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THE HIGHER ORDER DIFFERENTIABILITY
OF SOLUTIONS OF ABSTRACT
EVOLUTION EQUATIONS

P. SURYANARAYANA

In this paper, the regularity of the solution of the initial
value problem for the abstract evolution equation
du

(0.1) W—I—A(t)u:f(t), w0)e X, 0=t=T

and the associated homogeneous equation

©0.2) %—-{—A(t)uzo, w0)e X, 0<t<T
in a Banach space X is considered. Here u = u(t) and f(¢) are
functions from [0, T'] to X and A(t) is a function on [0, T'] to
the set of (in general) unbounded linear operators acting in X,

DeriNiTION, u(t) is called a strict solution of (0.1) or (0.2)
in (s, T'] if

(i) wu(t) is strongly continuous in the closed interval [s, 7']
and is strongly continuously differentiable in the semiclosed in-
terval (s, T'],

(ii) u(t)e D(A(t)), the domain of A(t), for each te(s, T'],

(iii) wu(t) satisfies (0.1) resp. (0.2) in (s, T'], u(s) coinciding
with the given initial value at ¢t = s,

It is assumed that A(t) for each ¢t € [0, T'] satisfies the following
conditions,

(i) —A(t) generates a semigroup exp(—sA(t)) of operators
analytic in the sector |args| < 6,s+0,0 < 6 < z/2,

(ii) For any complex number 2 satisfying |arg 1| < z/2 + 6,
0<0<=/2@0t)2 + Alt))* exists in the operator topology and
that there exist constants NV and p independent of ¢ and 2 with
N > 0,0 =< p <1 such that

H%(Z + A<t>)_}H = Nafpt,

The main result proved in the paper can be stated as follows.
If, in addition to the above assumptions, A(t)~'e C»*¢[0, T'] in
the uniform operator topolegy, B(t), a bounded operator for
each tc[0, T'] is of class C'+8[0, T'], and f(t)e C» ™[0, T']
in the strong topology, then the unique strict solution u(t) of

%+(A(t)+B(t))u:f(t), w0)e X . 0=t=T

belongs to the class C**[s,, T'], s, > 0 arbitrary, ¢ > 0 depending

on «, 3,7 and p. In this no assumption regarding the constancy
of the domain D(A(t)) is made.
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From the above it is clear that if further A(t)~'<C=[0, T],
B#)eC~[0, T] and f(t)e C=[0, T'], then wu(t)eC=(0, T]. It is
shown by an example that the solution %(¢) need not be real
analytic even though A(¢t)~! is real analytic and satisfies all
other requirements.

The existence and uniqueness of strict solutions are established
under varying hypotheses in a number of papers, Kato [3, 4, 5, 7],
Tanabe [10, 11, 12], Kato and Tanabe [8] and Fisher [1] based on
the theory of semigroups of operators. A survey of work done on
the abstract evolution equation (0.1) is given in Kato [5]. Kato and
Tanabe [8] established the existence and uniqueness of strict solu-
tions without any assumptions on the constancy of the domain of
the operators A(¢). They also proved that the solution u(¢) is analytic
when (—A(¢)) is a generator of an analytic semigroup for complex
values of ¢ in a convex neighbourhood of [0, T'] provided that the
inhomogeneous term f(¢) is also analytic. On the other hand, when
D(A(t)) is constant, Tanabe [12] proved that the solution of (0.2) is
twice differentiable if A(t)A(s)! is Holder continuously differentiable.
P. E. Sobolevskii [9] showed that if

AA(s)y"eC 0, T,  f(H)eC0, T],

then u(t) e C**'[0, T'] and that u(t) is real analytic if A(¢t)A(0)' is
real analytic.

The following notations are used throught the paper. X denotes
a fixed Banach space. X denotes the closed sector in the complex
plane consisting of the complex numbers )\ satisfying

larg N | S 7w/2 + 0, 0<o<m2.

E.1. For each tc[0, T], A(t) is a densely defined closed linear
operator acting in X. The resolvent set o(— A(t)) of — A(t) contains
. The resolvent of (— A(t)) satisfies
1.1) v+ A = % for any ne 3, te[0, T],
M being a constant independent of ¢ and M. (This implies that for
each ¢, —A(t) generates a semigroup exp (—sA(t)) analytic in the
sector |args| < 0, s% 0. Hille-Phillips [2], Yosida [13]).

E.2.n. A(t)™ as a bounded operator for each ¢t e [0, T'] belongs to
the class C"**[0, T'] in the uniform operator topology (i.e. d"A(¢)~*/dt"
exists in the uniform operator topology and is Holder continuous in
the same topology with a Holder exponent a > 0).
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E.3. (K — T-condition) For any ne X, te[0, T|, there exist con-
stants N and o independent of ¢ and X with N > 0,0 < o <1 such
that

N
R

(1.2) Hgt_(x LA

| <
|

E.4.n. The inhomogeneous term f(t) is of class C***7[0, T] in
the strong topology for X, 0 < v < 1.

E.5.n. B(t) for each tec[0, T'| is a bounded operator and belongs
to the class C**+4]0, T'] in the uniform operator topology (0 < 8 < 1).

We first observe that if (d/dt)A(t)™ exists and M\ € p(— A(¢)), then
(d/dt)n+ A(t))™ exists and

d 1
(1.3) d
=1 —Mn + A7 AGTL = M0+ A7

So K — T condition always makes sense if A(¢) satisfies at least
E.2.1 and we will always be taking K — T condition in conjunction
with E.2.1 at least.

We are now in a position to state our main results.

THEOREM 1. Let A(t) satisfy El,E.2.1, and E3, B(t) satisfy
BE.5.1 and f(t) satisfy E.4.1. Then the unique strict solution u(t)
of

du

(1.4) "

+ (A@) + B@t)u = f(t), w(0)eX, 0=st=T

belongs to the class C**¥[s,, T, s, > 0 arbitrary, ¢ > 0 depending on
a, B,v and o.

THEOREM 2. Let A(t) satisfy E.1,E.2.n, and E.3, B(t) satisfy
B.5.n and f(t) satisfy E.4n. Then the unique strict solution u(t)
of (1.4) is of class C"*[s,, T'], s, > 0 arbitrary, 0 > 0 depending on
a,B,7 and p.

COROLLARY 1. If A(t) satisfies E.1, E.3 and further
(a) A@t)tecC=0, T],
(b) B(t) e C=[0, T]

in the uniform operator topology and
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(c) fyec=[o0, T]

wn the strong topology of X, then the unique strict solution wu(t) of
(1.4) s of class C=(0, T'| in the strong topology of X.

COROLLARY 2. Let us assume that D(A(t)) is independent of t,
A(t) satisfies E.1 and E.2.n and f(t) satisfies E.4.n. Further let
the bounded operator A(t)A(s)™ be once continuously differentiable
i the uniform operator topology in t€|0, T'| for any fized se|0, T].
Then the unique strict solution u(t) of (0.1) is of class C"*¥s,, T'] in
the strong topology of X, s, > 0 arbitrary.

2. Preliminaries and known results. We collect below some
results from Kato and Tanabe [8] which will be used here very
frequently.

THEOREM A (Kato and Tanabe). Let A(t) satisfy E.1, E.2.1 and
E.3 and f(t) satisfy E.4.1. Then the equation (0.1) has a unique
strict solution u(t) given by

2.1) u(t) = Ut 0)u(0) + S:U(t,a)f(a)da .

Here U(t, s) 1s a bounded operator and is called evolution operator,
Green’s operator, propogator or fundamental solution. It is con-
structed as

U(t, s) = exp (—(t — 5)A(1))

(2.2) 4 S:exp (—(t — D)A(t))R(z, s)dr ,

R(t, s) being determined as the solution of the integral equation
R(t,5) - | Rit, OR(z, )iz = Ryt 9)

where

A
8_[_&

Bit,5) = (& + =

)exp (—(t — $)A()) .

This U(t, s) has the properties

(i) Us,s) = I (The identity operator) for any sel0, T]
(it) U@, nU(@r,s) =Ut,s),0=s=r=t=T

(iiliy The range of U(t, s) is contained in D(A(t)) and
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%iﬂas)z-—A@ﬂﬂaﬁ
(2.8) = A(t) exp (— (¢t — S)A(t)) — R(t, s)
+ | At exp (— (¢ = DAOVR(, 9)—R(t, 5))ds
+ exp (—(t — s)A(t))R(¢, s) .

LEMMA 1. Under the same assumptions as above, the following
are true.

@.4) (a) H%exp(—(t—sma»” <Ct—s).
2.5) (b) H%exp(—(t—s)A(t»Hgca—srl.
2.6) (c) IRt 8) | = C(t — s) .
@7 (d) IR, ) || < Ot — 8 .

(e) For 0s<t<t< T,

| R(t, s) — R(z, s) ||
t—7 (t — )=
gch n

t — s)(t — s)° t—s
_l_(t—r)l—'°+(t—r)"‘ t—s}.

(2.8)

(t — s)° t — s)° logt -7

(f) For 0ss<t<t< T,

2.9  [|Ry(t,9) — Bz, 8)|| < c{(t _ts)?:_ S+ = aiy

(g) Let
(2.10) Wm@:Yam~a—ammngw.
Then we have

0 _
CUCDES N

3
t
(2.11) Y

t
8

exp (—(t — D)A@))E(z, s) — E(t, s))dr

R,(t, T)dTR(t, )
+ exp (—(t — s)A(E))R(t, s) .
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2.12) (h) ”(—%W(t, s)H < C{(t — s)° + (t — 5)°} .

2. exp (—(t — ) AW (0)do

@13) (i) = | Zexp(~(t - AW (0) ~ f(B)do

— |'Rit, 0)f (0o + exp (—(t = AWENFE) -

Note. Throughout this section and the following, C denotes a
positive constant depending only on the fundamental constants M, N,
0, o, « and those which appear in the assumptions of Theorem 1.
The constant C is not necessarily the same at every occurence. We
use C, to denote a constant depending on & > 0 in addition to the
constants mentioned above.

We also require a slightly weaker form of Theorem 6.1 [Kato
and Tanabe [8]. We present it as

THEOREM B (Kato and Tanabe). Let A(t) satisfy E.1, E.2.1, and
E.3, B(t) satisfy E.b.1 and f(t) satisfy E.4.1. Then the equation
(1.4) has a unique strict solution given by

wt) = Ut, 0u(0) + | Uitt, 0)f (0)do
where
Uit s) = Utt, 5) — | U(t, 0)B0)Uso, 9)do
U(t, s) being the evolution operator corresponding to (0.1).

We now proceed to give the proofs of theorems stated in §1.
Section 3 will be devoted for the proof of Theorem 1 and §4 for
Theorem 2.

For the proof of Theorem 2, we need the following Theorem C
from Kato [6], which is the same as Lemma 13.7.1 in Hille-
Phillips [2].

DeFINITION 1. H(w, 0) is the set of all densely defined closed
linear operators 7T in a Banach space X satisfying
(i) the resolvent set o(—T') contains a sector

Vs Vs
ar = 4w, I<w<=
l g$|_2+ < <2

and
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(i) for any € >0,

an

(T +o7 =
(T + &) H<|5‘

for |arg &| §%+ W — €
with M, independent of &,

DEFINITION 2. H(w, B), 8 real, is the set of operators T of the
form T = T, — B with T,e H(w, 0).

THEOREM C. Let Te H(w,B) and let A be relatively bounded
with respect to T so that
NAul| = allwl +b] Tu|, weD(T)cD(4).

For any € > 0, there exists a 5 > 0,0 > 0 depending on T, and ¢
only, such that T + Ac Hw — ¢,8") whenever a <0d,b<d. If in
particular 8 =0 and ¢ =0, then T + Ac H(w — ¢, 0).

3. Proof of Theorem 1. In view of Theorem B, we have only
to prove the Holder continuity of dw/dt. We do this in several
steps.

Step I. We consider the solution u(f) of the homogeneous equa-
tion (0.2) with the same assumptions on A(¢) as in Theorem 1.

Let 0s<r<tsT.

As (0/ot)U(t, s) = —A@)U(L, s), (t > s) it is enough to estimate

|A@)U, s) — A(r)U(r, )| .
From (2.3) we have

A()YU(t, s) — A(r)U(r, s)
=[—R(,s) + R(r, s)]
+ [A(¢) exp (— (¢ — 5)A(F)) — A(r) exp (—(r — 5)A(r))]
+ [exp (— (¢ — )A(E))R(t, s) — exp (—(r — s)A(r))E(r, s)]

+ [ @ exp (—t = DAONR G, 9) — R, 9)d
~ [Am exp (~ 0 — A0NR G, ) - Rir, ) e ]
= (i) + (ii) + (iii) + (iv) (say)

1 (i) ]] is estimated by (2.8).
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(i) = aﬁs-{exp (—(t — $)A(t)) — exp (—(r — )A(r))}

= _LS Met =22\ + A(t))™ — e\ 4+ A1) Mdh
2wy Jr

where I is a smooth contour running in X from cogi(¥2+8 to
oo @H(FI+0)

— L,S e““’”kyi(h + A(0))~'dodn
2wy Jr »00
1 i a ad —1
4+ 1 2 (eydoMn + A(r))dn .
2wt Jr)r—s 00

Using (1.1) and (1.2) we have

(3.1) 11 = ol + =)

(iii) = {exp (— (¢ — $)A(t)) — exp (—(r — s)A(")}E(E, s)
+ exp (—(r — s)A(r))(R(t, s) — R(r, s))
= (iiia) + (iii b) (say).

[|(ii)a[] < C(t — 7)/(t — s)’(r — s) using (2.7) and (2.4).
|| (iii b) || is estimated by (2.8) since |/exp(—(r — s)A(r))|| £ M.
(iv) = S:{A(t) exp (—(t — 1)A(t)) — A(r) exp (—(r — 7)A(7))}
x {R(t,s) — R(r, s)}dt
+ STA(t) exp (— (¢ — DAD)R(r, s) — R(t, 8))dc
+ | 4@ exp (~ (¢ = DANERG, 5) = R(t, s))ds
= (iva) + (ivb) + (ive) .
Using (3.1) and (2.8) we have

) r 1 1
[Jiv(a) || < CSs(t - T){ (t — 7)e*! + (r — o)t — 7.')}

{ r—T +(r—r)“+(r~7)1“f’+(1"——‘c)“ T—s}dr.

log
(r —s)(t — 9)* r—8 r—8 (r —s)° r—T

Estimating the various integrals on the right, with ¢ > 0 arbitrarily
chosen, we can prove

lva | < o U=y Con (o (o e

(r—s8)yf=™ (r—s)lte—= (r—s)— (r — s)—
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dr
t—7T

l|@vb)|| < | R(,s) — R(r,s)|| S

= | R(t, s) — R(r, s)| log L=
t—7r

and this can be estimated by (2.8).

dr

t—7
t—1r t —r)

C{(t—s)(r—s)"+ t—s

i (t—?‘)"”_i_(t—r)“(l +llogt—s>}

(t — s)° (t——s)”?t—2 «a t—r

livoll = c| 2| R, 9 — B(t, )| ds using (2.5)

IA

using (2.8) and estimating the respective integrals. Combining all
these estimates, we note for 0 < s< s, Zr<t< T,

HA@® U, s) — A(r)U(r, ) || = C — )7,

p=min(1 — o — ¢, & —¢) and C depends on s, >s,s,¢ and 7. ¢ can
be chosen to make 7 > 0.

This establishes the Holder continuity of the derivative of the
solution of the equation (0.2) in every interval of the form [s,, T1],
0<s, <T.

Step II. We now consider the solution u(t) of the equation (0.1)
with the same assumptions on A(t) and f(¢) as in Theorem 1.
The solution of (0.1) is given by:

U(t) = U, s)uls) + S’U(t, o) f(0)do | 0<s<t<T,

u(s) being the initial value at ¢ =s and U(t,s) the corresponding
evolution operator.

In view of the result proved in Step I, it is enough to consider
the case u(s) = 0.

Let 0 s<r<tsT.

From the defining equations of U(t, s) and W(t, s) on using (2.11),
(2.12) and (2.13) we obtain

du_ [

. 9 exp{—(t — O) AW (0) — f(t))do

50t
— | Rit, 0)f (a0 + exp (— (¢ — ) A@NS (@)

>
¥ Ssét—W(t, o)f(0)do .
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Using the Holder continuity of f(¢), the estimates (2.4) through (2.13)
and the estimates obtained in Step I, we can prove after some tedious
computations that for 0 <s< s, Zr <t < T,

where » = min{l — p — ¢, ¢ — ¢, v — ¢}, ¢ > 0 being arbitrarily chosen
to make 7 > 0. K is a constant depending on s, s,¢ and T but not
on ¢t and . This establishes the Holder continuity of the derivative
of the solution of (0.1) in every interval of the form [s,, 7],
0<s, <T.

Step III. The existence and uniqueness of the solution of the
equation (1.4) is established in Theorem B. We have only to
establish the Holder continuity of the derivative du/dt of this solu-
tion. Because u(t) € C'(0, T] and B(t) is Holder continuous, we have
that B(t)u(t) e C%(0, T]. We can treat u(tf) as the solution of the
equation

% + Ayu(t) = f£(t) — Byu(t) , u, e X given .
As A(t) satisfies the conditions used in Step II and f(t) — B(t)u(t) is
strongly Holder continuous with Holder exponent min (v, 8), by ap-
pealing to the result in Step II, we have wu(t) e C**7[s,, T],

p=min(l —p—¢,a—¢ev—¢B—2¢, s, >0,
€ > 0 chosen arbitrarily to make % > 0.
This completes the proof of Theorem 1.

4, Proof of Theorem 2. The proof of Theorem 2 will be given

after a few preparatory lemmas.
Let us first remark that if u(t) is a strict solution of

du

(1.4) Ees

+ (A(t) + B(t)u = f(t), u(0)eX, 0=t=T,
then e Fty(t) is the strict solution of
(4.1) % 4 (A + B + Kyu = e f(t), w0)eX, O0<t<T

and conversely. So we may, if necessary, consider the equation (4.1)
instead of (1.4) with a suitable choice of K.

LEMMA 2. If A(t) satisfies E.1, (d/dt)A(t)™ exists as a bounded
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operator and E.3 holds, then for a suitable K > 0,
At) + K + {0% (A(t) + K)-l}(A(t) +K)  {=A(t K) for short}

satisfies E.1 with a possibly different constant M.

Proof. We can regard — A(t; K) as a perturbation of the analytic
semi-group generator —(A(t) + K). If we D(A(t)), we have

”_(A(t) + K)(AQ) + K)u” < ]]—(A(t) + K)

[1A® + Kyl -

So (d/dt)(A(t) + K)'(A(t) + K) is relatively bounded with respect to
(A(t) + K) with a relative bound

= | Lam+ 1)

According to Theorem C of §2, —A(¢; K) generates an analytic semi-
group if we can make

1

d -1
—(A(t) + K) 11

|

M being the constant appearing in E.1. In view of K — T condition
we have

N

|5 o+ 1| = 5

=

uniformly for all ¢e[0, T']. So if we choose K > 0 such that
(4.2) NK*= < (1 + MSec§)™

(the term Sec @ is introduced for convenience in work later on), we
have for each te[0, T'], —A(t; K) generates an analytic semigroup.
Further, the resolvent set of each of these operators contains the
sector ¥ and

(4.3) v+ A K- = M2 for ve X,

Y

M* being a constant independent of ¢ and XA. This completes the
proof of Lemma 2,

LEMMA 3. If A(t) satisfies E.3 and E.2.n, then for a suitable
K >0, A(t; K) satisfies E.2.n-1,
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Proof. A(t; K) = {1 + (d/dt)(A(t) + K)'HA(t) + K). In view of
E.3, we can choose K > 0 such that

|2 @ + x| <1

so that {1 + (d/dt)(A(t) + K)'}™* exists as a bounded operator. Then
for such a choice of K,

At K)* = (A + K)2{1 + Edt‘( Awy + Ky

Also in view of (1.3) and A(t)~'e C**[0, T'], it follows that
A(t; K)e Cm+[0, T] .

Hence the Lemma is proved.

LEmMMA 4. If A(t) satisfies E.1, E.2.2 and E.3, then for a
suitable K > 0, A(t; K) satisfies E.3 with a possibly different N but
with the same p (0 < o < 1).

Proof. By Lemma 1, A(t; K) satisfies E.1 if K > 0 is chosen
according to (4.2). Let AeX. From the second resolvent equation,
we have

(4.4)
N+ A K) — (W + A + K)T

= —(M + A(t; K))”ld%(A(t) + K)'(A(t) + K)(M + A(t) + K).

Since A(t) satisfies E.2.2, (9/0t)(A(t; K) + N\)™* exists for A e noting
(1.3). From (4.4) we have

9 (At -
%(A(t’ K) + )

(2
ot

O + K + A@t)™

— (vt A K))-‘-O%(A(t) + K)YMA®) + K)A®@) + © + K)-

d

— O+ A )L (A) + K)-I%{(A(t) + K) + K + A®)Y

- %(A(t; K) + 072 (A) + K)AW) + K)A® + -+ K)°

=)+ @)+@)+ @) say.
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Therefore

|2 &)+ 02| S @i+ 1@+ 1@+ @1

Now
N . .
@I = iR in view of E.3.
1@l < || Att; K) + 1)
X ||&- A + Ky |11 A® + KAl + 1+ K|
. -1 MIN| )
énmuKrHon04LHK+KQ using E.1
where

0=st<sT

d? -1
=7 A + K)

which is finite in view of E.2.2. Further from (4.4) we have

Il (AGt; K) + M7
< [(A@t) + K + 27|

+ 11 (A K) + M7 | 11— MA@ + 2+ K)7 |

d -
%(A(t) + K)

._M_ . —1 __N_ |)\,|
S g UG K gL M)
M . L, N
= I+ K| + [ (At K) +\) ||K1_p(1+MSec0)
M . B
= ™+ K| + A K)+ M) g, <1 (because of (4.2)) .
Therefore
M
A(t; K) + M1 < .
1| (A( ) ) STEIA—
Hence
1@ < MCe (L + MSech)

~T K| 1—gp
@ = || (A K) + 2)|
x “%(A(t) + K)—"

|20 =M + K+

M,N* Sec 0
K= |n+ K[ "
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1@ = || 2 (A K) + 0

x| £ (At + B 111 = MA® + K+ 207

l

< ”—(A(t K) + 0~

N1 + M Sec 0)
K

"=

Combining all these estimates we have

N* < _N
R

”a (A(t; K) + )™

N*, N, being constants which do not depend on ¢ or . Thus A(¢; K)
satisfies E.3 with the same o and this completes the proof of the
Lemma.,

Proof of Theorem 2. We wish to prove this theorem by induec-
tion. First the case # = 1 is Theorem B of Kato and Tanabe.

So let us now assume the theorem true for n = m and make the
induction hypothesis that A(t) satisfy E.1,E.2. m + 1 and E.3, B(t)
satisfy E.5. m + 1 and f(¢t) satisfy E4. m + 1. Let K >0 be so
chosen to satisfy (4.2) and to allow

{1+ Lea + Ky + BO@E + K2 (=B(t; K)™)

exist as a bounded operator for each ¢e[0,7T]. This is possible
because Sup.c.<r || B(t) || is finite and A(t) satisfies E.1 and E.2.
As remarked earlier, we will consider the equation
A + B@) + Ky = eFf ()
4.1) dt
w(0) = Uye X, 0<t<T

with K chosen above.

In view of Theorem B, equation (4.1) has a unique strict solution
under our present hypotheses on A(t), B(t) and f(t).

Let F(t) = e E'f (1),

(4.5) g(t) = <B(t K) 2 B(t K) )F(t).

In view of Lemmas 2, 3, and 4 and our induction hypothesis,
we note that A(t; K) satisfies E.1, E.2.m and E.3. Also because
A(t)t e C™++e0, T, B(t) e C™*F|0, T, f(t) e C™*[0, T'], if follows that
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(i) B(t) + B(t; K)(d/dt)B(t; K)™ is a bounded operator for each
tel0, T,

(ii) B(t; K)e C™+[0, T], v = min («, B)

(iii) B(t) + B(t; K)(d/dt)B(t; K)™ e C™'*[0, T,

@iv) (@F/dt) + g(t) e C™ [0, T], » = min (v, 7).

So A(t; K), B(t) + B(t; K)d/dt)B(t; K)™, g(t) satisfy respectively
the conditions for A(t), B(t), f(t) of the theorem with »n = m.

Let t,€(0, T) be arbitrarily chosen. Then consider the equation

dv . L B Yy )y = (GF
@6 2+ (A(t, K) + B(t) + B K) £ B(t; K) >v - (dt + g(t))

0<t <t< T with initial value at ¢,
v(t) = —F (&) + B(ty; K)A®E) + K)u(t,)

where u(t,) is the value of the strict solution of (4.1) at ¢ = ¢,

Because the equation (4.6) satisfies the conditions of theorem
with n = m, we have that the unique strict solution v(t) of (4.6) is
of class C™*[¢,, T'], t, > t, arbitrary.

Let w(t) = F(t) + v(t).

Clearly w(t)e C™*%[t,, T]. Then

(A®) + Ky B )7L 4 {1+ (A + K) LB K)o

_ pg. w10 2@ pog. g
= (40 + KB K {1 + (A(t) + )2 B(t; K) }F
+ (A(t) + K)"'B(t; K)™
dv . a4 :K)!
X [W + B(t; K)(A(t) + K)(l + (A®t) + K)7 = B(t; K) )’v]

= (A(t) + K)"'B(t; K)-l%f;: + {1 +(AQ) + K)‘I%B(t; K)-l}F

+ (A + KB 2~ L~ )

in view of (4.6) and noting that, B(¢; K)(A(t) + K) = A(t; K) + B(t) = F(t)
by our choice of g(t) (see 4.5).
Thus w(t) satisfies
(A(t) + K)7'B(t; K)“I@i + (1 + (A(t) + K)*=B(t; K)—1>w = F(@),
dt dt

t,<t=<T,

w(ty) = F(t,) + v(t) = B(ls; K)A(L) + K)u(t,) .
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Therefore
(A(t) + K)“ld—t(B(t; K)Y7'w) +w = F(t) .
Writing &(t) = B(t; K)~'w, we have

(A(t) + K)—lg—f #{r+ d%(A(t) + K)7 + BOA®) + K7 = F

&(to) = Bl(ty; K)7'w(ty) = (A(t) + K)u(,) , h=t=T.
So
d%((A(t) + K)7¢) + (A(t) + K + B@))(A(F) + K)7'¢ = F(1) .
Writing (A(t) + K)™¢ = {, we have
9P L (A@) + Bt) + K)C = F(t
@ dt+(()+ ) + K)X @),
E(to) = ulty) , L=t<T.

Since (4.1) has a unique strict solution u(t),0 < ¢ < T, and since the
unique strict solution of (4.7) coincides with that of (4.7) at ¢ = ¢,
we conclude that

@) = u(t) , for telt, T].
Now
u(t) = (A@F) + K)7'6(t) = (A@t) + K)7'B(t; K)~w(t) .
Because w(t) e C™[t,, T'], B(t; K)'e C™*[0, T], and
(A(t) + K)eC™70, T,
we have u(t) e C™*[t,, T'] and
(A(t) + K)u(t) = B(t; K)"w(t) e Cm+[t,, T] .
Therefore

%%:-4mw+inmo—3mmwecwmnTy

Hence we C™+'*H¢t, T.
Because t, > 0, and ¢, > ¢, are arbitrary, we have

u(t) e C™ e, T, £, >0

arbitrary. This completes the proof of Theorem 2.
Corollary 1 follows immediately.
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Example of an operator A(t) which satisfies E.1 and E.3 with
A(t)™* real analytic the corresponding evolution operator U(t,s) of
which is not real analytic:

This example is the same as given in Kato [5].

Let X = LYa,b],0 <a<b< T. A(t) be a family of multiplica-
tion operators in X defined by

Atyu(x) = (¢ — x)"u(x) , w(x) e D(A(F)) .

These are positive and self adjoint operators and so E.1 is clearly

satisfled. Because (0/0t)(A(t) + \) is a multiplication operator
defined by

) oy = K=
57 (A + 0)7u) = =)

B B’ 2t — )=
MJAW+”) =80 oy
(t — a)y® P 1
éz%?{x+u—xw}{x+@—xww
< ¢ for xeX .
I

Thus K — T condition is satisfied with o = 1/2. The evolution
operator to this A(f) is given by

U(t, s)u(x) = exp {(t — )™ — (s — x)"Ju(x) ifx>tora<s

-0 ifs<a<t.
Let
N(w) = e~ if £>0
=0 ifag0

U(t, syu(w) = n(@ — t)n(s — w)u(x) .

As ()| =1, UG, 9) || = 1.
It is also clear that U(¢,¢) = I and

U, »\U(r, s) = U, s) sErt.,

It can easily be shown that

Stup 0(90 o h)Y](s - a;z _ 7](90 - t)7](s - w) _ 771(:1; _ t)77(s . w) <&

for sufficiently small % so that
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(%U(t, §) = —(@ — UL, 5)
— _ABUE, s)

This implies that U(f, s) is the evolution operator. Now A(t)™", being
multiplication by (¢ — 2), is analytic in ¢.

Also U(t,s) =0 if s<a and t=0b and U(t,s) + 0 otherwise.
Hence U(t, s) is not analytic in ¢.

We note that this is due to the fact that even though A(t)~* has
an analytic extension for ¢ complex, — A(¢) is not the generator of an
analytic semigroup.

Proof of Corollary 2. In view of Theorem 2, it is enough to
show that A(t) satisfies K — T condition under the assumption that
the bounded operator A(t)A(s)~* is continuously differentiable in the
uniform operator topology in ¢ ¢ [0, T] for any s in [0, T].

Because (A(t)A(s)™) = A(s)A(t)™*, we have

Lim A(s) A(r)~ — A@Q)~

ot r—1t

exists in the uniform operator topology. A(s) being closed, we have
that A(s)(dA(t)~'/dt) is a bounded operator for any se[0, T]. In
particular A(t)(dA(t)'/dt) is a bounded operator. Because of the con-
tinuous differentiability of A(s)A(¢)™!, we can find a constant C such
that

dA()
”A(t)——dt——u <C for €0, T].
%(A(t) ) = A6 (A() + x)~1diltA(t)—1A(t)(A(t) 4t
= (A(t) + x)‘lA(t)%A(t)—‘A(t)(A(t) 4
therefore

Hd%(A(t) 4

M

< —C1+ M).
™|

Thus K — T condition is verified with o = 0.

The author acknowledges the encouragement received from Profs.
T. Kato and F. Wolf.
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