

Thus [a; b] is unstable if and only if α = 6 or α = 0 or 5 = 1.

4* Proof of the theorem* As mentioned above, we assume X
is connected. First suppose that X does not contain a free 1-simplex.
Let A G C(X). The method of proof depends on whether or not A
has empty interior, A\

If A0 — 0 we assume the metric on X is convex. Let ε > 0.
By Lemma 3 the map / : C(X) ~> C(X) defined by

fE - {x e XI dist (a;, # ) rg ε/2}

is a continuous ε-mapping of C(X). Also, A Φ fE for each EeC(X)
because each /J57 clearly has nonempty interior. Then, by Theorem
A, A is an unstable point of C(X).

If A0 Φ 0 then some point q in A has a neighborhood in X
which is an open Euclidean n-hsll for some n ^ 1. Since X contains
no free 1-simplex we must have n ^ 2. Let ^ be an open Euclidean
w-ball neighborhood of q, centered at g, with radius rλ < ε/2, and
such that Bx c X. Let 1?2 be a second open w-ball, also centered at



UNSTABLE POINTS IN THE HYPERSPACE OF CONNECTED SUBSETS 519

q, and with radius r2 < r1# Let Si and S2 be the (n — l)-spheres
that are the boundaries of B1 and B2, respectively. Then Sί l l l^ is
a closed subset of J31#

Because w ^ 2, B^i^ is a Peano continuum, so C(B\B2) is an AR.
Define βι: S, U 5 2 -> C{B\B2) by

{&}, if x e S, .

S2, if X G B 2 .

Clearly, ^ is continuous. Since S1[jB2 is closed in Bx and C(B\B2)
is an AR, we have a continuous extension g2 of g19 g2:Bι—>C(B\B2).
Now define (/: JSΓ—> C(X) by

= jW, if a e

j#2(x), if x e

Then # is well-defined because ϊ̂ nCXΎBi) = &, and for each xeSlf

g2(x) = gx(χ) = {α;}. Clearly, βr is continuous. Then by Lemma 2, the
function /: C(X)-+C(X) defined by fE = Ui^(^) I x e E} is continuous.
Also, fE Φ A for each E in C(X) because, while qeA, the construction
of g shows that q £ g(x) for each x in X, and hence g £ fE for each
£7 in C(X). Finally, / is an ε-mapping because g satisfies the second
hypothesis of Lemma 2: for each xe X we have either p({x}, g(x)) = 0 or
p({x}, g(x)) = ρ({%}, g2{x))* Since g2: Bι-+C(B\B2) and diameter Bt < ε,
p({x}, g2(x)) < ε.

To complete the proof we suppose that X has a free 1-simplex
S, and we exhibit a stable point of C(X). Since S is free there is
a point q which has an open neighborhood which is a Euclidean 1-ball
B of radius a for some a > 0. Furthermore we may assume that B
is identical with the open metric ball about q of radius a; B(q, a),

and that 0 < a < 1. Then i?(g, a/2) is a closed interval in S, which
we denote by A. Then B(A, a/i) is a neighborhood (in C(X)) of A,
and this neighborhood is homeomorphic to the open neighborhood in
C([0 :1]) of radius α/4 about the closed interval [1/4; 3/4] in C([0 :1])
under a homeomorphism which carries [1/4; 3/4] to A. Now by Lemma
4, [1/4; 3/4] is a stable point of C([0 :1]), so A is a stable point of
C(X).
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